有关中点的定理及辅助线

合集下载

中考数学中点四大模型专题知识解读

中考数学中点四大模型专题知识解读

中点四大模型专题知识解读【专题说明】线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行等的应用。

【方法技巧】模型1 :倍长中线法如图,在△ABC中,AD是BC边上的中线.当题中出现中线时,我们经常根据需要将AD延长,使延长部分和中线相等,这种方法叫做“倍长中线”.如下图:此时,易证△ACD≌EDB,进而得到AC=BE且AC//BE.模型2:平行线夹中点如图,AB//CD,点E是BC的中点.可延长DE交AB于点F.模型3:中位线如图,在△ABC中,点D是AB边的中点.可作另一边AC的中点,构造三角形中位线.如下图所示:由中位线的性质可得,DE//BC且DE=1/2BC.模型4:连接直角顶点,构造斜中定理【典例分析】【模型1 倍长中线法】【典例1】【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是.A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC =BF.【变式1-1】(1)在△ABC中,AB=5,AC=3,求BC边上的中线AD的取值范围.(2)受到(1)启发,请你证明下面的问题:如图,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.求证:BE+CF>EF.【变式1-2】如图,在△ABC中,已知:点D是BC中点,连接AD并延长到点E,连接BE.(1)请你添加一个条件使△ACD≌△EBD,并给出证明.(2)若AB=5,AC=3,求BC边上的中线AD的取值范围.【变式1-3】阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证明AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明.(1)延长DE到F,使得EF=DE;(2)作CG⊥DE于G,BF⊥DE于F交DE的延长线于F;(3)过点C作CF∥AB交DE的延长线于F.【模型2 平行线夹中点】【典例2】如图,已知AB=12,AB⊥BC,垂足为点B,AB⊥AD,垂足为点A,AD=5,BC =10,点E是CD的中点,求AE的长.【变式2-1】如图,AB∥CD,∠BCD=90°,AB=1,BC=4,CD=3,取AD的中点E,连结BE,则BE=.【变式2-2】如图,公园有一条“Z”字形道路AB﹣BC﹣CD,其中AB∥CD,在E、M、F 处各有一个小石凳,且BE=CF,M为BC的中点,连接EM、MF,请问石凳M到石凳E、F的距离ME、MF是否相等?说出你推断的理由.【变式2-3】如图:已知AB∥CD,BC⊥CD,且CD=2AB=12,BC=8,E是AD的中点,①请你用直尺(无刻度)作出一条线段与BE相等;并证明之;②求BE的长.【模型3 中位线】【典例3】如图,△ABC中,AD平分∠BAC,E是BC中点,AD⊥BD,AC=7,AB=4,则DE的值为()A.1B.2C.D.【变式3-1】如图,在△ABC中,D,E,F分别是边AB,BC,CA的中点,若△DEF的周长为10,则△ABC的周长为.【变式3-2】如图,等边△ABC的边长是4,D,E分别为AB,AC的中点,延长BC至点F,使,连接CD和EF.(1)求证:CD=EF;(2)四边形DEFC的面积为.【变式3-3】如图,在平行四边形ABCD中,点E在BC的延长线上,CE=DE=2BC.CD 的中点为F,DE的中点为G,连接AF,FG.(1)求证:四边形AFGD为菱形;(2)连接AG,若BC=2,,求AG的长.【模型4 连接直角顶点,构造斜中定】【典例4】用三种方法证明:直角三角形斜边上的中线等于斜边的一半.已知:如图,∠BCA =90°,AD=DB.求证:CD=AB.【变式4-1】直角三角形斜边上的中线长为10,则该斜边长为()A.5B.10C.15D.20【变式4-2】如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE 交边BC于点F,点F是边BC的中点.若AB=6,EF=1,则线段AC的长为()A.7B.C.8D.9【变式4-3】用两种方法证明“直角三角形斜边上的中线等于斜边的一半”.已知:如图1,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.求证:CD=AB.证法1:如图2,在∠ACB的内部作∠BCE=∠B,CE与AB相交于点E.∵∠BCE=∠B,∴.∵∠BCE+∠ACE=90°,∴∠B+∠ACE=90°.又∵,∴∠ACE=∠A.∴EA=EC.∴EA=EB=EC,即CE是斜边AB上的中线,且CE=AB.又∵CD是斜边AB上的中线,即CD与CE重合,∴CD=AB.请把证法1补充完整,并用不同的方法完成证法2.专题02 中点四大模型在三角形中应用(知识解读)【专题说明】线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行的应用。

圆中辅助线做法和解题策略

圆中辅助线做法和解题策略

《圆》常用辅助线作法1、弧有中点:圆心连。

利用等弧所对的圆心角相等、弦相等、圆周角相等可得到一系列的相等关系的量2、弦有中点:圆心连。

利用垂径定理的推论可得,所连半径垂直于弦。

如果再把圆心和弦的一端连起来,就可以得到由半径、半弦、弦心距构成的直角三角形。

3、弦和直径同时现:过圆心作弦的垂线。

利用垂径定理构建由半径、半弦、弦心距构成的直角三角形4、两条半径同时现:半径外端用线连。

此时就构建了一个等腰三角形,可以进一步用等腰三角形性质解题5、条件中有直径和与直径有公共端点的弦:把弦的另一端点与直径的另一端点连起来。

利用直径所对的圆周角是直角,可得到一个直角三角形6、条件中有90°的圆周角:把圆周角所对的弦做出来。

利用90°的圆周角所对的弦是直径,可得所作的弦是直径,同时得到一个直角三角形7、证明直线是圆的切线:当直线与圆有明确的公共点时,连接圆心和公共点,证明所连半径与直线垂直即可;当直线与圆没有明确的公共点时,过圆心作直线的垂线,证明所做垂线段等于半径即可。

8、条件中有切线,有切点:连结圆心和切点。

利用切线的性质---圆的切线垂直于过切点的半径——可得到所连半径与切线垂直。

《圆》解题规律1、“圆内接四边形”往往是隐含条件,要注意分析观察,自觉应用圆内接四边形的性质解决问题2、连结半径外端构建等腰三角形,往往忽计,要善于用等腰三角形性质解决问题3、有弦有直径,要构建半径、半弦、弦心距构成的直角三角形,利用勾股定理和垂径定理解决问题4、圆中主要学了两种特殊的角,圆心角和圆周角,它们不仅在解题时用的多,而且它们之间的关系很特殊,要主动利用5、圆中得“线段相等、角相等”的方法比直线型问题要多得多,垂径定理,圆周角定理,弧、弦、圆心角关系定理,切线长定理都可以用。

6、垂径定理和三线合一定理既有联系又有区别,在做题时要分清(是弦时,直接用垂径定理,否则要用三线合一定理)7、三角形中位线定理和垂径定理的综合比较常见8、作出恰当的辅助线很关键,而辅助线的作法如前8条9、要注意多解的问题:(1)平形弦间的距离(2)圆周角的计算时,顶点位置不明确(优弧上、劣弧上)(3)点到圆的最大距离和最小距离问题(点在圆内、点在圆外)(4) 两圆相切(内切、外切)(5)弦所在弓形高(弦对的弧为优弧、劣弧)。

中点辅助线.中位线(2013_2014)_教师版

中点辅助线.中位线(2013_2014)_教师版

2014年中考解决方案构造中位线学生姓名:×××上课时间:2013.××.××知识点一中点一、与中点有关的概念三角形中线的定义:三角形顶点和对边中点的连线三角形中线的相关定理:直角三角形斜边的中线等于斜边的一半等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半斜边中线判定:若三角性一边上的中线等于该边的一半,则这个三角形是直角三角形二、与中点有关的辅助线秘籍一:倍长中线解读:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的。

秘籍二:构造中位线解读:凡是出现中点,或多个中点,都可以考虑取另一边中点,或延长三角形一边,从而达到构造三角形中位线的目的。

秘籍三:构造三线合一自检自查必考点解读:只要出现等腰三角形,或共顶点等线段,就需要考虑构造三线合一,从而找到突破口其他位置的也要能看出秘籍四:构造斜边中线解读:只要出现直角三角形,或直角,则考虑连接斜边中线段,第一可以出现三条等线段,第二可以出现两个等腰三角形,从而转化线段关系。

他位置的也要能看出一、构造三角形中位线☞考点说明:①凡是出现中点,或多个中点,都可以考虑取四边形对角线中点、等腰三角形底边中点、直角三角形斜边中点或其他线段中点,②延长三角形一边,从而达到构造三角形中位线的目的。

“题中有中点,莫忘中位线”.与此很相近的几何思想是“题中有中线,莫忘加倍延”,这两个是常用几何思想,但注意倍长中线的主要目的是通过构造三角形全等将分散的条件集中起来.平移也有类似功效.【例1】 已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证:2AC AE =.【答案】取AC 的中点F ,连结DF ,易得12DF AB =∥,ADF BAD ADF ==∠∠∠,而1122DE BD AB ==,故DF DE =.再证ADE ADF △≌△,得AE AF =.【练1】如右下图,在ABC ∆中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.【答案】如右下图,则取AC 边中点F ,连结EF 、DF .由中位线可得,12EF AB =且B CEF ∠=∠.DF 为Rt ADC ∆斜边上的中线,∴DF CF =.∴CDF C ∠=∠,又∵DFE FDE CEF ∠+∠=∠,即2C DFE C ∠+∠=∠,∴DFE EDF ∠=∠,∴12DE EF AB ==,∴2AB DE =.【练2】在ABC △中,CD 、AE 分别为AB 、BC 边上的高,60B =︒∠,求证:12DE AC =.【考点】三角形的中位线,30°所对的直角边等于斜边的一半【答案】取AB 、BC 的中点,连结MN ,∵60B =︒∠,∴30BAE BCD ==︒∠∠.从而得12BE BM AB ==,12BD BN BC ==,BDE BNM △≌△,MN DE =.中考满分必做题又因12MN AC =,故12DE AC =.【练3】在ABC ∆中,90ACB ∠=︒,12AC BC =,以BC 为底作等腰直角BCD ∆,E 是CD 的中点,求证:AE EB ⊥且AE BE =.【答案】过E 作EF BC ∥交BD 于F135ACE ACB BCE ∠=∠+∠=︒ ∵45DFE DBC ∠=∠=︒∴135EFB ∠=︒又∵EF BC ∥,12EF BC =,12AC BC = ∴EF AC =,CE FB =∴EFB ACE ∆∆≌ ∴CEA DBE ∠=∠ 又∵90DBE DEB ∠+∠=︒ ∴90DEB CEA ∠+∠=︒ 故90AEB ∠=︒∴AE EB ⊥且AE BE =.【例2】 已知四边形ABCD 的对角线AC BD =,E 、F 分别是AD 、BC 的中点,连结EF 分别交AC 、BD于M 、N ,求证:AMN BNM =∠∠.【答案】设AB 的中点为G ,连结GE 、GF ,容易证得12GE BD =∥,12GF AC =∥,从而GF GE =,GEF GFE =∠∠,所以 AMN BNM =∠∠.【练1】已知四边形ABCD 中,AC BD <,E F 、分别是AD BC 、的中点,EF 交AC 于M ;EF 交BD 于N ,AC 和BD 交于G 点.求证:GMN GNM ∠>∠.GBCDEFM N A【答案】取AB 中点H ,连接EH FH 、.∵AE =ED AH =BH ,∴12EH BD EH =BD ∥,,∴GNM HEF ∠=∠ ∵AH =BH BF =CF ,HGNM E DA∴12FH AC FH =AC ∥, ∴GMN HFE ∠=∠ ∵AC <BD ∴FH <EH∴<HEF HFE ∠∠ ∴GMN GNM ∠>∠【练2】已知:在ABC ∆中,BC AC >,动点D 绕ABC ∆的顶点A 逆时针旋转,且AD BC =,连结DC .过AB 、DC 的中点E 、F 作直线,直线EF 与直线AD 、BC 分别相交于点M 、N .(1)如图1,当点D 旋转到BC 的延长线上时,点N 恰好与点F 重合,取AC 的中点H ,连结HE 、HF ,求证: AMF BNE ∠=∠(2)当点D 旋转到图2中的位置时,AMF ∠与BNE ∠有何数量关系?请证明.MN AB EF DC(N )M F EDCBA【答案】取AC 的中点H ,连结HE 、HF∵F 是DC 的中点,H 是AC 的中点 ∴HF AD ∥,12HF AD = ∴AMF HFE ∠=∠同理,HE CB ∥,12HE CB =∴ENB HEF ∠=∠∵AD BC = ∴HF HE =, ∴HEF HFE ∠=∠ ∴ENB AMF ∠=∠【例3】 如图,在五边形ABCDE 中,90ABC AED ∠=∠=︒,BAC EAD ∠=∠,F 为CD 的中点.求证:BF EF =.【答案】取AC 中点M ,AD 中点N .连结MF 、NF 、MB 、NE ,则根据直角三角形斜边中线的性质及中位线的性质有12MF AD NE ==,12NF AC MB ==,MF AD ∥,NF AC ∥,∴DNF CAD CMF ∠=∠=∠,∵BM AM =,∴MBA CAB ∠=∠.∴2BMC MBA CAB CAB ∠=∠+∠=∠.同理可证2DNE DAE ∠=∠. ∵BAC EAD ∠=∠,∴BMC END ∠=∠. ∴BMC CMF FND DNE ∠+∠=∠+∠,即BMF ENF ∠=∠,∴MBF NFE ∆∆≌,∴BF EF =.【练1】如图所示,在ABC ∆中,D 为AB 的中点,分别延长CA 、CB 到点E 、F ,使DE DF =.过E 、F 分别作直线CA 、CB 的垂线,相交于点P ,设线段PA 、PB 的中点分别为M 、N .求证:(1)DEM FDN ∆∆≌; (2)PAE PBF ∠=∠.【答案】(1)如图所示,根据题意可知DM BN ∥且DM BN =,DN AM ∥且DN AM =,所以AMD APB DNB ∠=∠=∠.而M 、N 分别是直角三角形AEP ∆、BFP ∆的斜边的中点, 所以EM AM DN ==,FN BN DM ==, 又已知DE DF =, 从而DEM FDN ∆∆≌. (2)由(1)可知EMD DNF ∠=∠,则由AMD DNB ∠=∠可得AME BNF ∠=∠. 而AME ∆、BNF ∆均为等腰三角形, 所以PAE PBF ∠=∠.【练2】已知:在ABC ∆中,分别以AB 、AC 为斜边作等腰直角三角形ABM ,和CAN ,P 是边BC 的中点.求证:PM PN =PNMCBA【答案】取AB 中点Q AC ,中点R连结PQ PR MQ NR ,,, 12PQ AC PQ AC NR ==∥, PR AB PR MQ ∥,= PQM PRN ∠∠= (两边分别垂直)∴PQM NRP PM PN ∆∆≌, =【练3】如图所示,已知ABD ∆和ACE ∆都是直角三角形,且90ABD ACE ∠=∠=︒,连接DE ,设M 为DE的中点.(1)求证MB MC =.(2)设BAD CAE ∠=∠,固定Rt ABD ∆,让Rt ACE ∆移至图示位置,此时MB MC =是否成立?请证明你的结论.EMDCBA EM DCBA【答案】(1)如图所示,延长BM 交CE 于N .因为DM EM =,CE BD ∥, 故DBM ENM ∆∆≌, 则BM NM =, 从而12MC BN MB ==.(2)结论是肯定的.取AD 、AE 的中点F 、G , 连接FB 、FM 、MG 、GC .由BF 、CG 是Rt ABD ∆、Rt ACE ∆斜边上的中线 可得12BF AD =,12CG AE =, 从而MF CG =,MG BF =.又因为22CGE CAE BAD BFD ∠=∠=∠=∠, MFD DAE MGE ∠=∠=∠,故BFM MGC ∠=∠,NEMDCA MGFEDCBAPNMQRCBA从而BFM MGC ∆∆≌, 故MB MC =.【例4】 以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90BAD CAE ∠=∠=︒.连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是________;线段AM 与DE 的数量关系是________;(2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转θ︒(090θ<<)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.图①NM EDCB A图②NM EDCBA【答案】(1)AM DE ⊥,12AM DE =; (2)结论仍然成立。

有关中点的定理及辅助线

有关中点的定理及辅助线

有关中点的定理及辅助线一、 遇到中线想到线等、联想到三线合一二、 遇到中线想到面积等例:用不同的方法把三角形的面积四等分例:在图12— 1至图12— 3中,已知△ ABC 的面积为a . (1)如图12— 1,延长△ ABC 的边BC 到点D ,使 CD = BC ,连结DA .若厶ACD 的面积为 S,则S= _____________________ (用含a 的代数式表示);(2)如图12—2,延长△ ABC 的边BC 到点D ,延长边CA 到点E ,使CD=BC , AE=CA ,连结DE .若厶DEC 的面积为 S 2,则S 2= __________ (用含a 的代数式表示);(3)在图12—2的基础上延长 AB 到点F ,使BF=AB ,连结FD , FE ,得到△ DEF (如 图12—3).若阴影部分的面积为 S 3,则S 3= _____________________ (用含a 的代数式表示),并运用上述(2)的结论写出理由.发现:像上面那样,将 △ ABC 各边均顺次延长一倍,连结所得端点,得到 △ DEF (如图12— 3),此时,我们称 △ ABC 向外扩展了一次.可以发现,扩展一次后得到的△ DEF 的 面积是原来△ ABC 面积的 _________ 倍.应用:要在一块足够大的空地上栽种花卉,工程人员进行了如下的图案设计:首先在厶ABC 的空地上种红花,然后将厶 ABC 向外扩展三次(图12—4已给出了前两次扩展的图 案).在第一次扩展区域内种黄花,第二次扩展区域内种紫花,第三次扩展区域内种蓝花.如 果种红花的区域(即△ABC )的面积是10平方米,请你运用上述结论求出:(1)种紫花的区域的面积;(2)种蓝花的区域的面积. 三、遇到中线想到直角三角形中斜边上的中线等于斜边的一半例:如图 BD 、CE 是厶ABC 的两条高,M 、N 分别是BC 和ED 的中点。

求证: MN 丄ED练习:(1)、在三角形 ABC 中,AB=AC , BD 平分角ABC ,过点D 做DE 垂直于BD 交BC 于点E ,求证:CD=1/2BE(2)、如图,过矩形 ABCD 的顶点A 作一直线,交BC 的延长线于点 E , F 是AE 的中点,连接FC 、FD 求证:/ FDA= / FCB四、遇到中线加倍延 例:已知:如图, AD ABC 的中线,点 E 在AC 边上,BE 交AD 于点F ,且AE=EF练习:(1)已知△ ABC 中,AD 是BC 边上的中线,分别紧 AB 边,AC 边为直角边各向外作等腰直角三角形求证:EF=2AD(2)已知:如图, AB=BC=CE , AD ABC 中BC 边的中线,求证:/ 1 =/ 2求证:AC=BFE(3)BC平分/ EBD , AF平行于BC, F是ED的中点求证:EG=AD五、多中点想到中位线1三角形中位线的性质(1) _____________________________________ 、任意四边形的中点四边形都是 __________ 平行四边形的中点四边形是 _____________________ ;矩形的中点四边形是 _______________ ;菱形的中点四边形是 _____________________ ;正方形的中点四边形是 ___________________ ;梯形的中点四边形是 __________________ ; 直角梯形的中点四边形是 _________________ ;等腰梯形的中点四边形是 _______________ 。

图形的中点问题

图形的中点问题

2012中考数学专题复习5图形的中点问题一.知识要点:线段的中点是几何图形中的一个特殊点,与中点有关的问题很多,添加适当的辅助线、恰当地利用中点是处理中点问题的关键。

涉及中点问题的几何问题,一般常用下列定理或方法:(1)直角三角形斜边上的中线等于斜边的一半;(2)三角形中位线定理;(3)等腰三角形三线合一的性质;(4)倍长中线,构造全等三角形(或平行四边形);(5)平行四边形的性质与判定.二.例题精选1、若一点是直角三角形斜边的中点或等腰三形底边的中点,则常过中点作中线,应用“直角三角形斜边上的中线等于斜边的一半”性质或“等腰三角形三线合一”的性质。

例1. 如图,已知△ABC中,∠B =90°,AB=BC,D在AB上,E在BC上,BD=CE , M是AC的中点,求证:△DEM是等腰直角三角形.提示:连结BM,证明ΔBDM≌ΔCEM,得DM=ME,∠DMB=∠EMC,则∠DME=,得ΔMDM为等腰直角三角形2、三角形中遇到两边的中点,常应用“三角形的中位线定理”,若有一点是三角形一边的中点或梯形一腰的中点,则常过中点作中位线。

例2.如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线分别交MN的延长线于E、F.求证:∠DEN=∠F.提示:连结AC,作AC中点G,连结MG,NG。

则MG=NG,MG∥BC,NG∥AD。

∴∠MGN=∠F ,∠GNM=∠DEN,∠MGN=∠GNM. ∴∠DEN=∠F.3、若有三角形的中线或过中点的线段,则通常加倍延长中线或过中点的线段,以构造两个三角形全等。

例3. 已知:如图2,AD为△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF提示:延长AD至G,使DG=AD,连结BG,则ΔBDG≌ΔCDA,∴AC=BG=BF4、遇到两平行线所截得的线段的中点时,常联想或构造“X字型”全等三角形.例4. 如图,正方形ABCD和正方形CGEF的边长分别是2和3,且点B,C,G在同一直线上,M是线段AE的中点,连结MF,则MF的长为.提示:延长AD、FM交于点H,则AH=EF=3,DH=1=DF,∴FH=MF=5、有关面积的问题中遇到中点,常用“等底等高的两个三角形面积相等”的性质。

中考数学 精讲篇 考点系统复习 第四章 三角形 方法技巧突破(二) “中点”之六大模型

中考数学 精讲篇 考点系统复习 第四章 三角形 方法技巧突破(二) “中点”之六大模型
方法技巧突破(二) “中点”之六大模型
“中点”模型秘诀: 中点问题常用性质及常见辅助线作法
1.多个中点或“平行+中点”―联―想→构造中位线; 联想
2.直角+斜边中点――→直角三角形斜边中线的性质; 3.等腰+底边中点―联―想→等腰三角形三线合一;
联想 4.同一边遇垂直+中点――→垂直平分线性质; 5.中线或与中点有关线段―联―想→倍长中线构造全等; 6.圆+弦(弧)的中点―联―想→垂径定理.
如图,∠ABC=∠ADC=90°.M,N 分别是 AC,BD 的中点,AC=10,
BD=8,则 MN 为
( A)
A.3
B.4
C.5
D.6
【思路点拨】连接 MB,MD,利用直角三角形斜边上的中线等于斜边的一 半可证 MB=MD,再由 ND,根据等腰三角形“三线合一”性质,得 MN⊥BD,在 Rt△BMN 中,利用勾股定理即可求解.
7 中点,过点 D 作 DE⊥AB 交 BC 的延长线于点 E,则 CE 的长为__ 3 __.
【思路点拨】根据勾股定理易求得 AB=10,则 BD=5,易证△ABC∽△EBD, 则 BC∶BD=AB∶(BC+CE),从而求得 CE 的长.
5.如图,在△ABC 中,AB=AC.∠A=120°,BC=6 cm,AB,AC 的垂直 平分线分别为 ME 与 NF,交 BC 边于点 M,N,则 NM 的长为__22__cm.
证明:如解图,延长 FD 到 G,使 DG=DF,连接 CG. ∵AD 是 BC 边的中线,∴BD=CD. 在△BDF 和△CDG 中,
BD= CD,
∠BDF=∠CDG, DF= DG, ∴△BDF≌△CDG(SAS),∴BF=CG,∠BFD=∠G.
∵AE=EF,∴∠EAF=∠EFA=∠BFD,

名师总结,初中几何学习辅助线“口诀”整理

名师总结,初中几何学习辅助线“口诀”整理

初中几何辅助线“口诀”大全及练习一初中几何常见辅助线口诀人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

线段和差及倍半,延长缩短可试验。

线段和差不等式,移到同一三角去。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

四边形平行四边形出现,对称中心等分点。

梯形问题巧转换,变为△和□。

平移腰,移对角,两腰延长作出高。

如果出现腰中点,细心连上中位线。

上述方法不奏效,过腰中点全等造。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆形半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

注意点辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

二、由角平分线想到的辅助线口诀:图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。

初中数学中点模型的构造及应用 (2)

初中数学中点模型的构造及应用 (2)

中点模型的构造及应用一、遇到以下情况考虑中点模型:任意三角形或四边形中点或与中点有关的线段出现两个或三个中点考虑三角形中线定理已知直角三角形斜边中点,可以考虑构造斜边中线已知等边、等腰三角形底边中点,可以考虑与顶角连接用“三线合一”如图,在∆ABC中,D为BC中点,延长AD∆EDB。

∆CFD。

常构造直角三角形斜边中线,然后再利用直角三D为AB中点,则有:12 CD AD BD AB ===(四)等腰三角形三线合一当出现等腰三角形时,常隐含有底边中点,将其与顶角连接,可构成三线合一。

在∆AC=BC?;(2)CD平分ACB∠?;(3)AD=BD?,(4)CD AB⊥“知二得二”:比如由()可得出(1)(4).也就是说,以上四条语句,任意选择两个作为条件,就可以推(五)中位线法当已知条件中同时出现两个及以上中点时,常考虑构造中位线;或出现一个中点,要求证明平行线段或线段倍分关系时也常考虑构造中位线。

如图,在∆ABC中,D,E分别是AB、AC边中点,则有DE BC,1DE BC2=。

三、练习(一)倍长中线法1.(2014秋?津南区校级期中)已知:在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF.2.(2017?湘潭)如图,在?ABCD 中,DE =CE ,连接AE 并延长交BC 的延长线于点F .(1)求证:△ADE ≌△FCE ;(2)若AB =2BC ,∠F =36°.求∠B 的度数3.(2017江西萍乡,15)如图,在△ABC 中,CD 是AB 边上的中线,E 是CD 的中点,过点C 作AB 的平行线交AE 的延长线于点F ,连接BF .(1)求证:CF =AD ;(2)若CA =CB ,试判断四边形CDBF 的形状,并说明理由.4.(2014?鄂尔多斯)如图1,在?ABCD 中,点E 是BC 边的中点,连接AE 并延长,交DC 的延长线于点F .且∠AEC =2∠ABE .连接BF 、AC .(1)求证:四边形ABFC 的是矩形;(2)在图1中,若点M 是BF 上一点,沿AM 折叠△ABM ,使点B 恰好落在线段DF 上的点B ′ 5.(=FC ,(2E 是BC(3上,且1.(2016.求2.(⊥BM ,垂足为M ,点5,求AC 的长;(2是△ABC 外一点,ED 并3.(2017?DF .连1.(2016?折叠后,23C.33D.62.(2015?乌鲁木齐,9)如图,将斜边长为4的直角三角板放在直角坐标系xOy 中,两条直角边分别与坐标轴重合,P 为斜边的中点.现将此三角板绕点O 顺时针旋转120°后点P 的对应点的坐标是()A .1-)B.3(1,-)C.2-()D.3(2,-2)3.(2017?新疆,22)如图,AC 为⊙O 的直径,B 为⊙O 上一点,∠ACB =30°,延长CB 至点D ,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积4.(2017?北京,22)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.5.(2015北京东城,23)如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA,BC的平行线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若AC=2DE,求sin∠CDB的值(四)等腰三角形三线合一1.(,∠A=30°,AB的垂直平分线l交D,的度数为()° B.45°° D.75°2.(的内接三角形,∠C=P是PB=AB,则PAA.5B.53 252D.533.(如图,等腰三角形ABC中,BD,(21.(BD=8,CD、G、HEFGH的周长是()C.20D.222.(是中线,AE是角平分线,CF⊥AB=5,________.3.(、G分别是BC、的面积是()4.(2017?天津,17)如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为______.5.(2014春?硚口区期末)如图,已知△ABC的中线BD、CE相交于点O、M、N分别为OB、OC的中点.(1)求证:MD和NE互相平分;(2)若BD⊥AC,EM=,OD+CD=7,求△OCB的面积.6.(2017?云南,20)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF 的周长为12,两条对角线的和等于7,求四边形AEDF 的面积S .7.(2017?长春)【再现】如图①,在△ABC 中,点D ,E 分别是AB ,AC 的中点,可以得到:DE∥BC ,且1DE BC 2(不需要证明) 【探究】如图②,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,判断四边形EFGH 的形状,并加以证明.【应用】在(1)【探究】的条件下,四边形ABCD 中,满足什么条件时,四边形EFGH 是菱形?你添加的条件是:__________.(只添加一个条件)(2)如图③,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,对角线AC ,BD 相交于点O .若AO =OC ,四边形ABCD 面积为5,则阴影部分图形的面积和为______.8.(2015?巴东县模拟)如图,在四边形ABCD 中,AB =DC ,E 、F 分别是AD 、BC 的中点,G 、H 分别是对角线(1(2)若AB =54,则当∠ABC +∠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有关中点的定理及辅助线
一、遇到中线想到线等、联想到三线合一
二、遇到中线想到面积等
例:用不同的方法把三角形的面积四等分
例:在图12—1至图12—3中,已知△ABC的面积为a.(1)如图12—1,延长△ABC的边BC到点D,使CD=BC,连结DA.若△ACD的面积为S1,则S1=______(用含a的代数式表示);(2)如图12—2,延长△ABC 的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连结DE.若△DEC的面积为
S2,则S2=__________(用含a的代数式表示);
(3)在图12—2的基础上延长AB到点F,使BF=AB,连结FD,FE,得到△DEF(如
图12—3).若阴影部分的面积为S3,则S3=__________(用含a的代数式表示),并运
用上述(2)的结论写出理由.
发现:
像上面那样,将△ABC各边均顺次延长一倍,连结所得端点,得到△DEF(如图
12—3),此时,我们称△ABC向外扩展了一次.可以发现,扩展一次后得到的△DEF的
面积是原来△ABC面积的
倍.
应用:要在一块足够大的空地上栽种花卉,工程人员进行了如下的图案设计:首先在△
ABC的空地上种红花,然后将△ABC向外扩展三次(图12—4已给出了前两次扩展的图
案).在第一次扩展区域内种黄花,第二次扩展区域内种紫花,第三次扩展区域内种蓝花.如
果种红花的区域(即△ABC)的面积是10平方米,请你运用上述结论求出:(1)种紫花
的区域的面积;(2)种蓝花的区域的面积.
三、遇到中线想到直角三角形中斜边上的中线等于斜边的一半
例:如图BD、CE是△ABC的两条高,M、N分别是BC和ED的中点。

求证:MN⊥ED
练习:(1)、在三角形ABC中,AB=AC,BD平分角ABC,过点D做DE垂直于BD交BC于点E,
求证:CD=1/2BE
(2)、如图,过矩形ABCD的顶点A作一直线,交BC的延长线于点E,F是AE的中点,连接FC、FD
求证:∠FDA=∠FCB
四、遇到中线加倍延
例:已知:如图,AD为△ABC的中线,点E在AC边上,BE交AD于点F,且AE=EF
求证:AC=BF
练习:(1)已知△ABC中,AD是BC边上的中线,分别紧AB边,AC边为直角边各向外作等腰直角三角形求证:EF=2AD
(2)已知:如图,AB=BC=CE,AD为△ABC中BC边的中线,求证:∠1 =∠2
(3)BC平分∠EBD,AF平行于BC,F是ED的中点求证:EG=AD
D
E
A
B
C
F
图12
M O F E D B A C N O F E A D C B H
G O F E A D C B D l A C A'C'D'E A D F A 五、多中点想到中位线
1、三角形中位线的性质
(1)、任意四边形的中点四边形都是___________;平行四边形的中点四边形是_____________; 矩形的中点四边形是_______________;菱形的中点四边形是__________________;
正方形的中点四边形是__________________;梯形的中点四边形是_________________; 直角梯形的中点四边形是________________;等腰梯形的中点四边形是______________。

(2)O 是ΔABC 所在平面内一动点,连接OB ,OC ,并将AB ,OB ,OC ,AC 的中点D ,E ,F ,G 依次连接,如果DEFG 能构成四边形:(1)如图,当O 点在ΔABC 内部时,证明四边形DEFG 是平行四边形。

(2)当O 点移动到ΔABC 外部时,(1)的结论是否还成立?画出图形并说明理由。

(3)若四边形DEFG 为矩形,O 点所在位置应满足什么条件?试说明理由。

(3)如图在四边形ABCD 中,对角线AC 、BD 交于点O ,E 、F 分别是AB 、CD 的中点,且AC=BD ,
求证:OM=ON.
(4)已知AD 是△ABC 的中线,E 是AD 的中点,求证:FC=2AF.
(5)已知,如图,AD 为△ABC 边的高,∠B=2∠C ,M 为BC 的中点.求证:DM=2
1AB
2、梯形中位线的性质
(1)、已知等腰梯形的中位线和腰长相等,都等于8cm ,这个等腰梯形的周长为( )
A 、16 cm
B 、32 cm
C 、24 cm
D 、40 cm
(2)、已知四边形ABCD 是高为10的等腰梯形,AB=DC ,AD ∥BC ,又AC ⊥BD ,求中位线EF 的长。

1、在梯形ABCD 中,AD ∥BC ,E 、F 分别是AB 、CD 的中点,E 、F 分别交BD 、AC 于点G 、H ,求证:
GH=2
1(BC-AD). (3)直线l 过口ABCD 的顶点B ,AA ’⊥l ,CC ’⊥l ,DD ’⊥l,
试证明AA ’+ CC ’= DD ’。

相关文档
最新文档