相似三角形典型模型及例题

合集下载

相似三角形的常见模型

相似三角形的常见模型

初中数学 ︵ 九年级 ︶培优篇初中数学 ︵ 九年级 ︶培优篇【基本模型】①如图,在ABC 中,点D 在AB 上,点E 在AC 上,//DEBC ,则ADE ABC △△∽,AD AE DEAB AC BC.②模型拓展1:斜交A 字型条件:C ADE ,图2结论:~ADE ACB ;③模型拓展2: 如图,∠ACD =∠B ⇔△ADC ∽△ACB ⇔AD AC CDAC AB BC.初中数学 ︵ 九年级︶培优篇【例1】如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走2米到达B 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度等于_________.【变式1-1】有一块直角三角形木板,∠B =90°,AB =1.5m ,BC =2m ,要把它加工成一个面积尽可能大的正方形桌面.甲、乙两位同学的加工方法分别如图1、图2所示.请你用学过的知识说明哪位同学的加工方法更好(加工损耗忽略不计).初中数学 ︵ 九年级 ︶培优篇 【变式1-2】(2022•衢州二模)已知菱形ABCD ,E 是BC 边上一点,连接AE 交BD 于点F (1)如图1,当E 是BC 中点时,求证:AF =2EF ;(2)如图2,连接CF ,若AB =5,BD =8,当△CEF 为直角三角形时,求BE 的长; (3)如图3,当∠ABC =90°时,过点C 作CG ⊥AE 交AE 的延长线于点G ,连接DG ,若BE =BF ,求tan ∠BDG 的值.初中数学 ︵九年级 ︶培优篇 ③模型拓展:如图,∠A =∠C ⇔△AJB∽△CJD ⇔A B JA C D JC【例2】如图,在平行四边形ABCD 中,E 为边AD 的中点,连接AC 、BE 交于点F .若△AEF 的面积为2,则△ABC 的面积为( ) A .8B .10C .12D .14初中数学 ︵ 九年级 ︶培优篇 【变式2-1】如图,在△ABC 中,BC =6,AEA F EBFC,动点P 在射线EF 上,BP 交CE 于点D ,∠CBP 的平分线交CE 于点Q ,当CQ =14CE 时,EP +BP 的值为( )A .9B .12C .18D .24【变式2-2】如图,在Rt △ACB 中,∠ACB =90°,AC =4,BC =3,点D 为AC 上一点,连接BD ,E 为AB 上一点,CE ⊥BD 于点F ,当AD =CD 时,求CE 的长.【变式2-3】如图,已知D 是BC 的中点,M 是AD的中点.求AN:NC的值.初中数学 ︵ 九年级︶培优篇【例3】如图,在平行四边形ABCD 中,∠ABC 的平分线交AC 于点E ,交AD 于点F ,交CD 的延长线于点G ,若AF =2FD ,则BEEG的值为( ) A .12B .13C .23D .34【变式3-1】(2020•杭州)如图,在正方形ABCD 中,点E 在BC 边上,连接AE ,∠DAE 的平分线AG 与CD 边交于点G ,与BC 的延长线交于点F .设=λ(λ>0).(1)若AB =2,λ=1,求线段CF 的长. (2)连接EG ,若EG ⊥AF , ①求证:点G 为CD 边的中点. ②求λ的值.初中数学 ︵ 九年级 ︶培优篇【例4】如图,在△ABC 中,45ABC ,AB A D A E ,D A E 90 ,C E,则CD 的长为______.初中数学 ︵ 九年级 ︶培优篇 【变式4-1】矩形ABCD 中,AD =9,AB =12,点E 在对角线BD 上(不与B 、D 重合),EF ⊥AE 交CD 于F 点,连接AF 交BD 于G 点. (1)如图1,当G 为DE 中点时. ①求证:FD =FE ; ②求BE 的长.(2)如图2,若E 为BD 上任意点,求证:AG 2=BG •GE .初中数学 ︵ 九年级 ︶培优篇 【变式4-2】如图,ABC 中,,,AB AC AB AC 点D E 、分别是BC AC 、的中点,AF BE ⊥与点F .(1)求证:2AE FE BE ;(2)求A F C 的大小;(3)若DF=1,求△ABF 的面积.初中数学 ︵ 九年级 ︶培优篇结论:AH ⊥GF ,△AGF ∽△ABC ,GF AHBC AM【例5】如图1,在△ABC 中,AB =AC =5,BC =6,正方形DEFG 的顶点D 、G 分别在AB 、AC 上,EF 在BC 上. (1)求正方形DEFG 的边长;(2)如图2,在BC 边上放两个小正方形DEFG 、FGMN ,则DE= .初中数学 ︵ 九年级 ︶培优篇 【变式5-1】有一块锐角三角形卡纸余料ABC ,它的边BC =120cm ,高AD =80cm ,为使卡纸余料得到充分利用,现把它裁剪成一个邻边之比为2:5的矩形纸片EFGH 和正方形纸片PMNQ ,裁剪时,矩形纸片的较长边在BC 上,正方形纸片一边在矩形纸片的较长边EH 上,其余顶点均分别在AB ,AC 上,具体裁剪方式如图所示. (1)求矩形纸片较长边EH 的长;(2)裁剪正方形纸片时,小聪同学是按以下方法进行裁剪的:先沿着剩余料△AEH 中与边EH 平行的中位线剪一刀,再沿过该中位线两端点向边EH 所作的垂线剪两刀,请你通过计算,判断小聪的剪法是否正确.初中数学 ︵ 九年级︶培优篇 ②拓展:(1)在正方形、长方形中经常会出现射影定理模型,如图,在有射影定理模型.(2)如图,在圆中也会出现射影定理模型.【例6】如图,四边形ABCD 中,AD ∥BC ,∠B =90°,E 为AB 上一点,分别以ED 、EC 为折痕将两个角(∠A 、∠B )向内折起,点A 、B 恰好落在CD 边的点F 处,若AD =3,BC =5,则EF 的长是( ) A.15B .215C .17D .217初中数学 ︵ 九年级 ︶培优篇 【变式6-1】如图所示,在△ABC 中,∠ABC =90°,BD ⊥AC ,DE ⊥BC ,垂足分别为D 、E 两点,则图中与△ABC 相似的三角形有( ) A .4个B .3个C .2个D .1个【变式6-2】如图,在R t △ABC 中,∠ACB =90°,点D 在AB 上,且AD AC =ACAB. (1)求证 △ACD ∽△ABC ;(2)若AD =3,BD =2,求CD 的长.【变式6-3】ABC 中,90ABC ,BD AC ,点E 为B D 的中点,连接A E 并延长交B C 于点F ,且有AF CF ,过F 点作FH AC 于点H . (1)求证:AD E CD B ∽; (2)求证:=2A E EF ; (3)若FHB C 的长.初中数学 ︵ 九年级 ︶培优篇②如图所示,BDE 和ABC 则ABD CBE ∽△△,且相似比为总结:旋转相似型中由公共旋转顶点、一点及其旋转后的对应点组成的三角形与由公共旋转顶点、另一点及其旋转后的对应点组成的三角形相似.初中数学 ︵ 九年级 ︶培优篇【例7】如图,在△ABC 与△ADE 中,∠ACB =∠AED =90°,∠ABC =∠ADE ,连接BD 、CE ,若AC :BC =3:4,则BD :CE 为( ) A .5:3B .4:3C .√5:2D .2:√3【变式7-1】如图,点E 是菱形ABCD 对角线CA 的延长线上任意一点,以线段AE 为边作一个菱形AEFG ,且菱形AEFG ∽菱形ABCD ,相似比是:2,连接EB ,GD .(1)求证:EB =GD ;(2)若∠DAB =60°,AB =2,求GD 的长.初中数学 ︵ 九年级 ︶培优篇 【变式7-2】如图,正方形ABCD ,对角线AC ,BD 相交于O ,Q 为线段DB 上的一点,90MQN ,点M 、N 分别在直线BC 、DC 上.(1)如图1,当Q 为线段OD 的中点时,求证:1132DN BM BC ;(2)如图2,当Q 为线段OB 的中点,点N 在CD 的延长线上时,则线段DN 、BM 、BC 的数量关系为 ;(3)在(2)的条件下,连接MN ,交AD 、BD 于点E 、F ,若:3:1M B M C ,N Q ,求EF 的长.初中数学 ︵ 九年级 ︶培优篇 补充:其他常见的一线三等角图形【例8】【感知】如图①,在四边形ABCD 中,点P 在边AB 上(点P 不与点A 、B 重合),90A B DPC .易证DAP PBC △△∽.(不需要证明) 【探究】如图②,在四边形ABCD 中,点P 在边AB 上(点P 不与点A 、B 重合),A B D PC .若4PD ,8P C ,6BC ,求AP 的长.【拓展】如图③,在ABC 中,8AC BC ,12A B ,点P 在边AB 上(点P 不与点A 、B 重合),连结CP ,作CPE A ,PE 与边BC 交于点E ,当CPE △是等腰三角形时,直接写出AP 的长.初中数学 ︵ 九年级 ︶培优篇 【变式8-1】如图,在矩形ABCD 中,CD =4,E 是BC 的中点,连接AE ,tan ∠AEB 43,P 是AD 边上一动点,沿过点P 的直线将矩形折叠,使点D 落在AE 上的点D ¢处,当A P D △是直角三角形时,PD 的值为( )A .23或67B .83或247C .83或307D .103或187初中数学 ︵ 九年级 ︶培优篇 【变式8-2】(2022秋•温州校级月考) 【推理】如图1,在正方形ABCD 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连结BE ,CF ,延长CF 交AD 于点G . (1)求证:BCE CDG △△≌. 【运用】(2)如图2,在【推理】条件下,延长BF 交AD 于点H .若45HD HF ,9C E ,求线段DE 的长.【拓展】(3)将正方形改成矩形,同样沿着BE 折叠,连结CF ,延长CF ,BF 交直线AD 于G ,两点,若AB k BC ,45HD HF ,求DEEC的值(用含k 的代数式表示).。

初中数学三角形相似模型含答案

初中数学三角形相似模型含答案

三角形相似模型知识框架相似模型(一)金字塔模型 (二) 沙漏模型GF E AB CD ABCDEF G①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.例题精讲一、沙漏模型【例 1】 四边形ABCD 被AC 和DB 分成甲乙丙丁4个三角形,已知BE=80,CE=60,DE=40,AE=30,问:丙、丁两个三角形之和是甲乙两个三角形面积之和的多少倍?【考点】沙漏模型 【难度】1星 【题型】解答【解析】 因为AE:CE=BE:DE=1:2,所以AD BC ,即ABCD 为梯形,并且三角形AED 与三角形BEC相似。

因此:::1:2:2:4∆∆∆∆=AED AEB CED CEB S S S S 。

故():()(22):(41)4:5S S S S ++=++=乙甲丙丁【答案】54。

【巩固】 梯形ABCD 的上底长为3厘米,下底长为9厘米,而三角形ABO 的面积为12平方厘米。

则整个梯形的面积为多少?【考点】沙漏模型 【难度】1星 【题型】解答【解析】 同上题,△AOD 与△BOC 形状相同,大小成比例,这个比例为:AD :BC =1:3,所以它们的面积比为1:9。

而△AOB 的面积则是二者之间的过渡量,即比例中的3份。

把△AOB 的面积看成3份,那么1份是:12÷3=4(平方厘米)。

相似三角形常见模型(总结)

相似三角形常见模型(总结)

第一部分相似三角形模型分析一、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)B(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型B(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:CAD二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。

8字型拓展CB EDA共享性GBCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:EG EF BE ⋅=2.相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.AC D E B2、已知:AD是Rt△ABC中∠A的平分线,∠C=90°,EF是AD的垂直平分线交AD于M,EF、BC的延长线交于一点N。

求证:(1)△AME∽△NMD; (2)ND2=NC·NB3、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,E是AC上一点,CF⊥BE于F。

求证:EB·DF=AE·DB4.在∆ABC中,AB=AC,高AD与BE交于H,EF BC⊥,垂足为F,延长AD到G,使DG=EF,M是AH的中点。

求证:∠=︒GBM905.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt△ABC中,∠C=90°,BC=2,AC=4,P是斜边AB上的一个动点,PD⊥AB,交边AC 于点D(点D与点A、C都不重合),E是射线DC上一点,且∠EPD=∠A.设A、P两点的距离为x,△BEP的面积为y.(1)求证:AE=2PE;(2)求y关于x的函数解析式,并写出它的定义域;(3)当△BEP与△ABC相似时,求△BEP的面积.ABPD E(第25题图)GMFEHDCBADC双垂型1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高 求证:(1)△ABD ∽△ACE ;(2)△ADE ∽△ABC ;(3)BC=2ED2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△BDE 的面积分别是27和3,DE=62,求:点B 到直线AC 的距离。

相似三角形的常见模型(地总结)

相似三角形的常见模型(地总结)

第一部分 相似三角形模型分析一、相似三角形判定的基本模型认识(一)A 字型、反A 字型(斜A 字型)ABCDE(平行)CBA DE(不平行)(二)8字型、反8字型J OADBCAB CD(蝴蝶型)(平行) (不平行) (三)母子型ABCDCAD(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:CAD二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。

8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ⋅=2.相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.AC D E B2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。

求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。

求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。

相似三角形常见模型(总结)

相似三角形常见模型(总结)

相似三角形常见模型(总结)第一部分相似三角形模型分析一、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)B(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型B(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:C D二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。

8字型拓展C B ED A 共享性G B EF一线三等角的变形一线三直角的变形第二部分相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E .求证:OE OA OC ?=2 .例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ?=2;(2)DAC DCE ∠=∠.A C D E B例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:EG EF BE ?=2.相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2.2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。

求证:(1)△AME ∽△NMD; (2)ND 2=NC NB3、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,E是AC上一点,CF⊥BE于F。

求证:EBDF=AEDB4.在?ABC中,AB=AC,高AD与BE交于H,EF BC⊥,垂足为F,延长AD到G,使DG=EF,M是AH的中点。

求证:∠=?GBM905.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt△ABC中,∠C=90°,BC=2,AC=4,P是斜边AB上的一个动点,PD⊥AB,交边AC于点D(点D与点A、C都不重合),E是射线DC上一点,且∠EPD=∠A.设A、P两点的距离为x,△B EP的面积为y.AB PD E(第25题图)GMFEHDCBA(1)求证:AE=2PE;(2)求y关于x的函数解析式,并写出它的定义域;(3)当△BEP与△ABC相似时,求△BEP的面积.双垂型1、如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB 上的高2、如图,已知锐角△ABC,AD、CE分别是BC、AB边上的高,△ABC和△BDE的面积分别是27和3,DE=62,求:点B到直线AC的距离。

初三上相似三角形常见模型

初三上相似三角形常见模型

相似模型1.“A”型
变形:反“A”型
2.“8”字型
变形:反“8”字型
B
D
E
3.
双垂型
变形:字母型
4.共线三等角相似模型
如下图,ABC CDE
△∽△
图1图2图3重点是共线中的“线”上的三个角要保证相等,利用同角的补角相等近一步证明.
E
D
C
B
A
E
D
A
E
D
B
5.旋转相似模型
共顶点相似的一般三角形模型:
典型例题:
例1.已知:在△ABC中,DE∥BC,点F是线段DE上一点,连接AF并延长与BC 相交于点G.求证:DF·GC=FE·BG
例2.例2.如图,点B,C分别在△ADE的边AD,AE上,且AC=6,AB=5,EC=4,DB=7.求证:△ABC∽△AED.
例3.△ABC中,正方形EFGH的两个顶点E、F在BC上,另两个顶点G、H分别在AC、AB上,BC=15,BC边上的高AD=10,求正方形EFGH的面积.
例4.如图,在平行四边形ABCD中,AC与BD交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF∶FC等于( )
A.1∶4 B.1∶3 C.2∶3 D.1∶2
例5.如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且CF=3FD,∠BEF=90°.
(1)求证:△ABE∽△DEF;
(2)若AB=4,延长EF交BC的延长线于点G,求BG的长.。

相似三角形典型模型及例题

相似三角形典型模型及例题

1:相似三角形模型一:相似三角形判定的根本模型〔一〕 A 字型、反 A 字型〔斜 A 字型〕〔平行〕〔不平行〕〔二〕 8 字型、反 8 字型AA BBO JC DC D〔蝴蝶型〕〔平行〕〔不平行〕〔三〕母子型〔四〕一线三等角型:三等角型相似三角形是以等腰三角形〔等腰梯形〕或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如下图:〔五〕一线三直角型:三直角相似可以看着是“一线三等角〞中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的根本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。

〔六〕双垂型:二:相似三角形判定的变化模型旋转型:由 A 字型旋转得到8 字型拓展AE FGB C共享性一线三等角的变形一线三直角的变形2:相似三角形典型例题〔 1〕母子型相似三角形例 1:如图,梯形ABCD 中, AD ∥ BC,对角线 AC、 BD 交于点 O, BE∥ CD 交 CA 延长线于 E.求证: OC 2OA OE.例 2::如图,△ABC 中,点 E 在中线 AD 上 ,DEBABC .求证:〔 1〕DB2DE DA ;〔2〕 DCE DAC .BDEA C例 3::如图,等腰△ABC 中, AB= AC,AD⊥ BC 于 D, CG∥ AB, BG 分别交 AD 、 AC 于 E、 F.求证: BE 2EF EG .1、如图,AD 为△ABC 的角平分线, EF 为 AD 的垂直平分线.求证:FD2FB FC.2、: AD 是 Rt△ABC 中∠ A 的平分线,∠ C=90°,EF 是 AD 的垂直平分线交AD 于 M ,EF、BC 的延长线交于一点 N。

初中数学相似6大模型问题(完整可编辑)

初中数学相似6大模型问题(完整可编辑)

已知N1=N2 结论:AADE S AABC模型浅析如图,在相似三角形的判定中,我们通过做平行线,从而得出A 型或8型相似.在做题使,我们也常常关注题 目由平行线所产生的相似三角形.模型题源【例1】如图,在ABC 中,中线AF 、BD 、CE 相交于点。

,求证:模型1: 4、 8模型相似模型OF _OE OD \加一五一下一5DE 1证法一:如图①,连接。

£七是中点,,——=一.,DE//BCBC 2OF DF 1OF I•••△EODsacoB(8 模型).••& = &!=2.同理:—=1OC BC 2 OA 2• OF _OE _OD _1GF BF 1 证法二:如图②,过尸作"V/AC 交8。

于点G, ••加是中点,; ------ =——=-AD BC 2QF 1•;AD=CD,:.——=一・•:FG"AD, •二△G 。

/(8 模型)AD 2OF GF 1 lXi OE 1 OD 1 . OF OE OD 1 OAAD 2 OC2OB2 OAOCOB2【例2】如图,点从厂分别在菱形A8C 。

的边AB 、AO 上,且AE=O 凡BF 交DE 于点、G,延长斯交C 。

的延长AF 线于H,若——=2,DF••市一无一方一天图②求器的值.解答::四边形A8CQ是菱形,:.AB^=BC=CD=AD.设。

/=小则OF=AE=a, AF=EB=2a. 9:HD//AB, MHFDsABFAHD DF ■ —AB AF HFFB1=一,••HD = 1.5a, 2FHBH1=-93:.FH1= -BH 3■:HD”EB,:.△DGHs NGB,:-------- =GBHDEB\.5a2a_3=-9 4.BGHB4-7练习:1 .如图,D 、上分别是△ABC 的边AB 、8C 上的点,且DE 〃AC, AE,。

相交于点0,若S :: S^COA =1: 25.则 S/.BD E 与Szxc 的比是.DE 1解答:VDE//AC, AADOE^ACOA,又 S SOE : S^COA = 1: 25,; -------- -AC 52 .如图所示,在248CO 中,G 是8c 延长线上的一点,AG 与BD 交于点、E,与OC 交于点F,此图中的相似三 角形共有对.解::四边形ABCD 是平行四边形,,AD 〃BC, AB//CD,(1) AABD^ACDB : (2) AABE^AFDE ; (3) A AED ^A GEB :(4) AABG^AFCG^AFDA,可以组成3对相似三角形.,图形中一共有6对相似三角形.3.如图,在aABC 中,中线8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

:相似三角形判定的基本模型
一) A 字型、反 A 字型(斜 A 字型)
二) 8字型、反 8字型
三)母子型 四)一线三等角型:
三等角型相似三角形是以 等腰三角形(等腰梯形)或者等边三角形 为 背景,一个与
等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分 别与等腰三角形的两边相交如图所示:
(五)一线三直角型:
三直角相似可以看着是 “一线三等角” 中当角为直角时的特例, 三直角型相似通常是以矩形或者正 方形形为背景, 或者在一条直线上有一个顶点在该直线上移动或者旋转的直角, 几种常见的基本图形如 下:
当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相 似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。

(六)双垂型: 二:相似三角形判定的变化模型
旋转型:由 A 字型旋转得到
平行)
不平行)
B
蝴蝶型) 不平行)
8 字型拓展
一线三等角的变形
一线三直角的变形
2:相似三角形典型例题
(1)母子型相似三角形
例1:如图,梯形ABCD中,AD∥ BC,对角线AC、BD交于点O,BE∥CD交CA延长线于E.求证:OC2 OA OE .
例2:已知:如图,△ ABC中,点E在中线AD上, DEB ABC .
求证:(1)DB2DE DA;(2)DCE DAC .
例3:已知:如图,等腰△ ABC中,AB=AC,AD⊥BC于D,CG∥AB,BG分别交AD、AC于E、F.求证:BE2 EF EG .
1 、如图,已知AD为△ ABC的角平分线,EF为AD的垂直平分线.求证:FD
2 FB FC .
2、已知:AD是Rt△ ABC中∠ A 的平分线,∠ C=90°,EF 是AD的垂直平分线交AD于M,EF、BC 的延长线交于一点N。

求证:(1)△ AME∽△ NMD; (2)ND 2=NC·NB
3、已知:如图,在△ ABC中,∠ ACB=90°,CD⊥AB于D,E是AC上一点,CF⊥ BE于F。

求证:EB·DF=AE·DB
4. 在ABC中,AB=AC,高AD与BE交于H,EF BC ,垂足为F,延长AD到G,使DG=EF,M是AH 的中点。

求证:GBM 90
5 已知:如图,在Rt△ABC中,∠ C=90°,BC=2,AC=4,P 是斜边AB上的一个动点,PD⊥AB,交边
AC
于点D(点D与点A、C都不重合),E是射线DC上一点,且∠ EPD=∠ A.设A、P两点的距离为
x,△BEP 的面积为y.(1)求证:AE=2PE;
(2)求y 关于x 的函数解析式,并写出它的定义域;
(3)当△ BEP与△ ABC相似时,求△ BEP的面积.
(2)双垂型
1、如图,在△ ABC中,∠ A=60°,BD、CE分别是AC、AB上的高求证:(1)△ ABD∽△ ACE;(2)△ ADE∽△ ABC;(3)BC=2ED
2、如图,已知锐角△ ABC,AD、CE分别是BC、AB边上的高,△ABC和△ BDE的面积分别是27和3,DE=6 2,求:点 B 到直线AC的距离。

(3)共享型相似三角形
1、△ ABC是等边三角形,DBCE在一条直线上, ∠ DAE=120° , 已知BD=1,CE=3,求等边三角形的边长
2、已知:如图,在Rt△ ABC中,AB=AC,∠ DAE=45°.
例 1 :如图,等边△ ABC中,边长

(1)求证:△ BDE∽△ CFD
(2)当BD=1,FC=3 时,求BE
点B 重合),且保持APQ ABC .
①若点P在线段CB上(如图),且BP 6,求线段CQ的长;
②若BP x,CQ y,求y与x之间的函数关系式,并写出函数的定义域;
2)正方形ABCD 的边长为5(如下图),点P 、Q分别在直.线.CB 、DC 上(点P不与点C、点
B
求证:(1)△ ABE∽△ ACD;2)BC22BE CD .
(4)一线三等角型相似三角形
例2:(1)在ABC中,AB AC
B D
C
重合),且保持APQ 90 . 当CQ 1时,求出线段BP的长.
例3:已知在梯形ABCD中,AD∥BC,AD< BC,且AD=5,AB=DC=2.
(1)如图8,P为AD上的一点,满足∠ BPC=∠ A.
①求证;△ ABP∽△ DPC
②求AP的长.
(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠ BPE=∠ A,PE交直线BC于点E,同时交直线DC于点Q,那么
①当点Q在DC的延长线上时,设AP=x,CQ=y,求y 关于x 的函数解析式,并写出函数的定义域;
②当CE=1 时,写出AP的长.
例4:如图,在梯形ABCD中,AD ∥ BC ,AB CD BC 6,AD 3.点M 为边BC的中点,以M为顶点作EMF B,射线ME交腰AB于点E ,射线MF交腰CD于点F ,联结EF.
(1)求证:△ MEF ∽△ BEM ;
(2)若△ BEM 是以BM 为腰的等腰三角形,求EF 的长;
(3)若EF CD ,求BE的长.
1、如图,在△ ABC中,AB AC 8,BC 10 ,D是BC边上的一个动点,点E在AC 边上,且
ADE C .
(1)求证:△ ABD∽△ DCE;
(2)如果BD x,AE y ,求y 与x的函数解析式,并写出自变量x的定义域;
(3)当点D 是BC 的中点时,试说明△ ADE是什么三角形,并说明理由.
2、如图,已知在△ ABC中,AB=AC=6,BC=5,D是AB上一点,BD=2,E是BC上一动点,联结DE,并作DEF B ,射线EF 交线段AC于F.
(1)求证:△ DBE∽△ ECF;
(2)当 F 是线段AC中点时,求线段BE的长;
(3)联结DF,如果△ DEF与△ DBE相似,求FC的长.
3、已知在梯形ABCD中,AD∥BC,AD<BC,且BC =6 ,AB=DC=4,点E是AB的中点.
(1)如图,P为BC上的一点,且BP=2.求证:△ BEP∽△ CPD;
(2)如果点P在BC边上移动(点P与点B、C不重合),且满足∠ EPF=∠ C,PF交直线CD 于点F,同时交直线AD于点M,那么
①当点 F 在线段CD的延长线上时,设BP= x ,DF= y ,求y关于x的函数解析式,并写出函数的
定义域;
9
②当S DMF 9S BEP 时,求BP的长.
4、如图,已知边长为3的等边ABC,点F 在边BC上,CF 1,点E是射线BA 上一动点,以线段EF 为边向右侧作等边EFG ,直线EG,FG交直线AC 于点M ,N,
1)写出图中与BEF 相似的三角形;
2)证明其中一对三角形相似;
3)设BE x,MN y,求y与x之间的函数关系式,并写出自变量x的取值范围;
4)若AE 1,试求GMN 的面积.
(5)一线三直角型相似三角形
例1、已知矩形ABCD中,CD=2,AD=3,点P是AD上的一个动点,且和点A,D不重合,过点P作PE CP,交边AB于点E,设PD x,AE y,求y关于x的函数关系式,并写出x的取值范围。

例 2、在 ABC 中, C 90o ,AC 4,BC 3,O 是 AB 上的一点,且
AO 2
AO 2
,点 P 是 AC 上的一个动点, PQ OP 交线段 BC 于点 Q ,(不与 AB 5
点 B,C 重合),设 AP x,CQ y ,试求 y 关于 x 的函数关系,并写出定 义域。

o
3
1.在直角 ABC 中, C 90o ,AB 5,tanB ,点 D 是 BC 的中点,
4
点 E 是 AB 边上的动点, DF DE 交射线 AC 于点 F ( 1)、求 AC 和 BC 的长
(2)、当 EF // BC 时,求 BE 的长。

(3)、连结 EF,当 DEF 和 ABC 相似时,求 BE 的长。

2.在直角三角形 ABC 中, C 90o ,AB BC,D 是AB 边上 一点, E
是在 AC 边上的一个动点, (与 A,C 不重合) , DF DE,DF 与射线 BC 相交于点 F.
(1) 、当点 D 是边 AB 的中点时,求证: DE DF (2) 、当 AD m ,求 DE 的值
DB DF
AD 1
3)、当 AC BC 6, ,设 AE x,BF
DB 2
3
3.如图,在 ABC 中, C 90 , AC 6, tanB ,D 是 BC 边的中点,
4
动点,作 DEF 90 , EF 交射线 BC 于点 F .设 BE x , BED 的面积为 y .
(1)求 y 关于 x 的函数关系式,并写出自变量 x 的取值范围;
(2)如果以 B 、 E 、F 为顶点的三角形与 BED 相似,求 BED 的面积 .
4. 如图,在梯形 ABCD 中,AB CD , AB 2,AD 4,tanC 4, ADC
DAB 900,P 是
腰BC 上一个动点 (不含点 B 、C ), 作PQ AP 交CD 于点Q .( 图 1)
(1) 求 BC 的长与梯形 ABCD 的面积; (2) 当 PQ DQ 时, 求 BP 的长; ( 图 2)
(3) 设BP x,CQ y ,试求y 关于x 的函数解析式 ,并写出定义域
y ,求y 关于 x 的函数关系式,并写出定义域
E 为 AB 边上的一个
C
A。

相关文档
最新文档