谈谈等积式的证明

合集下载

等积式证明的常用方法

等积式证明的常用方法

等积式证明的常用方法等积式的证明是初中几何非常常见的题型,同时也是令许多学生头疼的一种题型,特别是在一些图形复杂,线段较多的题目中,往往令人眼花瞭乱无从下手。

等积式的证明有没有技巧呢?其实只要我们冷静分析,我们将会发现许多等积式的证明也是有规律可循的。

常用方法一:三点定形法例1如图:在Rt△ABC中,°于D,E为AC的中点,ED的延长线交CB 的延长线于点P,求证:.分析:先把转化为比例式,在比例式左边线段PD、PB的端点分别为点P、D、B,由点P、D、B可确定△PBD,同理由比例式右边的线段PC、PD的端点P、C、D可确定△PCD. 所以要证明等积式,只需要证明比例式,要证明,由三点定形法只需要证明△∽△PCD即可.证明:°°又AC的中线,°又°°°又△∽△PCD注:三点定形法证明等积式的一般步骤:1.先把等积式转化为比例式;2.观察比例式的线段确定可能相似的两个三角形;3.再找这两个三角形相似所需的条件.常用方法二:找相等的量(比、线段、等积式)替换例2 如图:已知梯形ABCD中,AB∥CD,AC、BD交于点O,BE∥AD交AC的延长线于点E,求证:分析:要证明,只需要证明即可,但OA、OC、OE在一条直线上,不能直接用三点定形法来证明,但可以用中间比。

由题意可知:,从而可证.证明:∵BE∥AD又∵AB∥CD例3 已知:等腰△ABC中,于D,CG∥AB,BG分别交AD、AC于E、F,求证:.分析:在中,线段BE、EF、EG在一条直线上,但可以找相等的线段来替换,由等腰三角形性质可知,AD为BC的垂直平分线,故,从而转化为证,也就是证它们确定的△CEF和△GEC相似.证明:连结EC,AD垂直平分BC,即∥AB又∴△CEF∽△GEC例4 如图,已知CE是Rt△ABC斜边AB上的高,在EC的延长线上取一点P,连结AP,垂足为G,交CE于D,求证:.分析:在中,线段CE、PE、DE在一条直线上无法直接用“三点定形法”来证,并且也找不到相等的比、线段来替换,但我们可以用相等的等积式来替换,可以先证:,再证.证明:°,°又°°又△AEC∽△CEB°,°°在△PAE中,°°又°△PEA∽△BED注:当要证明的比例式中的线段在同一条直线上时,可以用相等的比、相等的线段、相等的等积式来替换相应的量,把看似无路可走的题目盘活,从而达到“车到山前疑无路,柳暗花明又一村”的效果.常用方法三:利用相似三角形的性质例5 如图,Rt△ABC中,°,于点D,的平分线AE交CD于点F,交CB于点E.求证:.分析:观察中的四条线段,发现AF、AE在一条直线上,而且没有相等的量(比、线段、等积式)可替换,但AF、AE分别是△ACD和△ABC的内角平分线,CD、CB也是△ACD和△ABC的边,所以只要证明△ACD∽△ABC即可.证明:°又°又△CDA∽△BCA注:相似三角形的对应高的比、对应中线的比、对应角平分线的比都等于相似比,我们可以利用这些性质来证明有关的等积式往往会起到事半功倍的效果!。

教师风采大赛课题:相似三角形中等积式的证明技巧(教师版)

教师风采大赛课题:相似三角形中等积式的证明技巧(教师版)

教学内容概要证明等积式常用的方法是添平行线或寻找相似三角形,本节课主要探讨如何用相似的方法证明等积式。

一,直接寻找相似三角形等积式转换成等比式,用三点定形法寻找三角形,证明三角形相似【例1】如图,△ABC中,∠ACB=90°,D是AB的中点,过D作AB的垂线交AC于E,交BC的延长线于F,求证:DC2=DE⋅DF证明:△DCE与△DCF相似二,等量代换法等积式先转换成等比式,寻找可能相似的三角形,当找不到三角形或无法证明三角形相似,需要根据已知条件找到与原比例式中某条线段相等的一条线段替换,重新寻找三角形。

【例2】如图在△ABC中,AB=AC,AD是中线,P是AD上一点,过点C作CF∥AB,延长BP交AC于点E,交CF与点F,证明:BP2=PE⋅PF联结PC,可证明PC=PB,证明△PCE与△PCF相似三,等比代换法当用前两种方法寻找不到可以代换的线段时,可考虑用等比代换法,即考虑利用第三组线段的比为比例式搭桥,然后再用三点定形法确定三角形。

【例3】如图,△ABC中,AD、BE分别是BC、AC上的高,过D作AB的垂线交AB于F,交BE于G,交AC 延长线于H,求证:DF2=FG⋅FH先证明△AFD与△BFD相似,得到等积式DF2=AF⋅BF,再证明△AFH与△BFG相似【练习】1、如图,△ABC中,点DE在边BC上,且△ADE是等边三角形,∠BAC=120°求证:(1)AB⋅AC=AD⋅BC (2)DE2=DB⋅CE(2)用AD与AE替换DE,证明△ABD与△ACE相似2、如图,正方形ABCD中,点E、F分别是边CB、DC延长线上的点,且BE=CF,联结AE、FB,FB的延长线交AE于点M,求证:(1)△BEM ∽△BFC (2)CF2=FB⋅ME(1)先证明△ABE与△BCF全等,得到∠E=∠F,可证相似(2)用BE替换CF,证明△CBF与△BME相似3、如图,在△ABC中,AB=AC,点D、E分别在边AC、AB上,DA=DB,BD与CE相交于点F,∠AFD=∠BEC 求证:(1)AF=CE (2)BF2=EF⋅AF(1)证明△ABF与△ACE全等(2)用(1)中结论替换AF为CE,再替换BF=AE,证明△AEF与△ACE相似4、已知,如图,△ABC 是等边三角形,过AC 边上的点D 作DG ∥BC ,交AB 于点G ,在GD 的延长线上取点E ,使DE =DC ,连接AE 、BD(1)求证:△AGE ≌ △DAB (2)延长BD 交AE 于点M ,求证:BG 2=ME ⋅AE(1)SAS(2)BG=CD=DE ,证明△MED 与△ADE 相似5、如图,在△ABC 中,正方形EFGH 内接于△ABC ,点E 、F 在边AB 上,点G 、H 分别在BC 、AC 上,且FB AE EF ⋅=2(1)求证:∠C=90° (2)求证:AH ⋅CG=AE ⋅FB(1)证明△AEH 与△BFG 相似,可得∠A 与∠B 互余(2)可证△HCG 与△BFG 相似,可得FB :CG=BG :HG=BG :GF ,即证明△AHE 与△BFG 相似即可6、如图,AD是△ABC中∠BAC的平分线,EF是AD的垂直平分线,求证:FD2=FC FB联结AF,替换FD,证明△FCA与△AFB相似7、如图,在△ABC中,∠ACB=90°,AC=BC,点M、N分别在边AC、BC上,将△MCN沿直线MN折叠,点C 落在AB边上的点P,过点A作AD\\BC交CP的延长线于D求证:(1)∠D=∠PMN (2)PA:PB=MC:CN(1)△MCE与△ACD相似可证角等(或利用等角的余角相等)(2)替换等比式PA:PB=AD:BC,由BC=AC再替换相等线段,证明△ADC与△CNM相似8、已知在△BAC中,AD是角平分线,AE是外角平分线,交BC的延长线于点E,T为DE的中点求证:TE2=BT⋅CT可证∠DAE=90°,即T是直角三角形斜边中点,可得AT=DT=TE,即证△ABT与△ACT相似9、如图,在△ABC中,AB=AC,AD⊥BC,BE⊥AC,EG⊥BC,L是AF的中点,求证:CD2=EG⋅DL 联结EL,ED,将CD替换成DE,证明△DEG与△DEL相似。

等积式的证明(初中数学)

等积式的证明(初中数学)

等积式的证明原题呈现:如图1,已知D,E分别是△ABC的边AB,AC上的点,且△ADE=△C.求证:AD·AB=AE·AC.(华师大九年级上册P74例8)图1思路分析:根据比例的基本性质,欲证AD·AB=AE·AC,只需证明AD AEAC AB=,而相似三角形的对应边成比例,所以只需证明由这四条线段所确定的两个三角形相似即可.由线段AD,AE确定的三角形是△AED,由线段AB,AC确定的三角形是△ABC,根据题意和图形可知这两个三角形已有两组对应角相等,于是问题得证.(同学们自己完成证明过程)方法引荐:上述证明等积式的方法我们称之为“三点定形法”,一般步骤是:(1)把等积式转化为比例式;(2)观察成比例的四条线段确定可能相似的两个三角形;(3)找出使这两个三角形相似的条件.若在步骤(2)中,发现四条线段不在两个三角形中,我们可以用相等的量替换其中一个或两个量,包括等比替换,等线段替换,等积替换.变式探究一、等比替换例1 如图2,在四边形ABCD中,AD△BC,对角线AC,BD相交于点O,过点B作BE△CD,交CA的延长线于点E.求证:OC2=OA·OE.图2分析:等积式中的三条线段不能确定两个三角形,但将等积式转化成比例式OC OEOA OC=后,可根据两组平行线得到一个与两个比都相等的比OBOD,利用等比替换得证.证明:因为AD△BC,所以OC OB OA OD=.因为BE△CD,所以OE OB OC OD=.所以OC OEOA OC=,即OC2=OA·OE.二、等线段替换例2 如图3,在等腰三角形ABC中,AB=AC,AD△BC于点D,CG△AB,连接BG分别交AD,AC于点E,F.求证:BE2=EF·EG.图3分析:等积式中的三条线段不能确定两个三角形,但可根据等腰三角形的对称性得CE=BE,则等积式转化为CE2=EF·EG.由新等积式的三条线段可确定△CEF和△GEC,设法证明这两个三角形相似即可.证明:如图3,连接CE.因为AB=AC,AD△BC,所以△ABC=△ACB,AD垂直平分BC.所以BE=CE.所以△EBC=△ECB.所以△ABE=△ECF.因为CG△AB,所以△ABE=△EGC.所以△ECF=△EGC.又因为△FEC=△CEG,所以△CEF△△GEC.所以CE EFGE EC=,即CE2=EF·EG.所以BE2=EF·EG.三、等积替换例3 如图4,CE是直角三角形ABC的斜边AB上的高,在EC的延长线上任取一点P,连接AP,过点B作BG△AP于点G,交CE于点D.求证:CE2=PE·DE.图4分析:等积式中的三条线段不能确定两个三角形,但由三角形相似可得到一个与等号两边的乘积式都相等的乘积式AE·BE,利用等积替换得证.证明:因为△ACB=90°,CE△AB,所以△ACE+△BCE=△ACE+△CAE=90°.所以△CAE=△BCE.所以Rt△ACE△Rt△CBE.所以CE AEBE CE=,即CE2=AE·BE.因为BG△AP,所以△PGD=△DEB=△PEA=90°.因为△1=△2,所以△P=△3.所以Rt△AEP△Rt△DEB.所以PE AEBE DE=,即PE·DE=AE·BE.所以CE2=PE·DE.。

15.比例式、等积式的常见证明方法

15.比例式、等积式的常见证明方法

典例精解

类型三:找中间比利用等积式代换
如图,在△ABC中,已知∠BAC=90 °,AD⊥BC于D,E为直角边AC 的中点,过D、E作直线交AB的延长线于F.求证:AB·AF=AC·DF.
A
1
E
B
3
2D
C
F
如图,在△ABC中,已知∠A=90°,AD⊥BC于D,E为直角边AC的 中点,过D、E作直线交AB的延长线于F.求证:AB·AF=AC·DF.
A
1
E
B
3
2D
C
F
证明:∵∠A=90°,AD⊥BC ∴∠1=∠C=90°-∠ABC 而∠BDA=∠ADC =90° ∴△ABD∽△CAD
∴ AB BD AC AD
∵AD⊥BC,E为直角边AC中点 ∴DE=EC ∴∠3=∠C 又∵∠3=∠2,∠1=∠C ∴∠1=∠2 而∠F是△FBD与△FDA的公共角 ∴△FBD∽△FDA
初中数学知识点精讲课程
比例式、等积式的常见证明方法
比例式、等积式的证明是初中几何非常常见的题型,同时也是令许多学 生头疼的一种题型,特别是在一些图形复杂、线段较多的题目中,往往令人 眼花瞭乱无从下手.
等积式的证明有没有技巧呢?其实只要我们冷静分析,我们将会发现许 多等积式的证明也是有规律可循的。
典例精解
F
∴∠CDF=∠E
A
B
∴△DCF∽△EAD E
∴ DC CF AE AD
变式题
如图,△ABC 中,∠BAC=90°,M 为 BC 的中点,DM⊥BC 交 CA 的延长
线于 D,交 AB 于 E,求证:AM2=MD·ME.
D
证明:
∴∠D=∠B=90°-∠C
∵∠BAC=90°,

比例式等积式的证明

比例式等积式的证明

4、如图,在△ABC中,已知∠BAC=90 °,AD⊥BC于D,E为直角边AC的中点, 过D、E作直线交AB的延长线于F.求证:AB·AF=AC·DF.
A
E
B D
C
F
证明线段比例式或等积式时,如果按类型一、 类型二的方法仍无法证明,可以尝试将等积 式化为比例式,结合图形找到能够与比例式 中的两个比分别相等的中间比,从而证明所 求
3、 如图,△ABC中,AB=AC,AD是中线,P是 AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE·PF.
A
F E
P
BDBiblioteka C运用类型一的方法证明线段的比例式或等积式时,如果相关的线段不在某两个三角 形中,则需要将其中的某条线段用与之相等的另一条线段替换
,再按类型一 的方法证明.
比例式、等积式的常见证明方法
学习目标:灵活运用三点定型法 证明相似中的比例式、等积式
如图,□ABCD 中,E 是 AB 延长线上的一点,DE 交 BC 于 F.求证:
DC CF . AE AD
证明线段比例式或等积式时,通常先找所涉及的线段位于哪两个 三角形中,再证明所属的两个三角形相似。
二、学以致用 1、如图,在平行四边形ABCD中,点E在边BA的延长线上,CE交AD于F, ∠ECA=∠D。
求证:AC·BE=CE·AD.
2、如图,△ABC中,BD、CE是高,EH⊥BC于H,
交BD于G,交CA的延长线于M.求证:HE2= HG·MH.

等积式的证明

等积式的证明

例2 如图, □ ABCD中,E为边AD延长线上的 一点,BE交CD于F.求证:CD·BC=AE·FC.
分析: 欲证 CD·BC=AE·FC 需证
CD CF AE BC
AB CF AE BC
即证△ABE∽△CFB
例2 如图, □ ABCD中,E为边AD延长线上的 一点,BE交CD于F.求证:CD·BC=AE·FC.
证明:∵ AB∥CD D C ∴ ∠C=∠A O ∵ AO=OB,DF=FB E ∴ ∠A= ∠B, ∠B= ∠FDB ∴ ∠C= ∠FDB A F 又 ∵ ∠DEO= ∠DEC 等积式化比例式, ∴ △EDC∽△EOD ∴
ED EO 即ED2=EO · EC EO EC
B
横找竖找找相似。
三点定型
证明:∵四边形ABCD是平行四边形 ∴AB∥CD,AB=CD,∠A= ∠C ∴ △ABE∽△CFB AB CF ∴
AE BC
∴ CD CF
AE
BC
即CD·BC=AE·FC
相似若是不好找, 等量代换试一试.
例3 如图,梯形ABCD中,AB∥DC,AE=BE,直 线DE分别与对角线AC,直线BC相交于M和N.求证: MD·NE=ME·ND.
相似三角形应用
——等积式的证明方法
永昌县第七中学
魏学琴
例1如图,AB∥CD,AO=OB,DF=FB,DF 交AC于E.求证:ED2=EO· EC. 分析:欲证 ED2=EO·EC 需证
ED EC = EO ED
A D O E B C
F
即证△EDO∽△ECD
例1如图,AB∥CD,AO=OB,DF=FB,DF 交AC于E,求证:ED2=EO· EC.
分析:欲证MD·NE=ME·ND 需证

九年级数学下册第二十七章 专题:比例式、等积式的3种证明方法

九年级数学下册第二十七章   专题:比例式、等积式的3种证明方法

(2)EF·CG=DF·BG. 证明:在△AEF 和△ABG 中, ∠AED=∠B,∠EAF=∠BAG, ∴△A E F∽△A B G.∴BEGF =AAGF . 由(1)知△A DF ∽△A CG.∴DCGF=AAGF .
∴E F =DF .∴E F ·CG=DF ·B G.
BG CG
∴△A B F ∽△CB E .∴AB BC=ACFE .
◆类型二 等线段代换法 2.【2022 新课标·综合性】如图,AB 为⊙O 的直径, BC,CD 均为⊙O 的切线,射线 CD 交 BA 的延长线于 点 E,连接 AD,BD,OC.求证:ED·CD=OB·BE.
证明:如图,连接 DO, ∵BC,CE 为⊙O 的切线, ∴∠E DO=∠E B C=90°,B C=CD.
又∵∠E =∠E ,
∴△E OD∽△E CB . ∴EBDE =OBCD. ∴E D·B C=OD·B E . ∵OD=OB ,B C=CD,∴E D·CD=OB ·B E .
◆类型三 等比(或等积)代换法 3.如图,已知在△ABC 中,∠ACB=90°,点 D 在边 BC 上,CE⊥AB,CF⊥AD,E、F 分别是垂足,连接 E F.求证:AF ·A D=A E ·A B . 证明:∵∠A CB =90°,CF ⊥A D, ∴∠A CD=∠A F C.又∠CA D=∠FA C, ∴△A CD∽△A F C.∴A C=A D.∴A C2=A F ·A D.同理可
AF AC 证△ACE∽△ABC,∴AC=AE,即 AC2=AE·AB.
AB AC ∴A F图,在△ABC 中,点 D,E 分别在边 AB,AC 上, ∠AED=∠B,AG 分别交线段 DE,BC 于点 F,G,且 A D∶A C=DF ∶CG.求证: (1)AG 平分∠BAC; 证明:∵∠DA E +∠A E D+∠A DE =180°, ∠B A C+∠B +∠C=180°,∠A E D=∠B , ∴∠ADE=∠C.在△ADF 和△ACG 中, A D∶A C=DF ∶CG,∠A DE =∠C, ∴△ADF∽△ACG.∴∠DAF=∠CAG.∴AG 平分∠BAC.

相似椎体模型总结2(比例式、等积式的常见证明方法)

相似椎体模型总结2(比例式、等积式的常见证明方法)

相似椎体模型总结2(比例式、等积式的常
见证明方法)
相似椎体模型总结2(比例式、等积式的常见证明方法)
一、比例式证明方法
比例式证明方法是通过比较两个相似椎体的边长或高度之比来
证明它们相似的方法。

常见的比例式证明方法包括以下几种:
1. 比较边长:首先,我们可以比较两个相似椎体的底面边长之
比和高度之比。

如果它们的比值相等,即两个椎体的底面边长之比
等于高度之比,那么可以得出它们相似的结论。

2. 比较斜边长:有时候,我们可以通过比较两个相似椎体的斜
边长之比来证明它们相似。

如果两个椎体的斜边长之比相等,那么
可以说明它们相似。

3. 比较面积:除了边长之比,我们还可以通过比较两个相似椎
体的底面积或侧面积之比来证明它们相似。

如果它们的面积比相等,则可以推断出它们相似。

二、等积式证明方法
等积式证明方法是通过比较两个相似椎体的体积来证明它们相似的方法。

常见的等积式证明方法包括以下几种:
1. 比较体积:我们可以比较两个相似椎体的体积之比来判断它们是否相似。

如果两个椎体的体积比相等,那么可以得出它们相似的结论。

2. 比较高度:有时候,我们可以通过比较两个相似椎体的高度来判断它们是否相似。

如果两个椎体的高度相等,则可以说明它们相似。

总结:在证明相似椎体模型时,我们可以使用比例式证明方法或等积式证明方法。

比例式证明方法是通过比较边长、斜边长或面积之比来判断相似性,而等积式证明方法则是通过比较体积或高度来判断相似性。

根据具体情况选择合适的证明方法,能够简化证明过程,同时避免法律复杂性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1:
已知:如图1, 中, ,AB的垂直平分线交AB于D,交BC延长线于F。
求证:
分析:我们将此等积式变形改写为比例式得: ,由等式左边得到 ,由等式右边得到 ,这样只要证明这两个三角形相似就可以得到要证的等积式了。
二、若由求证的等积式中找不到三角形或找到的三角形不相似,则需要进行等线段代换或等比代换或等积代换。
AB是圆O直径,CD是切线
中,

同理可证
(等积代换)证毕
希望同学们在做这类题目时,注意研究它们的这些规律
例2:
已知:如图2,平行四边ABCD中,E是CB延长线上一点,DE交AB于F。
求证:AD·AB=AF·CE
分析:将等积式改写成比例式得:
,但AD、AF在 中,CE、AB不在同一个三角形中,考虑到平行四边形ABCD中,AB=CD,可证 ~ 。
证明: 在平行四边形ABCD中

(等线段代换)
即:AD·AB=AF·CE
例3:
已知:如图3,B是圆的弦,DE切圆O于C, 于D, 于E, 于F。
求证:
分析:等积式中的四条线段没有分布在两个三角形中,也无相等的线段进行代换,故考虑能否使用等比代换,需找两套相似,得到两组比例式。
证明:连结AC、BC(构造弦切角定理条件)
DE切圆O于C


同理可证
(等比代换)
在这时用到了等比代换。在有些题目中还可能用到等积代换.
初中平面几何中,比例式或等积式的证明问题是一种常见的问题。因为这种问题变化多端,同学们常常感到困难。但是,一旦我们掌握了解决这类问题的基本规律,就能找到解,先看能否找到相似三角形。
等积式可根据比例的基本性质改写成比例式,在比例式各边的四个字母如有三个不重复的字母,就可找出相似三角形。
例4:
已知:如图4,AB是圆O直径,CD切圆O于B,AC交圆O于E,AD交圆O于F。
求证:AE·AC=AF·AD
分析:若边结EF可看出AE、AF在 中,AC、AD在 中,但无条件可以证明这两个三角形相似,故考虑其它方法。利用直径上的圆周角是直角及切线性质,可得到两套相似 ,从而可考虑等积代换。
证明:连结BE、BF
相关文档
最新文档