椭圆专题复习说课讲解

合集下载

椭圆的几何性质说课稿

椭圆的几何性质说课稿

椭圆的几何性质说课稿一、说课目标本节课的教学目标是使学生了解椭圆的定义和基本性质,掌握椭圆的焦点、长轴、短轴等概念,并能够应用椭圆的性质解决相关问题。

二、说课重点椭圆的定义、焦点、长轴、短轴等概念的理解和应用。

三、说课难点椭圆的性质和应用。

四、教学过程1. 导入(5分钟)通过引入一个实际问题,如“为了减少照明灯的能耗,设计师在公园的草坪上设计了一个椭圆形的跑道,你知道椭圆是什么样的图形吗?”来激发学生对椭圆的兴趣,并引导学生思考椭圆的形状和特点。

2. 椭圆的定义(10分钟)通过展示椭圆的定义和示意图,引导学生理解椭圆的定义:“椭圆是平面上到两个固定点F1和F2的距离之和等于常数2a的点P的轨迹。

”并帮助学生理解椭圆的基本性质。

3. 椭圆的焦点和离心率(15分钟)介绍椭圆的焦点和离心率的概念,并通过示意图和实例,帮助学生理解焦点与椭圆的关系以及离心率的计算方法。

引导学生发现焦点到椭圆上任意一点的距离之和等于椭圆的长轴的性质。

4. 椭圆的长轴和短轴(15分钟)引导学生理解椭圆的长轴和短轴的概念,并通过示意图和实例,帮助学生掌握长轴和短轴的计算方法。

引导学生发现椭圆的长轴和短轴的关系以及长轴与焦点之间的性质。

5. 椭圆的性质应用(20分钟)通过一些实际问题的讨论和解答,引导学生应用椭圆的性质解决相关问题,如椭圆的离心率与轨道形状的关系、椭圆的应用于天体运动等。

6. 总结与拓展(5分钟)对本节课的内容进行总结,并展示一些拓展问题,如椭圆的切线与法线的性质、椭圆的参数方程等,激发学生的兴趣和思考。

五、教学手段板书、示意图、实例分析、讨论等。

六、教学资源教材、黑板、彩色粉笔、投影仪等。

七、教学反思本节课通过引入实际问题,激发学生对椭圆的兴趣,并通过示意图和实例,帮助学生理解椭圆的定义和基本性质。

通过讨论和解答问题,引导学生应用椭圆的性质解决相关问题,提高学生的综合运用能力。

在教学过程中,注重培养学生的动手能力和思维能力,通过实例分析和讨论,激发学生的学习兴趣和思考能力。

3.1.1椭圆及其标准方程说课稿

3.1.1椭圆及其标准方程说课稿

尊敬的各位老师,大家好:今天我说课的课题是《椭圆及其标准方程》。

对于本节课,我将以教什么,怎么教,为什么这样教为思路,从教材分析、学情分析、教学目标及核心素养、教学重难点、教法学法、教学过程和板书设计七个方面展开我的说课。

本节课是人教A版高中《数学》(选择性必修一)第三章第一节“椭圆及其标准方程”第一课时内容。

本节内容是在学生学习了直线与圆后,“坐标法”研究“曲线方程”的又一实例,是解析几何初步知识的深化和延续;从知识的前后联系来看,椭圆的学习是坐标法的进一步深入,同时它也是学习椭圆几何性质的基础;从方法上说,它为后续研究双曲线、抛物线提供基本模式和理论基础,是进一步学习圆锥曲线的重要模型.因此本节课有承前启后的作用。

从教材编排上讲,三种圆锥曲线独编一章,更突出了椭圆的重要地位。

将曲线及其方程结合起来,体现数形结合的思想方法。

学生已经学习了直线与圆的方程,对用坐标法研究几何问题已经有了初步认识。

对探究点的轨迹问题也有一定的基础知识和学习能力,这有利于学生实现从“旧知”向“新知”的迁移。

由于椭圆的几何特征比圆复杂,学生对于从哪个角度入手抽象椭圆的几何特征有一定的困难。

另外,在方程推导过程中,对于含两个根号的方程的化简,学生之前接触较少,完成起来有些困难,需要教师作适当的引导与小组合作讨论。

故本节课难度设置不应过高,设计问题时应多作铺垫,扫清学习障碍,保护学生学习积极性、主动性。

[确定依据] 根据以上对教材的分析和学情的把握,我确定了以下目标:1. 理解椭圆的定义,掌握椭圆的标准方程及推导,会利用待定系数法求椭圆的标准方程。

2. 通过动手画图的实践操作,感知、观察动点形成轨迹的过程,经历从具体情境中抽象出椭圆的过程,掌握椭圆的定义,提升学生的直观想象、数学抽象的核心素养。

3.通过建立适当的坐标系,列出方程并化简变形,体会含有两个根式方程的化简过程,同时得到椭圆的标准方程,用以解决简单问题,培养数学建模、数学运算的核心素养。

椭圆及其标准方程 (优质课说课稿)

椭圆及其标准方程 (优质课说课稿)

《椭圆及其标准方程》说课稿尊敬的各位评委:大家好!我说课的内容是《椭圆及其标准方程》, 下面, 我将从教材分析, 学情分析, 教学目标, 教学方法, 教学过程设计, 教学设计说明几个方面来进行阐述.一、教材分析1.课标要求:《椭圆及其标准方程》是人教A版普通高中课程选修2-1第二章的第二节内容.课程标准对这部分内容的要求是:“经历从具体情境中抽象出椭圆模型的过程, 掌握椭圆的定义、标准方程及简单几何性质”.2.教材地位“椭圆及其标准方程”是《圆锥曲线》第一节的内容;在前面学生已经学习了运用坐标法研究了直线和圆的性质,及曲线与方程的关系,对椭圆概念与方程的研究是坐标法的深入,为后面研究双曲线、抛物线提供了基本模式和理论基础,因此, “椭圆及其标准方程”起到了承上启下的重要作用.二、学情分析(1)在学习本课之前学生已学习了直线和圆的方程及其性质, 曲线与方程的关系, 对解析几何有一定的了解, 已有一定的观察、分析、解决问题的能力.这为本节课的学习奠定了必要的知识基础.(2)在日常生活中, 学生对椭圆有了一定的认识, 但仍没有上升到成为“概念”的水平, 将感性认识理性化将会是对他们的一个挑战.含有两个根式的方程的化简也会使学生的探究受阻, 教师要适时加以点拨.三、教学目标分析根据教学内容的地位和作用, 结合学生的实际, 确定了以下教学目标:1.掌握椭圆的定义及其标准方程;通过对椭圆标准方程的探求, 熟悉求曲线方程的一般方法.2.在椭圆概念的形成过程及其标准方程的推导过程中,培养学生的归纳概括能力、动手实践能力、分析问题、解决问题的能力及运算能力.3.在教学中充分揭示“数”与“形”的内在联系, 体会数形美的统一, 激发学生学习数学的兴趣, 培养学生敢于探索, 勇于创新的精神.教学重点和难点:1.重点: 感受建立曲线方程的基本过程, 掌握椭圆的标准方程及其推导方法.为了突出重点, 让学生动手实践, 自主探索, 通过画图揭示椭圆上的点所要满足的条件, 由此得出定义, 推出方程.2.难点: 椭圆标准方程的推导.为了突破难点, 关键是抓住“怎样建立坐标系”和“怎样简化方程”两个环节来进行方程的推导.四、教学方法及准备(一)教学方法本节课采用让学生动手实践、自主探究、合作交流及教师启发引导的教学方法, 并以多媒体手段辅助教学, 使学生经历实践、观察、交流、分析、概括等理性思维的基本过程, 切实改进学生的学习方式, 使学生真正成为学习的主人.(二)教学准备教师准备:多媒体课件学生准备: 一支铅笔、两个图钉(或胶带)、一根细绳、一张硬纸板.五、教学过程设计按照“引入课题——形成概念——推导方程——对比分析——例题讲解——归纳小结——作业布置”这七个环节来组织教学, 层层推进, 实现教学目标.(一)创设情境, 引入课题本节课的开始由多媒体演示“神舟八号”无人飞船与“天宫一号”目标飞行器进行了空间交会对接, 绕地球旋转运行的画面.提出问题: “神州八号”的轨道是什么形状?待学生回答后,请学生叙述生活中见到的椭圆形象, 并用课件展示我所搜集的椭圆形象, 让学生形成椭圆的感性认识, 引入课题.[设计意图] 这一过程充分调动学生的学习兴趣, 激发学生的探究心理,为引出新知做铺垫.通过举例和展示生活中椭圆形的图片, 让学生认识到椭圆和日常生活关系密切.使他们感受数学的应用价值, 同时培养学生学会用数学眼光去观察周围事物的能力.(二)实验探索, 形成概念有了对椭圆的感性认识,如何来研究椭圆呢?提出问题: 曲线可以看作适合某种条件的点的集合或轨迹.椭圆是满足什么条件的点的轨迹呢?这时借助于多媒体演示椭圆的画法, 请学生拿出准备的学具动手画图, 并思考问题.在学生思考的过程中我继续用问题引导: 圆是如何定义的,圆是满足什么条件的点的轨迹呢?学生回答后我继续追问: 在画图的过程中, 哪些量在变, 哪些量保持不变?学生根据自己的实验, 观察回答: “两定点间的距离没变, 绳子的长度没变, 点在运动.”我继续提问:你们能根据刚才画椭圆的过程, 类比圆的定义, 归纳概括出椭圆的定义吗?先让学生独立思考,尝试归纳,然后进行小组合作交流,教师重点关注学困生,适时给予点拨指导.几分钟后,大部分学生都能得到椭圆的定义:“平面内与两个定点的距离之和为常数的点的轨迹叫椭圆.”接着对得到的概念进行剖析, 提出问题: 这个常数是任意的吗?给学生两分钟时间进行思考、讨论、交流, 尝试找出答案, 若有困难, 教师借助于演示实验再次探索观察, 学生不难发现, 这个常数必须大于两定点间的距离.这样, 就得到了完整的椭圆定义:平面内与两个定点、的距离之和等于常数(大于|F F |)的点的轨迹叫做椭圆。

《椭圆的认识》说课稿

《椭圆的认识》说课稿

《椭圆的认识》说课稿简介本说课稿是针对中学数学教材中关于椭圆的知识进行讲解的。

通过引导学生了解椭圆的定义、性质和应用,培养学生的观察能力和问题解决能力,提高学生的数学素养。

教学目标1. 了解椭圆的定义和基本性质;2. 掌握椭圆的标准方程及其图形特征;3. 理解椭圆的离心率对椭圆形状的影响;4. 学会利用椭圆解决实际问题。

教学内容1. 椭圆的定义和性质- 通过示意图引导学生理解椭圆的定义:平面上到两个定点的距离之和等于常数的点的轨迹;- 引导学生发现和讨论椭圆的对称性和直径;- 结合实例,讲解椭圆的性质:离心率小于1,焦点的性质等。

2. 椭圆的标准方程及图形特征- 介绍椭圆的标准方程:$(\frac{x^2}{a^2})+(\frac{y^2}{b^2})=1$,其中a和b分别表示椭圆在x轴和y轴上的半轴长;- 根据方程讲解椭圆的图形特征:中心、长轴、短轴、焦点、顶点等。

3. 椭圆的离心率与形状- 引导学生思考和讨论离心率对椭圆形状的影响:离心率越接近于0,椭圆越接近于圆形;离心率越接近于1,椭圆越扁平。

4. 椭圆的应用- 通过实际问题引导学生应用椭圆的知识解决问题,如行星运动轨道、卫星发射轨道等。

教学方法1. 演示法:通过示意图和动态演示,生动形象地展示椭圆的定义和性质。

2. 探究法:设计一系列问题和练,引导学生主动探索和发现椭圆的特性和应用。

3. 合作研究法:分小组讨论和解决问题,促进学生之间的合作与交流。

教学评价1. 观察学生的参与程度和表现,包括课堂提问和小组讨论;2. 对学生解决实际问题的能力进行评价;3. 统计学生的研究成果,如椭圆相关知识的掌握程度和解题准确率。

教学反思在教学过程中要注意激发学生的兴趣,培养学生的数学思维和创新能力。

通过合适的教学方法和手段,提升学生对椭圆的理解和运用能力。

同时,及时调整教学策略,根据学生的不同特点和研究进度,进行个性化的指导和帮助。

参考资料- 《中学数学教材》- 《数学课程标准》。

拓展模块21椭圆的标准方程和性质复习课说课稿.doc

拓展模块21椭圆的标准方程和性质复习课说课稿.doc

拓展模块2.1椭圆的标准方程和性质(复习课第一课时)人家好!我说课的题目是拓展模块第二章第一单元《椭圆的标准方程和性质》,这是一节高三数学复习课。

下面我就教材分析、教学目标、教学程序、教法与学法、板书设计、教学评价这个儿方面进行阐述。

一、教材分析1•教材的地位及作用《椭圆及其标准方程》是继学习圆以后圆锥曲线这一章的一节入门课。

从知识上说,它是对前面所学的运用坐标法研究曲线的几何性质的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;从方法上说,它为我们研究双曲线、抛物线这两种圆锥曲线提供了基木模式和理论基础。

因此,这节课有承前启后的作用,是木章和木节的重点。

另外,对椭圆定义耳方程的研究,将曲线少方程对应起来,体现了函数与方程、数•形结合的重要思想。

而这种思想一直贯穿于整个高中阶段的数学学习。

2.教学目标及确立的依据根据上述对教材内容的分析和课标耍求,教学冃标制定如下:(1)知识目标:A识记:①记住椭圆的定义和相关性质;②区分椭圆的两种类型的标准方程及其对应的图形:③能根据a、b、c的值和不同焦点位置写出椭圆的标准方程。

B理解:①理解椭圆的焦点、顶点,长轴、短轴、焦距和离心率等概念的意义:②掌握a、b、c 之间的关系,会由其中的两个求出第三个。

C掌握:学会运用定义法、待定系数法和数形结合等方法解题。

(2)能力目标:①培养学牛建立适当朋标系的解析法解题能力。

②巩固与发展学牛的定义法解题、待定系数法解题和数形结合的解题能力。

(3)情感目标:通过课堂活动参与,激发学生学习数学的兴趣,提高学住审美情趣,培养学主勇于探索的精神。

教学目标确立的依据:知识的学习和能力的培养是同步的,本课在教学中要学牛同桌合作画椭圆,共同填写椭圆基本性质表,探究椭圆的条件、归纳椭圆的定义,弄清两种焦点位置的椭圆性质的界同点,符合新课程所追求的”以知识为载体、注重学生的能力、良好的意志品质及合作学习的精神培养“的一个重要教学理念。

【2024版】河北省邯郸市-说课比赛一等奖椭圆及其标准方程说课稿-新人教A版选修2

【2024版】河北省邯郸市-说课比赛一等奖椭圆及其标准方程说课稿-新人教A版选修2

可编辑修改精选全文完整版《椭圆及其标准方程》说课稿我来自肥乡一中,今天我要跟大家共同探讨的是普通高中课程标准实验教科书《数学》选修2—1第二章第一节《椭圆及其标准方程》的教学设计.我们知道,新一轮的高中课改其显著特征和核心任务是坚定不移地推进教学方式和学习方式的转变.新课程强调学生的已有经验是教学的基础,教学过程应当是师生之间沟通与交流的过程.教学过程重结论,更应重过程,应倡导积极主动、勇于探索的学习方式.基于对新课程理念的理解,本节课力图贯彻上述新课程理念,下面我就教材分析、学生情况分析、教学目标设计、教法学法设计、教学过程的设计、教学设计说明这几方面内容向大家进行阐述.一、教材分析《椭圆及其标准方程》是继学习圆以后运用“曲线与方程〞思想解决二次曲线问题的又一实例.从知识上说,本节课是对坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础.从方法上说,它为进一步研究双曲线、抛物线提供了基本模式和理论基础,因此本节课起到了承上启下的重要作用.二、学生情况分析〔1〕学生的知识储备分析:学生已学习了直线和圆的方程,并初步学习了求曲线方程的一般方法和步骤,但学生仍对坐标法解决几何问题存在障碍.〔2〕学生的数学能力分析:学生通过几何图形来发现轨迹上点的特征的能力较强〔数形结合〕,但计算能力较弱,因此在方程的推导中会遇到障碍,成为本节的难点.三、教学目标设计根据学生的实际、课标的要求和本节课内容的特点,教学目标确定如下:〔一〕教学目标1. 知识目标:掌握椭圆的定义及其标准方程;会根据条件写出椭圆的标准方程;通过对椭圆标准方程的探求,再次熟悉求曲线方程的一般方法.2. 能力目标:学生通过动手画椭圆、分组讨论探究椭圆定义、推导椭圆标准方程等过程,提高动手能力、合作学习能力和运用知识解决实际问题的能力.3. 情感目标:在形成知识、提高能力的过程中,激发学生学习数学的兴趣,提高学生的审美情趣,培养学生勇于探索、敢于创新的精神.〔二〕教学重点和难点1. 教学重点:椭圆的定义及其标准方程2. 教学难点:椭圆标准方程的推导四、教法学法设计1.教法为了更好地培养学生自主学习能力,提高学生的综合素质,我主要采用探究式教学方法.通过设置情境、问题诱导充分发挥主导作用.2.学法新课标的理念倡导“以人为本〞,强调“以学生发展为核心〞.因此本节课给学生提供以下4种机会:1.提供观察、思考的机会:用亲切的语言鼓励学生观察并用学生自己的语言进行归纳.2.提供操作、尝试、合作的机会:鼓励学生大胆利用资源,发现问题,讨论问题,解决问题.3.提供表达、交流的机会:鼓励学生敢想敢说,设置问题促使学生愿想愿说.4.提供成功的机会:赞赏学生提出的问题,让学生在课堂中能更多地体验成功的乐趣.3.教学准备(1)学生准备:一支铅笔、两个图钉、一根细绳、一X硬纸板.(2)教师准备:用几何画板制作的相关课件.五、教学过程的设计〔一〕设置情境、问题诱导首先,复习提问:圆的定义是什么?圆的标准方程是什么形式?接下来我用课件演示一些生活中的椭圆的例子,还有一些天体运行的轨迹图,并提出问题:“这些天体运行的轨迹是什么呢?〞学生经过观察,很直观地看出是椭圆,从而引出课题.再次提问:“我们能否求出这些天体运行的轨迹方程呢?学习了本节课的内容,就可以解决这个问题.〞[设置依据]一方面,通过复习前面学过的有关知识,唤起学生的记忆,为本节课学习作好铺垫.另一方面,借助多媒体生动、直观的演示,使学生明确学习椭圆的重要性和必要性.同时,激发他们探某某际问题的兴趣,使他们主动、积极地参与到教学中来,为后面的学习做好准备.〔二〕动手实验,归纳概念我用多媒体演示画椭圆,同时请学生拿出事先准备好的自制教具:木板、细绳、图钉、铅笔,同桌一起合作画椭圆.我在学生的绘图纸上精心设计了三个问题:1、在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2、改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3、绳长能小于两图钉之间的距离吗?这样,学生边作图、边思考、边讨论,每组学生都可对上述三个问题进行研究比较,我在投影仪上展示学生画出的不同图形,然后参与学生的讨论,引导学生全员参与,积极发言,相互补充,从而探究出三个结论并归纳出椭圆的定义.平面内与两个定点F1、F2的距离之和等于常数〔大于|F1F2|〕的点的轨迹叫做椭圆.定点F1、F2叫做椭圆的焦点,F1、F2间的距离叫做椭圆的焦距.在归纳定义时,再次强调定义要满足三个条件:①平面内〔这是大前提〕;②任意一点到两个定点的距离的和等于常数;③常数大于|F1F2 |.[设置依据] 以活动为载体,让学生在“做〞中学数学,通过画椭圆,经历知识的形成过程,积累感性经验.同时,我力求改变单一、被动的学习方式,让学生成为学习的主人,给他们提供一个自主探索学习的机会,让他们通过观察、讨论,归纳概括出椭圆的定义,这样既获得了知识,又培养了学生抽象思维、归纳概括的能力.〔三〕启发引导,推导方程接着学生思考两个问题:1、求曲线方程的一般步骤是什么?2、圆心在原点的圆的方程与不在原点的方程哪个形式更简单?为什么?[设置依据]让学生明确思维的目的,通过复习旧知,为下一步学习搭桥铺路. 提问:怎样建立坐标系,才能使求出的椭圆方程最为简单?通过前面知识的回忆,学生思考、相互交流,很容易选定以下建立坐标系的方案.〔1〕建立直角坐标系,设出动点的坐标以两定点F1、F2的连线为x 轴,以线段F1 F2的垂直平分线为y轴,建立坐标系,设M ( x , y ) 为椭圆上任意一点,| F1F2 | = 2 c (c>0) ,那么有F1〔-c, 0〕、F2 (c ,0). 又设M与F1和F2的距离的和等于常数2 a ( a > 0 ) .〔2〕写出动点M满足的集合让学生利用两点的距离公式,根据椭圆定义列出:P={M |│MF1│+│MF2│| =2a}如果学生有困难,可以安排进行小组讨论交流.(3)坐标化引导学生在设点的基础上,将前面得到的关系式用坐标表示出来.这里学生不会有太大的困难,绝大多数学生都能得到方程:〔4)化简带根式的方程的化简,学生会感到困难,这也是教学的一个难点.特别是由点适合的条件列出的方程为两个二次根式的和等于一个非零常数的形式,化简时要进行两次平方,且方程中字母多,次数高,初中代数中没有做过这样的题目,教学时,要注意说明这类方程的化简方法.一般来说:①方程中只有一个二次根式时,需将它单独留在方程的一边,把其它各项移到另一边,平方一次;②方程中有两个二次根式时,需将它们分散,放在方程的两边,使其中一边只有一个根式,平方两次.接着让学生自己动手开始化简.我安排一名程度较好的学生上来板演,以便点评.待大多数学生都有了结果(a2-c2)x2+a2y2=a2(a2-c2).指出:此方程形式还不够简捷,还有变形的必要,让学生观察图形:提出问题:“你们能从图中找出表示a、c、的线段吗?〞通过观察,学生容易得出结论,并理解了换元的合理性.这样不仅使方程具有了对称性,而且使字母b也有了明确的几何意义.从而将方程简化为:告诉学生:可以证明它就是椭圆的方程,我们称它为椭圆的标准方程.[设置依据]掌握椭圆标准方程及推导方法;培养学生战胜困难的意志品质。

2024椭圆的几何性质说课稿范文

2024椭圆的几何性质说课稿范文

2024椭圆的几何性质说课稿范文今天我说课的内容是《2024椭圆的几何性质》,下面我将就这个内容从以下几个方面进行阐述。

一、说教材1、《2024椭圆的几何性质》是人教版高中数学选修三第一章的内容。

它是在学生已经学习了椭圆的基本概念和性质的基础上进行教学的,是高中数学几何领域中的重要知识点,而且椭圆在实际生活中有着广泛的应用。

2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的数学基础,我制定了以下三点教学目标:①认知目标:理解椭圆的基本定义,掌握椭圆的主要几何性质。

②能力目标:在解决椭圆相关几何问题中,培养学生分析和推理的能力。

③情感目标:让学生体会几何学的美妙,激发学生对数学的兴趣与热爱。

3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:理解椭圆的基本定义,掌握椭圆的主要几何性质。

难点是:理解椭圆的离心率和焦点定义,掌握椭圆的切线和法线性质。

二、说教法学法有这样一句话:听见了,忘记了;看见了,记住了;体验了,理解了。

可见让学生感受数学、经历数学、体验数学是学生学习数学的最佳方式。

因此,这节课我采用的教法是:启发式教学法,引导探究法;学法是:让学生主动参与,提高学生的自主学习能力。

三、说教学准备在教学过程中,我准备了多媒体资料和几何工具,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增加教学的互动性和趣味性。

四、说教学过程1. 引入椭圆的概念首先,我将通过展示一些现实生活中的椭圆形状的图片,引起学生的兴趣。

然后,我会询问学生对椭圆的了解并引导他们给出椭圆的定义和特点。

在学生的回答中,我会帮助他们概括出椭圆的几何性质。

2. 探究椭圆的主要几何性质在学生对椭圆有了初步认识后,我将引导他们通过观察和实际操作,探究椭圆的离心率和焦点的定义,以及椭圆的切线和法线的性质。

在学生的探究过程中,我会提出一些引导性的问题,帮助他们发现规律和总结结论。

3. 实践运用椭圆的几何性质在学生熟悉了椭圆的主要几何性质后,我将设计一些实际问题让学生进行实践运用。

高中数学椭圆说课稿(合集5篇)

高中数学椭圆说课稿(合集5篇)

高中数学椭圆说课稿(合集5篇)第一篇:高中数学椭圆说课稿高中数学椭圆说课稿作为一位兢兢业业的人民教师,就有可能用到说课稿,借助说课稿可以让教学工作更科学化。

那么你有了解过说课稿吗?下面是小编帮大家整理的高中数学椭圆说课稿,欢迎大家分享。

高中数学椭圆说课稿1一、教学背景分析(一)教材地位分析:《椭圆及其标准方程》是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例,从知识上说,本节课是对坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础;从方法上说,它为进一步研究双曲线、抛物线提供了基本模式和理论基础,因此本节课起到了承上启下的重要作用.(二)重点、难点分析:本节课的重点是椭圆的定义及其标准方程,标准方程的推导是本节课的难点,要突破这一难点,关键是引导学生正确选择去根式的策略.(三)学情分析:在学习本节课前,学生已经学习了直线与圆的方程,对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识,因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力,但由于学生学习解析几何时间还不长、学习程度也较浅,并且还受到高二这一年龄段学习心理和认知结构的影响,在学习过程中难免会有些困难.如:由于学生对运用坐标法解决几何问题掌握还不够,因此从研究圆到椭圆,学生思维上会存在障碍.二、教学目标设计(一)知识目标:掌握椭圆的定义及其标准方程;会根据条件写出椭圆的标准方程;通过对椭圆标准方程的探求,再次熟悉求曲线方程的一般方法.(二)能力目标:学生通过动手画椭圆、分组讨论探究椭圆定义、推导椭圆标准方程等过程,提高动手能力、合作学习能力和运用知识解决实际问题的能力.(三)情感目标:在形成知识、提高能力的过程中,激发学生学习数学的兴趣,提高学生的审美情趣,培养学生勇于探索、敢于创新的精神.三、教法学法设计(一)教学方法设计:为了更好地培养学生自主学习能力,提高学生的综合素质,我主要采用探究式教学方法.一方面我通过设置情境、问题诱导充分发挥主导作用;另一方面学生通过对我提供的素材进行直观观察→动手操作→讨论探究→归纳抽象→总结规律的过程充分体现主体地位.使用多媒体辅助教学与自制教具相结合的设计方案,实现多媒体快捷、形象、大容量的优势与自制教具直观、实用的优势的结合,既突出了知识的产生过程,又增加了课堂的趣味性.1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;4.通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力;5.通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识.四、教学建议教材分析1.知识结构2.重点难点分析重点是椭圆的定义及椭圆标准方程的两种形式.难点是椭圆标准方程的建立和推导.关键是掌握建立坐标系与根式化简的方法.椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把对椭圆的研究放在了重点,在双曲线和抛物线的教学中巩固和应用.先讲椭圆也与第七章的圆的方程衔接自然.学好椭圆对于学生学好圆锥曲线是非常重要的.(1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解.另外要注意到定义中对“常数”的限定即常数要大于.这样规定是为了避免出现两种特殊情况,即:“当常数等于时轨迹是一条线段;当常数小于时无轨迹”.这样有利于集中精力进一步研究椭圆的标准方程和几何性质.但讲解椭圆的定义时注意不要忽略这两种特殊情况,以保证对椭圆定义的准确性.(2)根据椭圆的定义求标准方程,应注意下面几点:①曲线的方程依赖于坐标系,建立适当的坐标系,是求曲线方程首先应该注意的地方.应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整齐和简洁.②设椭圆的焦距为,椭圆上任一点到两个焦点的距离为,令,这些措施,都是为了简化推导过程和最后得到的方程形式整齐、简洁,要让学生认真领会.③在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是学生的难点.要注意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项.④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程“而没有证明,”方程的解为坐标的点都在椭圆上”.这实际上是方程的同解变形问题,难度较大,对同学们不作要求.(3)两种标准方程的椭圆异同点中心在原点、焦点分别在轴上,轴上的椭圆标准方程分别为:,.它们的相同点是:形状相同、大小相同,都有,.不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同.椭圆的焦点在轴上标准方程中项的分母较大;椭圆的焦点在轴上标准方程中项的分母较大.另外,形如中,只要,同号,就是椭圆方程,它可以化为.(4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法.例3有三个作用:第一是教给学生利用中间变量求点的轨迹的方法;第二是向学生说明,如果求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆.高中数学椭圆说课稿2一、教学目标:知识与技能目标:准确理解椭圆的定义,掌握椭圆的标准方程及其推导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆专题复习椭圆专题复习1.(课本P33.7)已知圆221:(1)1,F x y ++=圆222:(1)9,F x y -+=动圆P 与圆1F 外切,与圆2F 内切,则动圆圆心P 的轨迹方程是 .2.(课本P33.8).设动点P 到点(1,0)F 的距离是到直线9x =的距离之比为13,则点P 的轨迹方程是3.(课本P32.3)改编)已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点P (3,0),则椭圆的方程为_______________________________4.(课本P33.3).经过两点2A(2,)2-,3B(2,)2--两点的椭圆标准方程是 .5.(2015江苏改编) 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的椭圆的离心率是2,且右焦点F 到左准线l 的距离为3,则椭圆的标准方程为________.6.(2015南通)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为(0,b)B ,右焦点为F ,直线BF 与椭圆的另一个交点为M ,且2BF FM =,则椭圆的离心率为7.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为e ,若椭圆上存在点P ,使得PF 1PF 2=e ,则该离心率e 的取值范围是________.8.( 浙江2015高考第15题·)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =bc x 的对称点Q 在椭圆上,则椭圆的离心率是________.9.(重庆2015高考第21题)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,过F 2的直线交椭圆于P 、Q 两点,且PQ ⊥PF 1.(1)若PF 1=2+2,PF 2=2-2,求椭圆的标准方程; (2)若PF 1=PQ ,求椭圆的离心率e .拓展1: 已知椭圆x 2a 2+y 2b2=1(a >b >0)的一点A 关于原点的对称点为B ,右焦点为F ,AF BF ⊥,,,,124ABF ππαα⎡⎤∠=∈⎢⎥⎣⎦求椭圆的离心率的取值范围。

拓展2:已知椭圆x 2a 2+y 2b 2=1(a >b >0)与x 轴的正半轴交于点A ,O 是原点,若椭圆上存在一点M ,使MA ⊥MO ,求椭圆的离心率的取值范围.10.(江苏2014高考第17题)如图,在平面直角坐标系xOy 中,12F F ,分别是椭圆22221(0)y x a b a b +=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC .(1)若点C 的坐标为()4133,,且22BF =,求椭圆的方程;(2)若1FC AB ⊥,求椭圆离心率e 的值. 巩固练习1. .设点(0,5)M -,(0,5)N ,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程为 .2. .椭圆22129x y k +=+的离心率为12,则k 的值为 3. 如图所示,A ,B 是椭圆的两个顶点,C 是AB 的中点,F 为椭圆的右焦点,OC 的延长线交椭圆于点M ,且OF =2,若MF ⊥OA ,则椭圆的方程为__________.4. .(江苏2013高考第12题).在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x 0a b >>),右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为5.椭圆221(22y x a b a b +=>>0)的右焦点为F,点2(0)a A c ,,在椭圆上存在点P 满足线段AP 的垂直平分线过点F,则椭圆离心率的取值范围是________.6.如图,已知21,F F 是椭圆C :)0(12222>>=+b a by a x 的左、右焦点,点P 在椭圆C上,线段2PF 与圆222b y x =+相切于点Q ,且点Q 为线段2PF 的中点,则椭圆C 的离心率为 .7.如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的上、下顶点分别为A ,B ,右焦点为F ,点P 在椭圆C 上,且OP ⊥AF.(1) 若点P 坐标为(3,1),求椭圆C 的方程;(2) 延长AF 交椭圆C 于点Q ,若直线OP 的斜率是直线BQ 的斜率的2倍,求椭圆C 的离心率;8.已知椭圆C :)0(12222>>=+b a b y a x ,点B A ,分别是椭圆的左顶点和上顶点,直线AB 与圆G :4222c y x =+(c 是椭圆的半焦距)相离,P 是直线AB 上一动点,过点P 作圆G 的两切线,切点分别为M ,N .(1)若椭圆C 经过两点),(3241、),(1233,求椭圆C 的方程;(2)当c 为定值时,求证:直线MN 经过一定点E ,并求OE OP ⋅的值(O 是坐标原点);(3)若存在点P 使得PMN ∆为正三角形,试求椭圆离心率的取值范围.y xN MBAOP变式:设(,)P x y 满足方程222(1)(2)3x y x y -++=-+,则点P 的轨迹是变式:已知椭圆x 2a 2+y 2b2=1(a >b >0)的一点A 关于原点的对称点为B ,右焦点为F ,AF BF ⊥,,,,124ABF ππαα⎡⎤∠=∈⎢⎥⎣⎦则椭圆的离心率的取值范围是__________.变式:已知椭圆x 2a 2+y 2b2=1(a >b >0)与x 轴的正半轴交于点A ,O 是原点,若椭圆上存在一点M ,使MA ⊥MO ,椭圆的离心率的取值范围 .9.如图,已知21,F F 是椭圆C :)0(12222>>=+b a by a x 的左、右焦点,点P 在椭圆C上,线段2PF 与圆222b y x =+相切于点Q ,且点Q 为线段2PF 的中点,则椭圆C 的离心率为 .变式:10.如图,已知21,F F 是椭圆C :)0(12222>>=+b a by a x 的左、右焦点,点P 在椭圆C上,线段2PF 与圆222b y x =+相切于点Q ,且点Q 为线段2PF 的中点,则椭圆C 的离心率为 .变式:11.(课本P33.11).如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是________.16.QOF 2F 1P y(1) 解:因为点P(3,1),所以k OP =13. 因为AF ⊥OP ,-b c ×13=-1,所以3c =b ,所以3a 2=4b 2.(2分) 又点P(3,1)在椭圆上,所以3a 2+1b 2=1,解之得a 2=133,b 2=134.故椭圆C 的方程为x 2133+y 2134=1.(4分)(2) 解:由题意,直线AF 的方程为x c +y b =1,与椭圆C 的方程x 2a 2+y 2b2=1联立消去y ,得a 2+c 2a 2c 2x 2-2x c =0,解得x =0或x =2a 2c a 2+c 2,所以Q 点的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c2,b (c 2-a 2)a 2+c 2,(7分) 所以直线BQ 的斜率为k BQ =b (c 2-a 2)a 2+c 2+b2a 2c a 2+c 2=bca 2.由题意得c b =2bca2,所以a 2=2b 2,(9分)所以椭圆的离心率e =c a =1-b 2a 2=22.(10分)易错点:忽略挖去与y 轴的交点.参考答案:221(0)144169x y x +=≠(待定) 6.易错点:容易遗漏焦点在y 轴的情形.参考答案:4或54-14.答案 x 24+y 22=1解析 设所求的椭圆方程为x 2a 2+y 2b 2=1 (a >b >0),则A (a,0),B (0,b ),C ⎝⎛⎭⎫a 2,b 2, F (a 2-b 2,0).依题意,得a 2-b 2=2,FM 的直线方程是x =2,所以M ⎝⎛⎭⎫2,ba a 2-2. 由于O ,C ,M 三点共线,所以b a 2-2a 2=b2a 2,即a 2-2=2,所以a 2=4,b 2=2.所求方程是x 24+y 22=1.14.如图,在平面直角坐标系xOy 中,F 1,F 2分别为椭圆22221y x a b +=(0a b >>)的左、右焦点,B ,C 分别为椭圆的 上、下顶点,直线BF 2与椭圆的另一交点为D . 若127cos 25F BF ∠=,则直线CD 的斜率为(备用)110=表示的曲线是 ;其方程为6=表示的曲线是 ;其方程为 . 参考答案:椭圆;2212516y x +=;线段;0(33)x y =-≤≤(P37.10)椭圆22221(0)x y a b a b +=>>的焦点12,F F ,短轴的一个端点为P ,当12F PF ∠为钝角时,则离心率e 的取值范围是变式:椭圆2214x y +=的焦点12,F F ,点P 为椭圆上一动点,当12F PF ∠为钝角时,求点P 的横坐标取值范围.解析 |AF|22a b c c c =-=,而|PF|a c ≤+, 所以2b a c c+≥, 即2210e e +-≥,解得112e ≤<. 答案 D5.已知椭圆x 2a 2+y 2b2=1(a >b >0)与x 轴的正半轴交于点A ,O 是原点,若椭圆上存在一点M ,使MA ⊥MO ,椭圆的离心率的取值范围 .(2)设M (x ,y ),则MA ⊥MO ,得y x ·yx -a=-1.将其与椭圆方程联立,消去y ,得(x -a )(b 2x -a 2x +b 2a )=0.由x ≠a ,得x =ab 2a 2-b2=ab 2c 2.∵M (x ,y )在椭圆上,∴x ∈[-a ,a ],又MA ⊥MO ,则x ∈(0,a ),即0<ab 2c2<a ,∴0<b 2c 2<1,1<a 2c 2=b 2+c 2c 2<2,则c 2a 2>12,∴e >22.又∵0<e <1,∴22<e <1.6 (2)(2014·江西)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.(2)直线AB :x =c ,代入x 2a 2+y 2b 2=1,得y =±b 2a .∴A (c ,b 2a ),B (c ,-b 2a ).∴kBF 1=-b 2a-0c -(-c )=-b 2a 2c =-b 22ac .∴直线BF 1:y -0=-b 22ac (x +c ).令x =0,则y =-b 22a,∴D (0,-b 22a ),∴k AD =b 2a +b 22ac =3b 22ac .由于AD ⊥BF 1,∴-b 22ac ·3b 22ac =-1,∴3b 4=4a 2c 2,∴3b 2=2ac ,即3(a 2-c 2)=2ac , ∴3e 2+2e -3=0,∴e =-2±4-4×3×(-3)23=-2±423.∵e >0,∴e =-2+423=223=33.答案 (1)⎝⎛⎦⎤0,32 (2)33命题点2 由直线与椭圆的位置关系研究直线的性质例5 (2015·江苏)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程. 解 (1)由题意,得c a =22且c +a 2c =3,解得a =2,c =1,则b =1, 所以椭圆的标准方程为x 22+y 2=1.(2)当AB ⊥x 轴时,AB =2,又CP =3,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2), 将AB 的方程代入椭圆方程, 得(1+2k 2)x 2-4k 2x +2(k 2-1)=0, 则x 1,2=2k 2±2(1+k 2)1+2k 2,C 的坐标为⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2,且 AB =(x 2-x 1)2+(y 2-y 1)2=(1+k 2)(x 2-x 1)2=22(1+k 2)1+2k 2.若k =0,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意. 从而k ≠0,故直线PC 的方程为y +k 1+2k 2=-1k ⎝ ⎛⎭⎪⎫x -2k 21+2k 2,则P 点的坐标为⎝ ⎛⎭⎪⎫-2,5k 2+2k (1+2k 2), 从而PC =2(3k 2+1)1+k 2|k |(1+2k 2).因为PC =2AB ,所以2(3k 2+1)1+k 2|k |(1+2k 2)=42(1+k 2)1+2k 2,解得k =±1.此时直线AB 的方程为y =x -1或y =-x +1.思维升华 解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题时用“点差法”解决,往往会更简单.4.(课本P33.3(1)).过点3(1,)2,且与椭圆2212x y +=有相同焦点的椭圆的标准方程为_______________.。

相关文档
最新文档