微机械陀螺仪的基本工作原理、主要特点及应用情况

合集下载

2024-微机械陀螺简述,微惯性技术

2024-微机械陀螺简述,微惯性技术
目前,微机械陀螺根本都是振动式的,因此本文将着 重对这类陀螺进行介绍。振动式微机械陀螺主要由支撑框 架、谐振质量块,以及鼓励和测量单元几个局部构成。
LOGO
1.2 微机械陀螺特点
MEMS陀螺仪是利用 coriolis 定理,将旋转物体的角速度转换成 和角速度成正比的直流电压信号,其核心部件通过掺杂技术、光刻技 术、腐蚀技术、LIGA技术、封装技术等批量生产的,它主要特点是
振动平板结构 振动梁结构 振动音叉结构 加速度计振动结构
振动平板结构 振动梁结构 振动音叉结构
按加工方式
体微机械加工 表征微机械加工 LIGA(光刻、电铸和注塑)
LOGO
1.3 微机械陀螺分类
按驱动方式
压电式 静电式 电磁式


按检测方式
压电检测 电容检测
械 陀
压阻式检测

光学检测

隧道效应检测
类 闭环模式
4. 测量范围大,一些MEMS 陀螺仪测量范围可高达数千°/s
缺点: 目前,各种微机械陀螺的角速度测量精度相对较低,
漂移较大。
LOGO
1.3 微机械陀螺分类
按振动结构






按材料

旋转振动结构 线性振动结构
硅材料 非硅材料
振动盘结构陀螺 旋转盘结构陀螺
正交线振动结构 非正交线振动结构
单晶硅 多晶硅 石英 其它
速率陀螺
按工作模式
开环模式
速率积分陀螺
整角模式
LOGO
2、微机械陀螺根本原理
振动式微机械陀螺根本原理 柯氏加速度及柯氏力
LOGO
2.1 振动式微机械陀螺根本原理

新型陀螺仪的工作原理及应用

新型陀螺仪的工作原理及应用

新型陀螺仪的工作原理及应用在现代科技的飞速发展中,陀螺仪作为一种重要的传感器,发挥着不可或缺的作用。

从航空航天到智能手机,从汽车导航到工业自动化,陀螺仪的应用无处不在。

而新型陀螺仪的出现,更是为众多领域带来了新的突破和可能。

要理解新型陀螺仪的工作原理,首先得从传统陀螺仪说起。

传统的机械陀螺仪是基于陀螺的定轴性和进动性来工作的。

简单来说,就是一个高速旋转的陀螺,其旋转轴在没有外力作用时,始终保持固定的方向;当受到外力作用时,会产生进动现象,从而可以感知物体的转动。

然而,这种机械陀螺仪存在体积大、重量重、精度有限以及对环境敏感等缺点。

新型陀螺仪则克服了这些问题,其中比较常见的有光学陀螺仪和微机电系统(MEMS)陀螺仪。

光学陀螺仪主要包括激光陀螺仪和光纤陀螺仪。

激光陀螺仪利用了萨格纳克效应,通过测量两束沿相反方向传播的激光束的光程差来感知旋转。

当陀螺仪发生旋转时,两束光的传播路径会发生变化,导致光程差的产生,通过检测这个光程差就能确定旋转的角速度。

光纤陀螺仪的工作原理与激光陀螺仪类似,只不过它使用的是光纤来传输光信号。

由于光纤具有柔软、抗干扰能力强等优点,光纤陀螺仪在实际应用中具有更大的灵活性。

MEMS 陀螺仪则是基于微机械加工技术制造的。

它通常由一个可移动的质量块和相应的检测电路组成。

当陀螺仪发生旋转时,质量块会受到科里奥利力的作用,产生微小的位移或振动。

通过检测这个位移或振动的变化,就可以推算出旋转的角速度。

新型陀螺仪在众多领域都有着广泛的应用。

在航空航天领域,高精度的陀螺仪对于飞机、卫星和导弹的导航和姿态控制至关重要。

新型陀螺仪的小型化和高精度特点,使得飞行器能够更加精确地定位和导航,提高飞行的安全性和稳定性。

在智能手机中,陀螺仪可以实现屏幕的自动旋转、游戏中的体感操作以及增强现实(AR)和虚拟现实(VR)应用中的头部追踪等功能。

例如,当我们在看手机图片或者阅读文档时,只要转动手机,屏幕内容就能自动跟着旋转,这就是陀螺仪在起作用。

手机陀螺仪原理

手机陀螺仪原理

手机陀螺仪原理手机陀螺仪是一种常见的传感器,它在现代智能手机中起着重要的作用。

它使用了一种被称为陀螺效应的物理原理,能够感知设备在空间中的旋转和改变方向的动作。

本文将介绍手机陀螺仪的原理和工作方式,并探讨其在手机中的应用。

一、陀螺效应的基本原理陀螺效应是指当一个旋转体发生姿态变化时,它会生成一个相对于外部旋转坐标系变化的力矩。

简单来说,当一个旋转体发生旋转或改变方向时,会受到一种力的作用,使其保持平衡。

二、手机陀螺仪的工作方式手机陀螺仪通常采用微机电系统(MEMS)技术制造,利用微小的机械结构感知设备的旋转动作。

它由一个或多个微小的振动结构组成,当设备发生旋转时,这些振动结构会产生微小的力矩。

具体来说,陀螺仪通常由一个集成在芯片上的微小质量块和微细结构组成。

当设备旋转时,芯片内的质量块会发生微小的位移,这个位移会被检测和测量,从而得出设备在空间中的旋转角度和方向。

三、手机陀螺仪的应用手机陀螺仪在智能手机中应用广泛,其中最常见的是屏幕自动旋转和陀螺仪游戏。

1. 屏幕自动旋转陀螺仪可以感知手机的旋转方向,根据设备的朝向,智能手机可以自动调整屏幕的显示方向。

这对于用户在横屏和竖屏之间切换时会带来很大的便利。

2. 陀螺仪游戏陀螺仪可以实时感知用户手机的旋转动作,这为开发游戏提供了更多的交互方式。

许多陀螺仪游戏可以通过旋转手机来控制游戏角色的移动、转向或视角变化,这增加了游戏的趣味性和创新性。

除了上述的应用外,手机陀螺仪还可以用于指南针功能、姿态跟踪和虚拟现实等领域。

它的高精度和快速响应使其成为现代智能手机不可或缺的组成部分。

综上所述,手机陀螺仪利用陀螺效应的原理,通过微小振动结构感知设备的旋转动作。

它在智能手机中有各种应用,包括屏幕自动旋转、陀螺仪游戏和姿态跟踪等。

手机陀螺仪的发展为用户提供了更多的交互方式,并丰富了手机的功能和体验。

MEMS陀螺仪概况介绍

MEMS陀螺仪概况介绍

1、微机械陀螺仪的工作原理MEMS陀螺仪利用科里奥利力(Coriolis force,又称为科氏力)现象。

科氏力是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。

科里奥利力来自于物体运动所具有的惯性,在旋转体系中进行直线运动的质点,由于惯性的作用,有沿着原有运动方向继续运动的趋势,但是由于体系本身是旋转的,在经历了一段时间的运动之后,体系中质点的位置会有所变化,而它原有的运动趋势的方向,如果以旋转体系的视角去观察,就会发生一定程度的偏离。

2、微机械陀螺仪的性能参数MEMS陀螺仪的重要参数包括:分辨率(Resolution)、零角速度输出(零位输出)、灵敏度(Sensitivity)和测量范围。

这些参数是评判MEMS陀螺仪性能好坏的重要标志,同时也决定陀螺仪的应用环境。

分辨率是指陀螺仪能检测的最小角速度,该参数与零角速度输出其实是由陀螺仪的白噪声决定。

这三个参数主要说明了该陀螺仪的内部性能和抗干扰能力。

对使用者而言,灵敏度更具有实际的选择意义。

测量范围是指陀螺仪能够测量的最大角速度。

不同的应用场合对陀螺仪的各种性能指标有不同的要求。

3、微机械陀螺仪的结构MEMS陀螺仪的设计和工作原理可能各种各样,但是主要都采用振动部件传感角速度的概念。

绝大多数的MEMS陀螺仪依赖于相互正交的振动和转动引起的交变科里奥利力。

图3所示为振动陀螺的动力学系统的简单结构示意图。

该系统为2-D的振动系统,有两个正交的振动模态。

其中一个振动模态为质量块在x 方向振动,振动频率为。

另一个振动模态为质量块在y方向振动,振动频率为。

与的值比较接近。

工作时,驱动质量块使之在x轴上以接近于的频率(驱动频率)振动,如果振动系统以角速度绕Z轴转动,则会产生一个沿Y轴方向的科里奥利力,从而使得质量块在Y轴方向上产生频率为的振动响应,通过测试Y轴方向的运动就能完成角速度的检测。

一般的MEMS陀螺仪由梳齿结构的驱动部分(图4)和电容板形状的传感部分(图5)组成,基本结构如图6所示。

微机械MEMS陀螺仪原理和几大公司的基本工艺流程

微机械MEMS陀螺仪原理和几大公司的基本工艺流程

微机械MEMS陀螺仪原理:目前,MEMS陀螺仪主要以振动式为主,振动式陀螺仪主要由支撑框架、谐振质量块,以及激励和检测单元几个部分构成。

驱动与检测方式以静电驱动、电容检测最为常见。

检测原理是利用柯氏效应(Coriolis)把各轴的角速率转换成谐振质量块的位移,从而引起检测电容的变化,通过电容变化量可以换算出角速率或者角加速度。

以一个单轴MEMS陀螺仪为例,探讨最简单的工作原理(图4)。

两个正在运动的质量块向相反方向做连续运动,如蓝色箭头所示。

只要施加一个平行于纸平面的角速率,如红色箭头所示,就会产生一个与质量块运动方向垂直的柯里奥利力,如黄色箭头所示。

产生的柯里奥利力使质量块发生位移,位移大小与所施加的角速率大小成正比。

这个位移将会在质量块的梳齿电极和固定电极之间引起电容变化,因此,在MEMS陀螺仪输入部分施加的角速率被转化成一个专用电路可以检测的电参量。

图4MEMS振动式陀螺仪原理分析和评价陀螺的性能,需要制定一系列的衡量准则,为其应用提供一定的参考依据。

总体而言,表征陀螺性能的主要指标有:标度因数稳定性、漂移稳定性、随机游走、量程和成本等等。

三、主流MEMS陀螺仪厂商工艺:3.1ADI iMEMS制造工艺:美国ADI公司的MEMS惯性传感器性能达到军用战术级别,其著名的iMEMS工艺是MEMS 和标准IC工艺实现单片混合集成的成功典范,制造有ADXL系列加速度计、ADXRS系列陀螺仪等产品。

如图5所示,是ADI的ADXRS150陀螺仪。

图5ADXRS150陀螺仪ADI iMEMS是一种Interleaved-CMOS工艺,如图6所示,其特点是在CMOS制造流程过程中插入MEMS器件的制作工艺,这些MEMS工艺不会影响到CMOS电路的性能。

iMEMS制造工艺的基本步骤是:1、首先是从CMOS工艺起始,制作前段工艺的MOS晶体管,包括N阱、MOS管的源极、漏极和发射极,并且制作与MEMS微结构连接的n+区域;2、沉积氮化硅和BPSG保护电路制作区域,但这些薄膜要从MEMS结构制作区域去除;3、在MEMS结构区域,沉积和刻蚀钝化层氮化硅、1.6um厚的牺牲层氧化硅以及2um PloySi薄膜,PolySi采用P注入掺杂,并且退火获得较小的应力,以作为MEMS器件的结构层;4、沉积氧化硅保护MEMS区域,并且继续CMOS后段的金属互连制作步骤;5、最后就是释放牺牲层,获得活动的MEMS结构,测试封装。

mems陀螺仪工作原理

mems陀螺仪工作原理

mems陀螺仪工作原理mems陀螺仪是由microelectromechanical systems(简称MEMS)制成的一种传感器,它可以检测和记录来自环境的物理运动,如旋转、加速度和位移。

它可以用于航空航天、汽车、智能手机和其他电子设备,以及实时监控系统等领域。

本文将介绍mems陀螺仪的工作原理。

一、MEMS陀螺仪的结构MEMS陀螺仪是一种小型、低成本的传感器,一般由两个部分组成,分别是检测部分和控制部分。

检测部分由一个微机械的旋转轴组成,它的运动传感器可以检测旋转轴的角位移、角速度和角加速度。

控制部分负责检测部分的控制,它由多个电子元件和电路组成,包括放大器、滤波器、可编程逻辑控制器等。

二、MEMS陀螺仪的工作原理MEMS陀螺仪的工作原理是利用检测部分的运动传感器检测旋转轴的角位移、角速度和角加速度,然后将信号输入到控制部分。

控制部分对信号进行放大、滤波和编码,然后将指令发送给外部设备,以控制或检测物理运动。

三、MEMS陀螺仪的优点MEMS陀螺仪在小型化、低成本、低功耗等方面具有明显优势,能够满足许多应用场合的需求。

除此之外,它还具有良好的可靠性和可重复性,能够提供精确的测量结果。

四、MEMS陀螺仪的应用MEMS陀螺仪可以应用于航空航天、汽车、智能手机和其他电子设备,以及实时监控系统等领域。

在航空航天领域,MEMS陀螺仪可以用于飞行控制、导航和航空飞行模拟等应用;在汽车领域,MEMS陀螺仪可以用于车辆安全控制、车辆悬架系统和驾驶员辅助系统等应用;在智能手机和其他电子设备领域,MEMS陀螺仪可以用于游戏控制、虚拟现实系统和家居智能控制等应用;在实时监控系统领域,MEMS 陀螺仪可以用于机器人控制、运动检测和地面监控等应用。

五、结论MEMS陀螺仪作为一种小型、低成本、低功耗的传感器,可以应用于航空航天、汽车、智能手机和其他电子设备,以及实时监控系统等领域,具有良好的可靠性和可重复性,能够提供精确的测量结果,是一种非常有用的传感器。

微机械陀螺工作原理

微机械陀螺工作原理
微机械陀螺是一种由微小机械结构构成的陀螺仪。

其工作原理基于陀螺效应和泛振动现象。

陀螺效应是指当陀螺受到外力作用时,其会产生一个相对于作用力方向垂直的力矩,使陀螺发生旋转。

微机械陀螺利用这个特性,通过测量陀螺的旋转角速度来检测外界的旋转或倾斜。

在微机械陀螺中,通常采用微机电系统(MEMS)技术制作陀螺结构。

该结构由一个旋转质量块和支撑结构组成。

当外界旋转作用于陀螺仪时,旋转质量块产生陀螺效应,产生一个力矩使其倾斜或旋转。

支撑结构通过引入压电效应或电感效应进行力矩的测量和控制。

泛振动现象是指当将微机械结构置于一定频率的交变电场或磁场中时,结构会发生微小的周期性振动。

微机械陀螺利用泛振动现象,通过检测振动频率的变化来测量陀螺的旋转角速度。

当陀螺旋转时,振动频率会发生微小的变化,通过检测这种变化可以测量出陀螺的旋转速度。

综合上述原理,微机械陀螺可以通过测量陀螺效应或泛振动现象来检测外界的旋转或倾斜。

这种小型化的陀螺仪具有体积小、功耗低、成本低等特点,广泛应用于惯导系统、无人机、智能手机等领域。

mems陀螺仪原理

mems陀螺仪原理
mems陀螺仪是一种基于微电子机械系统(MEMS)技术的陀
螺仪,其原理是利用惯性力和Coriolis效应来测量物体的旋转
角度。

mems陀螺仪通常由一个微小的敏感元件和一个驱动元件组成。

敏感元件用于感知物体的旋转运动,而驱动元件则用于提供驱动力。

这两者共同工作,使得mems陀螺仪能够准确测量物体
的旋转角度。

敏感元件通常由微小的振动体构成,它们被放置在一个微小的腔体内。

当物体发生旋转时,惯性力作用在振动体上,导致其发生位移。

这个位移随着旋转角速度的增加而增加,从而可以用来测量旋转角度的大小。

同时,驱动元件可以通过施加振动力来保持敏感元件的振动。

这种振动力可以通过微小的电极施加,从而实现对振动体的控制。

通过控制驱动元件的振动频率和振动幅度,可以确保敏感元件在操作范围内保持稳定的振动状态。

在mems陀螺仪中,Coriolis效应起到了关键的作用。

当敏感
元件振动时,由于物体的旋转,振动体会感受到一个由Coriolis力引起的横向力,这个力与振动方向垂直。

通过测量
这个横向力的大小,可以确定物体的旋转角速度。

综上所述,mems陀螺仪通过利用惯性力和Coriolis效应,结
合微电子机械系统技术,实现对物体旋转角度的准确测量。


在航空航天、汽车导航、智能手持设备等应用领域有着广泛的应用。

微机械陀螺仪的基本工作原理、主要特点及应用情况 ppt课件

5. 国内硅微机电陀螺仪加速度敏感性普遍偏大
PPT课件
6/13
1.3 研究现状与研究意义
目前,微机械陀螺仪还属于中、低精度范畴,它们 的研制成功将投入更多的军事和商业应用。尤其在军 事方面,通过采用微机械陀螺仪技术,可以把制导、 导航和控制引入以前未能考虑的一些武器系统中,典 型的如各种制导炮弹和弹丸。
由于硅材料固有的温度敏感性,需要对硅微陀螺仪的 温度特性作特别处理。
PPT课件
13/13
内容提要
1. 概述
2.基本工作原理 3.主要特点
4.应用情况
PPT课件
14/13
4. 应用情况
PPT课件
15/13
Thank you!
PPT课件
工方式等
PPT课件
5/13
1.2 微机械陀螺技术 与国外的差距
1. 国内硅微机电陀螺技术在设计理论研究上和国外 存在差距
2. MEMS工艺条件和国外相比存在较大的差距,产 品加速度敏感性普遍偏大
3. 微弱信号检测及专用集成电路水平和国外相比存 在较大的差距
4. 国内硅微机电陀螺仪的工程化水平和国外相比存 在较大的差距
PPT课件
7/13
内容提要
1. 概述
2.基本工作原理
3.主要特点 4.应用情况
PPT课件
8/13
2. 基本工作原理
基于哥氏效应工作
Ω 敏感轴
PPT课件
9/13
检 测 运 动
动 运 动 驱
2. 基本工作原理
框架式微机械振动陀螺仪结构形式
PPT课件
10/13
2. 基本工作原理
框架式微机械振动陀螺仪的控制系统框图
体微机械加工表面机械加工和liga加工方式等11国内硅微机电陀螺技术在设计理论研究上和国外存在差距mems工艺条件和国外相比存在较大的差距产品加速度敏感性普遍偏大微弱信号检测及专用集成电路水平和国外相比存在较大的差距国内硅微机电陀螺仪的工程化水平和国外相比存在较大的差距国内硅微机电陀螺仪加速度敏感性普遍偏大12目前微机械陀螺仪还属于中低精度范畴它们的研制成功将投入更多的军事和商业应用

MEMS陀螺仪简介分析

隧道效应检测
按检测方式
闭环模式
速率陀螺 按工作模式
速率积数
MEMS陀螺仪的重要参数包括:分辨率(Resolution) 、零角速度输出(零位输出)、灵敏度(Sensitivity)和测 量范围。这些参数是评判MEMS陀螺仪性能好坏的重要标 志,同时也决定陀螺仪的应用环境。 分辨率是指陀螺仪能检测的最小角速度,该参数与 零角速度输出其实是由陀螺仪的白噪声决定。这几个参 数主要说明了该陀螺仪的内部性能和抗干扰能力。对使 用者而言,灵敏度更具有实际的选择意义。测量范围是 指陀螺仪能够测量的最大角速度。不同的应用场合对陀 螺仪的各种性能指标有不同的要求。
MEMS 陀螺仪使用的输出噪声这个指标。并且一定要选定合适的带 宽,在能满足使用要求的前提下,尽量选择带宽较低的陀螺仪,因为带 宽越大,输出噪声越大。
2.5 MEMS陀螺仪的选用
⑵ 测量范围 选择陀螺仪的量程时,应注意:最大输入角速率——陀 螺仪正、反方向输入角速率的最大值,在此输入角速率范围内,陀螺仪 标度因数非线性满足规定要求。 ⑶ 阈值——陀螺仪能敏感的最小输入角速率。由该输入角速率产生的输 出至少应等于按标度因数所期望输出值的50%。 ⑷ 分辨率——陀螺仪在规定的输入角速率下,能敏感的最小输入角速 率增量,至少应等于按标度因数所期望输出增量的50%。选择陀螺仪的 测量范围时,最大的角速率是陀螺仪的量程的2/3,最小的角速率应该 高于阈值、分辨率。 ⑸ 标度因数——陀螺仪输出量与输入角速率的比值。 它是用某一特定 直线的斜率表示的,该直线是根据整个输入角速率范围内测得的输入、 输出数据,用最小二乘法拟合求得。 ⑹ 标度因数非线性度——在输入角速率范围内,陀螺仪输出量相对于最 小二乘法拟合直线的最大的偏差与最大输出量之比。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主讲人:宋璐
学号:
微机械陀螺仪的基本21工20作121原01理2 、 主要特点及应用情况
内容提要
1. 概述
2.基本工作原理 3.主要特点 4.应用情况
2/13
1. 概述
MEMS:Micro Electro Mechanical systems
微 米 / 纳 米 技 术 : micro/nanotechnology
3. 主要特点
与现有机械转子式陀螺仪或光学陀螺 仪相比,其主要特点如下:
体积和能耗小
成本低廉,适合大批量生产;
动态范围大,可靠性高,可于恶劣力学 环境;
准备时间短,适合快速响应武器;
中低精度,适合短时应用或与其他信息系
统组合应用;
12/13
内容提要
1. 概述 2.基本工作原理 3.主要特点
目前,微机械陀螺仪还属于中、低精 度范畴,它们的研制成功将投入更多的 军事和商业应用。尤其在军事方面,通 过采用微机械陀螺仪技术,可以把制导 、导航和控制引入以前未能考虑的一些 武器系统中,典型的如各种制导炮弹和 弹丸。
6/13
内容提要
1. 概述
2.基本工作原理
3.主要特点 4.应用情况
微机械陀螺仪,也叫硅微陀螺仪、微 机电陀螺仪,它被誉为指尖上的陀螺 仪。
3/13
1.1 分类
振动结构:线振动结构和角振动结构 材料:硅材料和非硅材料 驱动方式:静电驱动式、电磁驱动式
和压电驱动式 检测方式:电容性检测、压阻型检测
、压电性检测、光学检测和隧道效应 检测 工作方式:速率陀螺仪和速率积分陀 4/13
4.应用情况
13/13
4. 应用情况
汽车电子
• ESC系统 • 辅助GPS • 车用安全管
理系统
手机
• 路线指引 • 行动游戏机 • 健康管理 • 无缝拨号
消费电子
• 游戏机 • 防手震系统 • 3D遥控器 • 安全监控
军事应用
• 微型航空器 • 空间武器 • 精确制导武

14/13
Thank you!
7/13
2. 基本工作原理
基于哥氏效应工作
Ω 敏感轴
检测运动
8/13
驱动运动
2. 基本工作原理
框架式微机械振动陀螺仪结构形式
9/13
2. 基本工作原理
框架式微机械振动陀螺仪的控制系统 框图
10/13
内容提要
1. 概述 2.基本工作原理
3.主要特点
4.应用情况
11/13
1.2 微机械陀螺技术 与国外的差距
1. 国内硅微机电陀螺技术在设计理论 研究上和国外存在差距
2. MEMS工艺条件和国外相比存在较 大的差距,产品加速度敏感性普遍偏 大
3. 微弱信号检测及专用集成电路水平 和国外相比存在较大的差距
4. 国内硅微机电陀螺仪的工程化水平5/13
1.3 研究现状与研究意义
相关文档
最新文档