小学六年级奥数系列讲座:构造与论证(含答案解析)
小学奥数 构造与论证 精选例题练习习题(含知识点拨)

构造与论证教学目标1.掌握最佳安排和选择方案的组合问题.2.利用基本染色去解决相关图论问题.知识点拨知识点说明各种探讨给定要求能否实现,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.设计最佳安排和选择方案的组合问题,这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.组合证明题,在论证中,有时需进行分类讨论,有时则需要着眼于极端情况,或从整体把握。
若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题。
若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.知识点拨板块一、最佳安排和选择方案【例 1】5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?【考点】构造与论证【难度】2星【题型】解答【解析】因为必须是调换相邻的两卷,将第5卷调至原来第1卷的位置最少需4次,得到的顺序为51234;现在将第4卷调至此时第1卷的位置最少需3次,得到的顺序为54123;现在将第3卷调至此时第1卷的位置最少需2次,得到的顺序为54312;最后将第1卷和第2卷对调即可.所以,共需调换4+3+2+1=10次.【答案】10次【例 2】在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?【考点】构造与论证【难度】3星【题型】解答【解析】从整体进行考虑.所得的2009个和相加,便等于1~2009的所有数的总和的2倍,是个偶数.2009个数的和是偶数,说明这2009个数中必有偶数,那么这2009个数的乘积是偶数.本题也可以考虑其中的奇数.由于1~2009中有1005个奇数,那么正反两面共有2010个奇数,而只有2009张卡片,根据抽屉原理,其中必有2个奇数在同一张卡片上,那么这张卡片上的数字的和是偶数,从而所有2009个和的乘积也是偶数.【答案】偶数【例 3】一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚.下面我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是颜色(填“黑”或者“白”).【考点】构造与论证【难度】3星【题型】填空【解析】在每一次操作中,若拿出的两枚棋子同色,则补黑子1枚,所以拿出的白子可能为0枚或2枚;若拿出的两枚棋子异色,则补白子1枚,“两枚棋子异色”说明其中一黑一白,那么此时拿出的白子数为0枚.可见每次操作中拿出的白子都是偶数枚,而由于起初白子有200枚,是偶数枚,所以每次操作后剩下的白子都是偶数枚,因此最后1枚不可能是白子,只能是黑子.【答案】黑子【例 4】在黑板上写上1、2、3、4、……、2008,按下列规定进行“操怍”:每次擦去其中的任意两个数a和b,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?【考点】构造与论证【难度】3星【题型】解答【解析】根据等差数列求和公式,可知开始时黑板上所有数的和为123200820091004++++=⨯是一个偶数,而每一次“操作”,将a、b两个数变成了()a b-,它们的和减少了2b,即减少了一个偶数.那么从整体上看,总和减少了一个偶数,其奇偶性不变,还是一个偶数.所以每次操作后黑板上剩下的数的和都是偶数,那么最后黑板上剩下一个数时,这个数是个偶数.【答案】偶数【例 5】在1997×1997的正方形棋盘上的每格都装有一盏灯和一个按钮.按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变为不亮,或由不亮变为亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮?【考点】构造与论证【难度】4星【题型】解答【解析】最少要1997次,将第一列中的每一格都按一次,则除第一列外,每格的灯都只改变一次状态,由不亮变成亮.而第一列每格的灯都改变1997次状态,由不亮变亮.如果少于1997次,则至少有一列和至少有一行没有被按过,位于这一列和这一行相交处的灯保持原状,即不亮的状态.【答案】1997次【例 6】有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光? (2)3堆中的所有石子都被取走?【考点】构造与论证【难度】4星【题型】解答【解析】(1)可以,如(1989,989,89) →(1900,900,0)→(950,900,950)→(50,0,50)→(25,25,50)→(0,0,25).(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.现在共有1989+989+89=3067,不是3的倍数,所以不能将3堆中所有石子都取走.【答案】(1)可以(2)不能【例 7】在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?【考点】构造与论证【难度】4星【题型】解答【解析】当一位业余选手胜2场时,如果只胜了另两位业余选手,那么他得10+2-3=9(分).此时,如果专业选手间的比赛均为一胜一负,而专业选手与业余选手比赛全胜,那么每位专业选手的得分都是10+2-2+3=13(分).所以,一位业余选手胜2场,不能确保他的得分比某位专业选手高.当一位业余选手胜3场时,得分最少时是胜两位业余选手,胜一位专业选手,得10+2+2-2=12(分).此时,三位专业选手最多共得30+0+4=34(分),其中专业选手之间的三场比赛共得0分,专业选手与业余选手的比赛最多共得4分.由三个人得34分,34÷3=1113,推知,必有人得分不超过11分.也就是说,一位业余选手胜3场,能确保他的得分比某位专业选手高.【答案】胜3场【例 8】 n 支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1)n =4是否可能?(2)n =5是否可能?【考点】构造与论证 【难度】3星 【题型】解答【解析】 (1)我们知道4个队共进行了24C 场比赛,而每场比赛有2分产生,所以4个队的得分总和为24C ×2=12.因为每一队至少胜一场,所以得分最低的队至少得2分,又要求每个队的得分都不相同,所以 4个队得分最少2+3+4+5=14>12,不满足.即n =4不可能。
小学数学小学奥数系列8-6-1构造与论证

小学数学小学奥数系列8-6-1构造与论证姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、最佳安排和选择方案 (共20题;共103分)1. (1分)王红、陈阳、李玉分别参加了少年宫的合唱团、舞蹈队和乐队。
王红参加的不是舞蹈队,陈阳不在合唱团,李玉天天背着小提琴。
这三名同学分别在哪一个团队里?王红在________,陈阳在________,李玉在________。
2. (5分) (2020五下·汉寿期中) 35名学生分成甲、乙两队。
如果甲队人数为偶数,乙队人数为奇数还是偶数?如果甲队人数为奇数呢?3. (5分)小朋友们在比身高,三个小朋友的身高分别是142厘米、138厘米、145厘米。
仔细观察,在正确的答案下打“√”。
①小浩:②小玉:4. (5分)有三个女孩穿着崭新的连衣裙去参加游园会。
一个穿花的,一个穿白的,一个穿红的,但不知哪一个姓王,哪一个姓李,哪一个姓刘。
只知道姓刘的不喜欢穿红色的,姓王的既不穿红裙子,也不穿花裙子。
你能猜出这三个女孩各姓什么吗?5. (10分)小明、小华、小强星期天去公园划船,他们都戴了一顶漂亮的太阳帽。
太阳帽有三种颜色:红、黄、蓝。
他们戴的分别是什么颜色的帽子?涂一涂。
6. (5分)证明:任取6个自然数,必有两个数的差是5的倍数。
7. (5分)班上四名同学进行跳棋比赛,每两名同学都要赛一局.每局胜者得分,平者各得分,负者得分.已知甲、乙、丙三名同学得分分别为分、分、分,且丙同学无平局,甲同学有胜局,乙同学有平局,那么丁同学得分是多少?8. (10分)光明幼儿园有三个班。
根据下面三句话,请你猜一猜,哪个班人数最少?哪个班人数最多?①中班比小班少;②中班比大班少;③大班比小班多。
9. (5分)刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?10. (2分)篮子里有苹果、梨、桃和桔子,现有若干个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友才能保证有两个小朋友拿的水果是相同的?11. (5分)(2018·江宁) 一个四位数,它的第一个数字等于这个数中数字0的个数,第二个数字表示这个数中数字1的个数,第三个数字表示这个数中数字2的个数,第四个数字等于这个数中数字3的个数,求出这个四位数。
六年级下册奥数讲义-奥数方法:构造法

在证明一些存在性问题时,我们可以考虑把满足题意要求的数学对象构造出来,问题也自然得到了证明。
这种方法就叫做构造法。
构造法是一种重要的数学方法,一些数论问题也可以通过构造出某些特殊结构、特殊性质的数的组合来解决,另在解决一些图形、逻辑推理方面的问题时,也可以通过构造出来某些我们熟悉的情境,然后进行解答就容易多了。
构造法解题的步骤一般为先观察问题的条件,对其进行分析和重组,或对问题进行特殊化考虑,找出构造的方案,然后进行检验,得出问题的解。
[例1] 如图1所示,在三角形ABC中,BD=2DC,AE=2ED,FC=7,那么AF=[例2】有人说:“任何七个连续的自然数中一定有质数”,请你举一个例子说明这句话是错的。
思路剖析本题实际上是要证明:七个连续的自然数有可能全部是合数,这就成了一个存在性的证明题,只要用构造的方法,构造一个例子,便可以说明。
解答取数a=2×3×4×5×6×7×8则a+2,a+3,a+4,a+5,a+6,a+7,a+8这七个数全部是合数,且为连续的自然数。
故“任何七个连续的自然数中一定有质数”这句话是错的。
[例3] 是否在平面上存在这样的40条直线,它们共有365个交点?思路剖析这是一个证明存在性的问题,我们可以用构造法为构造出符合要求的方案,先从一些特殊图形进行考虑。
解答先考虑一种特殊的图形:围棋盘。
它有38条直线、361个交点。
为构造出40条直线有365个交点的情形。
我们就从这种特殊的图形出发,进行局部的调整。
先加上2条对角线,这样就有40条直线了,但交点仍然是361个。
再将最右边的l条直线向右平移1段,正好增加了4个交点(见图3)。
于是,我们就得到了有365个交点的40条直线。
[例4】如图4所示,将图中的A、B、C、D、E五点染色,使相邻的(即有线段相连的)点有不同的颜色,至少需要几种颜色?思路剖析将A、B、C、D、E五点染色,只用一种颜色肯定是不够的,如果我们能构造出一种符合条件的染色方法,只需要2种颜色,也就找到了答案。
6学通数学奥数组合数学专题-14 构造论证(二)

主讲:土豆 助教:五豆
中小学数学精品视频课程
基础知识
设计方案的过程 构造
方案的正确性
是否最优
论证
中小学数学精品视频课程
方案设计
奇偶分析
中小学数学精频课程
方案设计
奇偶分析
【例题】一本故事书有������������篇故事,这些故事占的篇幅从������页到 ������������页各不相同。如果从书的第1页开始印第一个故事,每一个故
事总是从新的一页开始印,那么故事从奇数页起头的最多有几
篇?最少有几篇?
中小学数学精品视频课程
中小学数学精品视频课程
奇偶分析
中小学数学精品视频课程
奇偶分析
【例题】一个数列有������项,每相邻两项作差,发现所得的������个差里 面有������个是������,������个是������.问:这个数列中最多有几个奇数,最少有几
个奇数?
中小学数学精品视频课程
【例题】平面上有������个点,他们之间可以连������������条线段。请问:至少 要去掉多少条线段,才能使其中没有以这������个点为顶点的三角形?
中小学数学精品视频课程
方案设计
【例题】能否将������至������������排成一行,使得任意相邻两数之和都为平 方数?能否使得任意相邻两数之和都为质数?
贵州省贵阳市数学小学奥数系列8-6-1构造与论证

贵州省贵阳市数学小学奥数系列8-6-1构造与论证姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、最佳安排和选择方案 (共20题;共103分)1. (1分)小刚、小强和小丁在100米赛跑中取得了前三名的成绩。
已知小刚不是第一名,小强不是前两名。
第一名是________。
2. (5分)文老师到文化用品商店买奖品。
钢笔每支8元,笔记本每本4元。
她付给营业员100元,营业员找给文老师25元。
你能很快地判断找回的钱对吗?请说明理由。
3. (5分)王平、宋丹、韩涛三个小学生都是少先队的干部,一个是大队长,一个是中队长,一个是小队长.一次数学测验,这三个人的成绩是:⑴韩涛比大队长的成绩好.⑵王平和中队长的成绩不相同.⑶中队长比宋丹的成绩差.请你根据这三个人的成绩,判断一下,谁是大队长呢?4. (5分)给三个非常聪明的人各戴了一顶帽子.并且告诉他们,他们的帽子的颜色可能是红色的,也可能是蓝色的,没有其他颜色.且三人中至少有一个人的帽子是红色的.三人互相看了看,没有人能很快地说出自己戴的是什么颜色的帽子.三人又冥思苦想了一阵,几乎同时都猜到了自己戴了什么颜色的帽子.你知道他们三人各戴了什么颜色的帽子吗?请说明理由.5. (10分)浪费掉人的一生的三分之一时间的会是什么东西?6. (5分)在1,4,7,10,13,16,19,22,25,28,31,34中任选出7个不同的数,其中必有两个数的和为35.7. (5分)一次数学考试,共六道判断题.考生认为正确的就画“√”,认为错误的就画“ ”.记分的方法是:答对一题给2分;不答的给1分;答错的不给分.已知、、、、、、七人的答案及前六个人的得分记录在表中,请在表中填出的得分.并简单说明你的思路.8. (10分)有大,中,小3个瓶子,最多分别可以装入水1000克,700克和300克.现在大瓶中装满水,希望通过水在3个瓶子间的流动使得中瓶和小瓶上标出100克水的刻度线,问最少要倒几次水?9. (5分)刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?10. (2分)在任意的五个自然数中,是否其中必有三个数的和是的倍数?11. (5分) A、B、C、D四人在一场比赛中得了前4名.已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高.问:他们各是第几名?12. (5分)想一想,请你继续写!149________2536________________________噢!我发现了:________.13. (5分)甲、乙、丙三人,他们的籍贯分别是辽宁、广西、山东,他们的职业分别是教师、工人、演员.已知:⑴甲不是辽宁人,乙不是广西人;⑵辽宁人不是演员,广西人是教师;⑶乙不是工人.求这三人各自的籍贯和职业.14. (5分)一个篮子里装着五个苹果,要分给五个人,要求每人分的一样多,最后篮子里还要剩下一个苹果,如何分(不能切开苹果)15. (5分)有三个女孩穿着崭新的连衣裙去参加游园会。
(小学奥数)构造与论证

構造與論證教學目標1.掌握最佳安排和選擇方案的組合問題.2.利用基本染色去解決相關圖論問題.知識點撥知識點說明各種探討給定要求能否實現,在論證中,有時需進行分類討論,有時則要著眼於極端情形,或從整體把握.設計最佳安排和選擇方案的組合問題,這裏的最佳通常指某個量達到最大或最小.解題時,既要構造出取得最值的具體實例,又要對此方案的最優性進行論證.論證中的常用手段包括抽屜原則、整除性分析和不等式估計.組合證明題,在論證中,有時需進行分類討論,有時則需要著眼於極端情況,或從整體把握。
若干點及連接它們的一些線段組成圖,與此相關的題目稱為圖論問題。
若干點及連接它們的一些線段組成圖,與此相關的題目稱為圖論問題,這裏宜從特殊的點或線著手進行分析.各種以染色為內容,或通過染色求解的組合問題,基本的染色方式有相間染色與條形染色.知識點撥板塊一、最佳安排和選擇方案【例 1】5卷本百科全書按從第1卷到第5卷的遞增序號排列,今要將它們變為反序排列,即從第5卷到第1卷.如果每次只能調換相鄰的兩卷,那麼最少要調換多少次?【考點】構造與論證【難度】2星【題型】解答【解析】因為必須是調換相鄰的兩卷,將第5卷調至原來第1卷的位置最少需4次,得到的順序為51234;現在將第4卷調至此時第1卷的位置最少需3次,得到的順序為54123;現在將第3卷調至此時第1卷的位置最少需2次,得到的順序為54312;最後將第1卷和第2卷對調即可.所以,共需調換4+3+2+1=10次.【答案】10次【例 2】在2009張卡片上分別寫著數字1、2、3、4、……、2009,現在將卡片的順序打亂,讓空白面朝上,並在空白面上又分別寫上1、2、3、4、……、2009.然後將每一張卡片正反兩個面上的數字相加,再將這2009個和相乘,所得的積能否確定是奇數還是偶數?【考點】構造與論證【難度】3星【題型】解答【解析】從整體進行考慮.所得的2009個和相加,便等於1~2009的所有數的總和的2倍,是個偶數.2009個數的和是偶數,說明這2009個數中必有偶數,那麼這2009個數的乘積是偶數.本題也可以考慮其中的奇數.由於1~2009中有1005個奇數,那麼正反兩面共有2010個奇數,而只有2009張卡片,根據抽屜原理,其中必有2個奇數在同一張卡片上,那麼這張卡片上的數字的和是偶數,從而所有2009個和的乘積也是偶數.【答案】偶數【例 3】一個盒子裏有400枚棋子,其中黑色和白色的棋子各200枚.下麵我們對這些棋子做如下操作:每次拿出2枚棋子,如果顏色相同,就補1枚黑色棋子回去;如果顏色不同,就補1枚白色的棋子回去.這樣的操作,實際上就是每次都少了1枚棋子,那麼,經過399次操作後,最後剩下的棋子是顏色(填“黑”或者“白”).【考點】構造與論證【難度】3星【題型】填空【解析】在每一次操作中,若拿出的兩枚棋子同色,則補黑子1枚,所以拿出的白子可能為0枚或2枚;若拿出的兩枚棋子異色,則補白子1枚,“兩枚棋子異色”說明其中一黑一白,那麼此時拿出的白子數為0枚.可見每次操作中拿出的白子都是偶數枚,而由於起初白子有200枚,是偶數枚,所以每次操作後剩下的白子都是偶數枚,因此最後1枚不可能是白子,只能是黑子.【答案】黑子【例 4】在黑板上寫上1、2、3、4、……、2008,按下列規定進行“操怍”:每次擦去其中的任意兩個數a和b,然後寫上它們的差(大數減小數),直到黑板上剩下一個數為止.問黑板上剩下的數是奇數還是偶數?為什麼?【考點】構造與論證【難度】3星【題型】解答【解析】根據等差數列求和公式,可知開始時黑板上所有數的和為++++=⨯是一個偶數,而每一次“操作”,將a、b兩個數123200820091004變成了()-,它們的和減少了2b,即減少了一個偶數.那麼從整體上看,a b總和減少了一個偶數,其奇偶性不變,還是一個偶數.所以每次操作後黑板上剩下的數的和都是偶數,那麼最後黑板上剩下一個數時,這個數是個偶數.【答案】偶數【例 5】在1997×1997的正方形棋盤上的每格都裝有一盞燈和一個按鈕.按鈕每按一次,與它同一行和同一列方格中的燈泡都改變一次狀態,即由亮變為不亮,或由不亮變為亮.如果原來每盞燈都是不亮的,請說明最少需要按多少次按鈕才可以使燈全部變亮?【考點】構造與論證【難度】4星【題型】解答【解析】最少要1997次,將第一列中的每一格都按一次,則除第一列外,每格的燈都只改變一次狀態,由不亮變成亮.而第一列每格的燈都改變1997次狀態,由不亮變亮.如果少於1997次,則至少有一列和至少有一行沒有被按過,位於這一列和這一行相交處的燈保持原狀,即不亮的狀態.【答案】1997次【例 6】有3堆小石子,每次允許進行如下操作:從每堆中取走同樣數目的小石子,或是將其中的某一石子數是偶數的堆中的一半石子移入另外的一堆.開始時,第一堆有1989塊石子,第二堆有989塊石子,第三堆有89塊石子.問能否做到:(1)某2堆石子全部取光? (2)3堆中的所有石子都被取走?【考點】構造與論證【難度】4星【題型】解答【解析】(1)可以,如(1989,989,89) →(1900,900,0)→(950,900,950)→(50,0,50)→(25,25,50)→(0,0,25).(2)因為操作就兩種,每堆取走同樣數目的小石子,將有偶數堆石子堆中一半移至另一堆,所以每次操作石子總數要麼減少3的倍數,要麼不變.現在共有1989+989+89=3067,不是3的倍數,所以不能將3堆中所有石子都取走.【答案】(1)可以(2)不能【例 7】在某市舉行的一次乒乓球邀請賽上,有3名專業選手與3名業餘選手參加.比賽採用單迴圈方式進行,就是說每兩名選手都要比賽一場.為公平起見,用以下方法記分:開賽前每位選手各有10分作為底分,每賽一場,勝者加分,負者扣分,每勝專業選手一場加2分,每勝業餘選手一場加1分;專業選手每負一場扣2分,業餘選手每負一場扣1分.問:一位業餘選手最少要勝幾場,才能確保他的得分比某位專業選手高? 【考點】構造與論證【難度】4星【題型】解答【解析】當一位業餘選手勝2場時,如果只勝了另兩位業餘選手,那麼他得10+2-3=9(分).此時,如果專業選手間的比賽均為一勝一負,而專業選手與業餘選手比賽全勝,那麼每位專業選手的得分都是10+2-2+3=13(分).所以,一位業餘選手勝2場,不能確保他的得分比某位專業選手高.當一位業餘選手勝3場時,得分最少時是勝兩位業餘選手,勝一位專業選手,得10+2+2-2=12(分).此時,三位專業選手最多共得30+0+4=34(分),其中專業選手之間的三場比賽共得0分,專業選手與業餘選手的比賽最多共得4分.由三個人得34分,34÷3=111,推知,3必有人得分不超過11分.也就是說,一位業餘選手勝3場,能確保他的得分比某位專業選高.【答案】勝3場【例 8】n支足球隊進行比賽,比賽採用單迴圈制,即每對均與其他各隊比賽一場.現規定勝一場得2分,平一場得1分,負一場得0分.如果每一隊至少勝一場,並且所有各隊的積分都不相同,問:(1)n=4是否可能?(2)n=5是否可能?【考點】構造與論證【難度】3星【題型】解答【解析】(1)我們知道4個隊共進行了24C場比賽,而每場比賽有2分產生,所以4個隊的得分總和為2C×2=12.因為每一隊至少勝一場,所以得分最低的4隊至少得2分,又要求每個隊的得分都不相同,所以4個隊得分最少2+3+4+5=14>12,不滿足.即n=4不可能。
数学六年级 第21讲 构造论证二(教师版+学生版,含详细解析)全国通用

第21讲构造论证二兴趣篇1、如下图,在66⨯的警戒方格内,每个哨所可以监视横、竖、斜方向的全部单位方格。
现在已经建了两个哨所。
请你挑选一个方格,再建立一个哨所,使得所有的方格都被监视到。
【分析】第二行第三列2、〔1〕把1,2,3,…,8,9按适宜的顺序填在图1第二行的空格中,使得每一列上、下两数之和都是平方数。
〔2〕能否将1,2,3,…,10,11按适宜的顺序填在图2第二行的空格中,使得每一列上、下两数之和都是平方数?【分析】〔1〕考虑到9只能和7配,先填入9和7;剩下的6只能和3配,4只能和5配,依次填好;所以从左至右填入的数依次是8,2,6,5,4,3,9,1,7;〔2〕考虑11只能和5配,那么没有数和4配,不能3、今有长度为1,2,3,…,198,199的金属杆各一根。
请问:能否用上全部的金属杆,不弯曲其中的任何一根,把它们焊接成:〔1〕一个正方体框架;〔2〕一个长方体框架?【分析】〔1〕总长(1199)199219900+⨯÷=,不是12的倍数,不能;〔2〕能,此时长方体框架的长、宽、高之和为19925⨯,可以分别为4577、199、1994、老师对六位同学的三门功课语文、数学、体育进行了一次测验,六位同学的体育得分是1分或者2分,数学得分是1分、2分或者3分,语文得分是1分、2分、3分或者4分。
如果一位同学的三门功课成绩都不低于另一个同学的三门功课成绩,就说这个同学比另一个同学优秀。
测验完成后老师发现这六位同学谁也不比别人优秀,请问:这六位同学三科得分分别为多少?【分析】这6位同学在三门课上的得分分别是〔1分,1分,4分〕,〔1分,2分,3分〕,〔1分,3分,2分〕,〔2分,1分,3分〕,〔2分,2分,2分〕,〔2分,3分,1分〕5、把图中的圆圈任意涂上红色或蓝色。
问:能否使得每一条直线上的红圈个数都是奇数?【分析】如果每边红色圈数目都是奇数,那么5条边总红色圈个数就是奇数;而实际上每个红圈被计算了2次,总红色圈数目是2的倍数,是偶数,矛盾,所以不能6、〔1〕能否在44⨯的方格表的各个小方格内分别填入数1,2,…,15,16,使得从每行中都可以选择假设干个数,这些数的和等于该行中其余各数之和?〔2〕能否在55⨯方格表的各个小方格内分别填入数1,2,…,24,25,使得从每行中都可以选择假设干个数,这些数的和等于该行中其余各数之和?【分析】〔1〕能,构造一个满足条件的表格〔2〕如果可以的话,每行数字和都是偶数,那么总数字和是偶数,而1~16的数字和是奇数,矛盾,所以不能7、如图是把一张66⨯的方格纸去掉两个角所得的图形。
高斯小学奥数六年级上册含答案第24讲 构造论证

第二十四讲构造论证二例1. (1)把1、2、3、…、8、9按合适的顺序填在图中第二行的空格中,使得每两个上、下对齐的数之和都是平方数.(2)能否将1、2、3、…、10、11按合适的顺序填在图中第二行的空格中,使得每两个上、下对齐的数之和都是平方数?若不能请说明理由. 「分析」(1)首先判断由1到9可以凑成的平方数的范围,然后逐一计算一下哪些数一起可以凑成平方数,从情况唯一或较少的数字填起;(2)分析方法同上一问,注意是否一定能填出.练习1、把1、2、…、13、14按合适的顺序填在图中第二行的空格中,使得每列的两个数之和都是平方数.例2. (1)能否将1至15排成一行,使得任意相邻两数之和都为平方数?(2)能否将1至15排成一行,使得任意相邻两数之和都为质数?「分析」(1)对于1~15的每一数来说,能都凑成平方数的情况并不多,我们就可以从这里入手分析,同学们尝试一下看能不能得到一种合适的方案.(2)注意到除了2以外,质数只能是奇数,那我们是不是能从奇偶性的分析入手呢?练习2、能否将1至41排成一行,使得任意相邻两数之和都为质数?例3.有3堆石子,每次可以从这三堆中同时拿走相同数目的石子(每次这个数目可以改变),也可以由一堆中取一半石子放入另外任一堆石子中.请问:(1)如果开始时,3堆石子的数目分别是34、55、82,按上述操作,能否把3堆石子都拿光?(2)如果开始时,3堆石子的数目分别是80、60、50,按上述操作,能否把3堆石子都拿光?如果可以,请设计一种取石子的方案;如果不可以,请说明理由.「分析」每次从这三堆中同时拿走相同数目的石子意味着每次拿走的石子数是3的倍数,所以,我们可以从石子总数这个角度分析这道题目.练习3、有4堆石子,每次可以从这四堆中同时拿走1个石子;也可以从任一堆中取出3个石子,另三堆各放1个.如果开始时,4堆石子的数目分别是14、25、32、44,能否把4堆石子都拿光?例4.黑板上写着3个数8,18,28,老师现在请一些同学上黑板对这3个数进行操作.进行一次操作是指:一些数减1,其它数加2;或者都减1;或者都加2.那么能否经过若干次操作后得到6,7,8?能否经过若干次操作后得到8,8,8?「分析」这道题可以从三个数中任意两数除以3的余数角度去分析.练习4、黑板上写着3个数9、18、27,老师现在请一些同学上黑板对这3个数进行操作.进行一次操作是指:把3个数进行如下变化,一些数减1、其它数加2;或者都减1;或者都加2.请问:能否经过若干次操作后得到11,12,13?能否经过若干次操作后得到8,8,8?例5.图中是把一张6×6的方格纸去掉两个角所得的图形.Array(1)请把所有的格子涂上红、蓝两色之一,使得每个1×2小长方形(不论横竖)的2个方格中都恰有1个红格和1个蓝格;(2)能否用1×2的小长方形恰好拼满这张表格?「分析」本题可以采用“染色法”进行分析.例6.(1)能否用16个如图所示的“T 型”拼成一个的棋盘? (2)能否用8个“T 型”和8个“L 型”拼成一个的棋盘?「分析」碰到这样的问题,我们首先要考虑的是能不能填出,而不是一上来就去试,这时就需要我们进行染色分析了,同学们可以先尝试一下黑白相间染色,论述一下是否成立?如果成立,那就需要找到一种合适的拼法.88⨯ 88⨯阿兹台克文明根据传说,阿兹台克人的祖先是从北方一个叫阿兹特兰的地方来的,他们根据太阳神威齐洛波契特里的指示往南来到阿纳瓦克谷的特斯科科湖;当他们来到湖中央的岛屿时,他们看到一只叼着蛇的老鹰停歇在仙人掌上,这个意像告诉他们应该在这里建造城市.1325年阿兹台克人在这个地方建立了特诺奇提特兰,一座巨大的人工岛,现在墨西哥城的中心.阿兹台克人原属纳瓦语系发展水平较低的一个部落,后来因吸收、融合这个地区其他印第安优秀文化传统而迅速崛起.公元11~12世纪间,从北部迁入墨西哥中央谷地,1325年在特斯科科湖西部岛上建造特诺奇蒂特兰城.1426年,阿兹台克同特斯科科、特拉科潘结成了“阿兹台克联盟”,由阿兹台克国王伊兹科亚特尔任首领,势力日盛,在谷地建立了霸主地位.继承人蒙特祖马一世及其后的国王不断对外用兵,开疆拓土,至16世纪初,其疆域东西两面已抵墨西哥湾和太平洋沿岸,北与契契梅克为邻,南至今日之危地马拉,人口约300万,发展到极盛时期.1519年,西班牙殖民者埃尔南·科尔特斯利用印第安人内部矛盾,进攻阿兹台克国,蒙特苏马二世在入侵者面前动摇不定,最后成为西班牙殖民者的傀儡.1520年6月向人民劝降时被群众击伤而死.科尔特斯在所谓“悲惨之夜”侥幸逃命后,又于1521年卷土重来,阿兹台克人在新国王夸乌特莫克率领下,与围城的西班牙殖民者展开殊死搏斗,最后由于粮食和水源断绝,加之天花肆虐而失败.1521年8月,西班牙人占领特诺奇蒂特兰,在城中大肆屠杀,并将该城彻底毁坏,后在其废墟上建立墨西哥城.阿兹台克文明在发展过程中,吸收了托尔特克文化和玛雅文明的许多成就,但自己也有独创.其文字仍属图画文字,但已含有象形文字成分.天文历法方面,使用太阳历与圣年历,已知一年为365天,每逢闰年补加一天.医学方面,知道利用各种草药治病,并已使用土法麻醉.阿兹台克人的陶器和绘画均极精致,建筑和艺术也达到相当高的水平.首都特诺奇蒂特兰的公共建筑物多以白石砌成,十分宏丽壮观.一般房屋的周围,在固定在水面的木排上种植花草,形成水上田园.城中心的主庙基部长100米、宽90米,四周有雉堞围墙环绕,塔顶建有供奉主神威济洛波特利和雨神特拉洛克的神殿,其祭坛周围有蛇头石雕,坛下发现的重达10吨的大石上,刻有被肢解的月亮女神图案,1790年在墨西哥城中心广场发现的“第五太阳石”直径近4米,重约120吨,刻有阿兹台克宗教传说中创世以来四个时代的图像,代表了阿兹台克人石雕艺术的高度水平.阿兹台克人是优秀的建筑师.首府特诺奇蒂特兰是一座岛城,有3条宽达10米的石堤与湖外陆地相通,石堤每隔一定距离就留一横渠,渠上架设吊桥,可随时收放,以防外敌入侵.城内建有宫殿、神庙、官邸、学校,建筑宏伟,最大一座金字塔台庙其规模甚至可与古埃及的媲美.为了满足城市稠密人口对粮食的需要,在湖泊中建造了独特的“水上园地”,以扩大种植面积.岛城四面环水,市内河道纵横,景色富丽,殖民者为之倾倒,惊呼为“世界花园”.阿兹台克人主要生产工具仍为石器,多由黑曜岩制成,但已会制造铜、金物品.作业1.桌上放有5枚硬币,正面朝上,第一次翻动1枚,第二次翻动其中的2枚,第三次翻动其中的3枚,第四次翻动其中的4枚,第五次翻动其中的5枚.能否恰当地选择每次翻动的硬币,使得最后桌上所有的硬币都正面朝下?2.把1、2、3、…、13按合适的顺序填在图中第二行的空格中,使得每列两个数字之和都是平方数.3.《三国英雄传》共有10篇故事,这些故事占的篇幅从2页到11页各不相同.如果从书的第1页开始印第一个故事,每一个故事总是从新的一页开始印,那么故事从奇数页起头的最多有多少篇,最少有多少篇?4.能否将1至12排成一行,使得任意相邻两数之和都为质数?5.能否将1~13排成一行,使得任意相邻两数之和都为平方数?如果可以的话请给出一种排列方式,如果不能请说明理由.第二十四讲 构造论证二例7. 答案:(1)如下图,(2)不能详解:(1)略;(2)配成的平方数只有4、9、16三种可能,11只能和5配对,而4也只能和5配对,所以没有满足要求的填法.例8. 答案:(1)9、7、2、14、11、5、4、12、13、3、6、10、15、1、8;(2)1、2、3、14、5、12、7、10、9、8、11、6、13、4、15 详解:(2)奇数与奇数不能相邻,所以需要有7个偶数把它们分开. 例9.答案:(1)能,(2)不能 详解:(1)可以按如下操作:(34,55,82)→(0,21,48)→(24,21,24)→(4,1,4)→(2,3,4)→(0,1,2)→(1,1,1)→(0,0,0);(2)本题中三堆石子数目和要是3的倍数,190不是3的倍数,所以,不能. 例10. 答案:(1)能;(2)不能 详解:(1)可以按如下操作:(8,18,28)→(0,10,20)→(6,7,17)→(8,9,16)→(7,8,15)→(6,7,14)→(6,7,8);(2)所有操作不能改变三个数的两两之差被3除的余数大小.例11. 答案:(1)如图,白框涂红、黑框涂蓝;(2)不能 详解:(2)1×2的小长方形每次恰覆盖1个红格和1个蓝格,而由(1)可知红格与蓝格的数目不相等.例12. 答案:能,能 详解:方法同上.练习:练习1、答案:如下图练习2、答案:能简答:如下:1、40、3、38、5、…、37、4、39、2、41.练习3、答案:不能简答:总数不是4的倍数.练习4、答案:不能;能简答:(1)所有操作不能改变三个数的两两之差被3除的余数大小(2)可以实现,方法不唯一.作业1.答案:能简答:第一次翻动第一枚,第二次翻动第一、二枚,第三次翻动第三、四、五枚,第四次翻动第二、三、四、五枚,第五次全部翻动.2.答案:如下表3.答案:8;3简答:2~11页,只考虑页数总和的奇偶不考虑数值,最多可以是偶、偶、偶、偶、偶、奇、奇、奇、奇、奇,其中以奇数页开始的是8篇,改变顺序即可得出最少为3篇.4.答案:能简答:如下:11、12、1、2、3、4、7、6、5、8、9、10.5.答案:不能简答:9只能和7相邻,10只能和6相邻,11只能和5相邻,所以这3个数必须放在两端,显然无法满足.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构造与论证1内容概述各种探讨给定要求能否实现,设计最佳安排和选择方案的组合问题.这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.典型问题2.有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光?(2)3堆中的所有石子都被取走?【分析与解】 (1)可以,如(1989,989,89) →(1900,900,0)→(950,900,950)→(50,0,50)→(25,25,50)→(O,0,25).(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.现在共有1989+989+89=3067,不是3的倍数,所以不能将3堆中所有石子都取走.4.在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?【分析与解】当一位业余选手胜2场时,如果只胜了另两位业余选手,那么他得10+2-3=9(分).此时,如果专业选手间的比赛均为一胜一负,而专业选手与业余选手比赛全胜,那么每位专业选手的得分都是10+2-2+3=13(分).所以,一位业余选手胜2场,不能确保他的得分比某位专业选手高.当一位业余选手胜3场时,得分最少时是胜两位业余选手,胜一位专业选手,得10+2+2-2=12(分).此时,三位专业选手最多共得30+0+4=34(分),其中专业选手之间的三场比赛共得0分,专业选手与业余选手的比赛最多共得4分.由三个人得34分,34÷3=1113,推知,必有人得分不超过11分.也就是说,一位业余选手胜3场,能确保他的得分比某位专业选手高.6.如图35-1,将1,2,3,4,5,6,7,8,9,10这10个数分别填入图中的10个圆圈内,使任意连续相邻的5个圆圈内的各数之和均不大于某个整数M.求M的最小值并完成你的填图.【分析与解】要使M最小,就要尽量平均的填写,因为如果有的连续5个圆圈内的数特别小,有的特别大,那么M就只能大于等于特别大的数,不能达到尽量小的目的.因为每个圆圈内的数都用了5次,所以10次的和为5×(1+2+3+…+10)=275.每次和都小于等于朋,所以IOM大于等于275,整数M大于28.下面来验证M=28时是否成立,注意到圆圈内全部数的总和是55,所以肯定是一边五个的和是28,一边是27.因为数字都不一样,所以和28肯定是相间排列,和27也是相问排列,也就是说数组每隔4个差值为l,这样从1填起,容易排出适当的填图.8.1998名运动员的号码依次为1至1998的自然数.现在要从中选出若干名运动员参加仪仗队,使得剩下的运动员中没有一个人的号码等于另外两人的号码的乘积.那么,选为仪仗队的运动员最少有多少人?【分析与解】我们很自然的想到把用得比较多的乘数去掉,因为它们参与的乘式比较多,把它们去掉有助于使剩下的构不成乘式,比较小的数肯定是用得最多的,因为它们的倍数最多,所以考虑先把它们去掉,但关键是除到何处?考虑到44的平方为1936,所以去到44就够了,因为如果剩下的构成了乘式,那么乘式中最小的数一定小于等于44,所以可以保证剩下的构不成乘式.因为对结果没有影响,所以可以将1保留,于是去掉2,3,4,…,44这43个数.但是,是不是去掉43个数为最小的方法呢?构造2×97,3×96,4×95,…,44×45,发现这43组数全不相同而且结果都比1998小,所以要去掉这些乘式就至少要去掉43个数,所以43位最小值,即为所求.10.在10×19方格表的每个方格内,写上0或1,然后算出每行及每列的各数之和.问最多能得到多少个不同的和数?【分析与解】首先每列的和最少为0,最多是10,每行的和最少是0,最多是19,所以不同的和最多也就是0,1,2,3,4,…,18,19这20个.下面我们说明如果0出现,那么必然有另外一个数字不能出现.如果0出现在行的和中,说明有1行全是0,意味着列的和中至多出现0到9,加上行的和至多出现10个数字,所以少了一种可能.如果0出现在列的和中,说明在行的和中19不可能出现,所以0出现就意味着另一个数字不能出现,所以至多是19,下面给出一种排出方法.12.在1000×1000的方格表中任意选取n个方格染为红色,都存在3个红色方格,它们的中心构成一个直角三角形的顶点.求n的最小值.【分析与解】首先确定1998不行.反例如下:其次1999可能是可以的,因为首先从行看,1999个红点分布在1000行中,肯定有一些行含有2个或者以上的红点,因为含有0或1个红点的行最多999个,所以其他行含有红点肯定大于等于1999-999=1000,如果是大于1000,那么根据抽屉原理,肯定有两个这样红点在一列,那么就会出现红色三角形;如果是等于1000而没有这样的2个红点在一列,说明有999行只含有1个红点,而剩下的一行全是红点,那也肯定已经出现直角三角形了,所以n的最小值为1999.14.在图35-2中有16个黑点,它们排成了一个4×4的方阵.用线段连接其中4点,就可以画出各种不同的正方形.现在要去掉某些点,使得其中任意4点都不能连成正方形,那么最少要去掉多少个点?【分析与解】至少要除去6个点,如下所示为几种方法:构造与论证2内容概述组合证明题,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.典型问题2.甲、乙、丙三个班人数相同,在班级之间举行象棋比赛.各班同学都按l,2,3,4,…依次编号.当两个班比赛时,具有相同编号的同学在同一台对垒.在甲、乙两班比赛时,有15台是男、女生对垒;在乙、丙班比赛时,有9台是男、女生对垒.试说明在甲、丙班比赛时,男、女生对垒的台数不会超过24.并指出在什么情况下,正好是24 ?【分析与解】不妨设甲、乙比赛时,1~15号是男女对垒,乙、丙比赛时.在1~15号中有a台男女对垒,15号之后有9-a台男女对垒(0≤a≤9)甲、丙比赛时,前15号,男女对垒的台数是15-a(如果1号乙与1号丙是男女对垒,那么1号甲与1号丙就不是男女对垒),15号之后,有9-a台男女对垒.所以甲、丙比赛时,男女对垒的台数为15-a+9-a=24-2a≤24.仅在a=0,即必须乙、丙比赛时男、女对垒的号码,与甲、乙比赛时男、女对垒的号码完全不同,甲、丙比赛时,男、女对垒的台数才等于24.4.将15×15的正方形方格表的每个格涂上红色、蓝色或绿色.证明:至少可以找到两行,这两行中某一种颜色的格数相同.【分析与解】如果找不到两行的某种颜色数一样,那么就是说所有颜色的列与列之问的数目不同.那么红色最少也会占:0+1+2+…+14=105个格子.同样蓝色和绿色也是,这样就必须有至少:3×(0+l+2+…+14)=315个格子.但是,现在只有15×15=225个格子,所以和条件违背,假设不成立,结论得证.6. 4个人聚会,每人各带2件礼品,分赠给其余3个人中的2人.试证明:至少有2对人,每对人是互赠过礼品的.【分析与解】将这四个人用4个点表示,如果两个人之间送过礼,就在两点之间连一条线. 由于每人送出2件礼物,图中共有4×2=8条线,由于每人礼品都分赠给2个人,所以每两点之间至多有1+1=2条线.四点间,每两点连一条线,一共6条线,现在有8条线,说明必有两点之间连了2条线,还有另外两点(有一点可以与前面的点相同)之间也连了2条线.即为所证结论。
8.若干台计算机联网,要求:①任意两台之间最多用一条电缆连接;②任意三台之间最多用两条电缆连接;③两台计算机之间如果没有电缆连接,则必须有另一台计算机和它们都连接有电缆.若按此要求最少要用79条电缆.问:(1)这些计算机的数量是多少台?(2)这些计算机按要求联网,最多可以连多少条电缆?【分析与解】将机器当成点,连接电缆当成线,我们就得到一个图,如果从图上一个点出发,可以沿着线跑到图上任一个其它的点,这样的图就称为连通的图,条件③表明图是连通图.我们看一看几个点的连通图至少有多少条线.可以假定图没有圈(如果有圈,就在圈上去掉一条线),从一点出发,不能再继续前进,将这一点与连结这点的线去掉.考虑剩下的n-1个点的图,它仍然是连通的.用同样的办法又可去掉一点及一条线.这样继续下去,最后只剩下一个点.因此n 个点的连通图至少有n-1条线(如果有圈,线的条数就会增加),并且从一点A 向其他n-1个点各连一条线,这样的图恰好有n-1条线.因此,(1)的答案是n=79+1=80,并且将一台计算机与其他79台各用一条线相连,就得到符合要求的联网.下面看看最多连多少条线.在这80个点(80台计算机)中,设从1A 引出的线最多,有k 条,与1A 相连的点是1B ,2B ,…,k B 由于条件,1B ,2B …,k B 之间没有线相连.设与1A 不相连的点是2A ,3A …,m A ,则m+k=80,而2A ,3A …,m A 每一点至多引出k 条线,图中至多有mk 条线,因为40B 24()m k m k ⨯⨯=+≤2()6400m k +=所以m×k ≤1600,即连线不超过1600条.另一方面,设80个点分为两组:1A ,2A …,40A ;1B ,2B …,40B 第一组的每一点与第二组的每一点各用一条线相连,这样的图符合题目要求,共有40×40=1600条线.10.在一个6×6的方格棋盘中,将若干个1×1的小方格染成红色.如果随意划掉3行3列,在剩下的小方格中必定有一个是红色的.那么最少要涂多少个方格?【分析与解】方法一:显然,我们先在每行、每列均涂一个方格,使之成为红色,如图A所示,但是在图B中,划去3行3列后,剩下的方格没有红色的,于是再将两个方格涂成红色(依据对称性,应将2个方格同时涂成红色),如图C所示,但是图D的划法,又使剩下的方格没有红色,于是再将两个方格涂成红色(还是由于对称的缘故,将2个方格涂成红色),得到图E,图E不管怎么划去3行3列,都能使剩下的方格含有红色的.这时共涂了10个方格.方法二:一方面,图F表明无论去掉哪三行哪三列总会留下一个涂红的方格.另一方面,如果只涂9个红色方格,那么红格最多的三行至少有6个红格(否则第三多的行只有1个红格,红格总数≤5+3=8),去掉这三行至多还剩3个红格,再去掉三列即可将这三个红格也去掉.综上所述,至少需要将10个方格涂成红色.12. 证明:在6×6×6的正方体盒子中最多可放入52个1×l×4的小长方体,这里每个小长方体的面都要与盒子的侧面平行.【分析与解】先将6× 6×6的正方体盒子视为实体,那么6×6×6的正方体可分成216个小正方体,这216个小正方体可以组成27个棱长为2的正方体.我们将这27个棱长为2的正方体按黑白相间染色,如下图所示.其中有14个黑色的,13个白色的,而一个白色的2×2×2的正方体可以对应的放人4个每个面都与盒子侧面平行的1×l×4的小长方体,所以最多可以放入13×4=52个1×1×4的小长方体.评注:6×6×6的正方体的体积为216,1×1×4的小长方体的体积为4,所以可放入的小正方体数目不超过216÷4=54个.14.用若干个l×6和1×7的小长方形既不重叠,也不留孔隙地拼成一个11×12的大长方形,最少要用小长方形多少个?【分析与解】我们先通过面积计算出最优情况:11×12=132,设用1×6的小长方形x 个,用1×7的小长方形y 个,有67132x x +=.解得:17186x t y t =+⎧⎨=-⎩(t 为可取0的自然数),共需x+y=19+t 个小长方形. (1)当t=0时,即x+y=1+18=19,表示其中的1×6的小长方形只有1个,剩下的18个小长方形都是l×7的.大长方形中无论是1行还是1列,最多都只能存在1个l×7的小长方形,所以在大长方形中最多只能无重叠的同时存在16个l×7的小长方形.现在却存在18个1×7的小长方形,显然不满足;(2)当t=l 时,即x+y=8+12=20,有如下分割满足,所以最少要用小长方形20个.。