MEMS陀螺仪工作原理
MEMS陀螺仪

MEMS陀螺仪(gyroscope)的工作原理传统的陀螺仪主要是利用角动量守恒原理,因此它主要是一个不停转动的物体,它的转轴指向不随承载它的支架的旋转而变化。
但是MEMS陀螺仪(gyroscope)的工作原理不是这样的,因为要用微机械技术在硅片衬底上加工出一个可转动的结构可不是一件容易的事。
MEMS陀螺仪利用科里奥利力——旋转物体在有径向运动时所受到的切向力。
下面是导出科里奥利力的方法。
有力学知识的读者应该不难理解。
在空间设立动态坐标系(图一)。
用以下方程计算加速度可以得到三项,分别来自径向加速、科里奥利加速度和向心加速度。
(图一)如果物体在圆盘上没有径向运动,科里奥利力就不会产生。
因此,在MEMS陀螺仪的设计上,这个物体被驱动,不停地来回做径向运动或者震荡,与此对应的科里奥利力就是不停地在横向来回变化,并有可能使物体在横向作微小震荡,相位正好与驱动力差90度。
(图二)MEMS陀螺仪通常有两个方向的可移动电容板。
径向的电容板加震荡电压迫使物体作径向运动(有点象加速度计中的自测试模式),横向的电容板测量由于横向科里奥利运动带来的电容变化(就象加速度计测量加速度)。
因为科里奥利力正比于角速度,所以由电容的变化可以计算出角速度。
(图二)MEMS陀螺仪(gyroscope)的结构MEMS陀螺仪(gyroscope)的设计和工作原理可能各种各样,但是公开的MEMS陀螺仪均采用振动物体传感角速度的概念。
利用振动来诱导和探测科里奥利力而设计的MEMS陀螺仪没有旋转部件、不需要轴承,已被证明可以用微机械加工技术大批量生产。
绝大多数MEMS 陀螺仪依赖于由相互正交的振动和转动引起的交变科里奥利力。
振动物体被柔软的弹性结构悬挂在基底之上。
整体动力学系统是二维弹性阻尼系统,在这个系统中振动和转动诱导的科里奥利力把正比于角速度的能量转移到传感模式。
(图一)(图一)通过改进设计和静电调试使得驱动和传感的共振频率一致,以实现最大可能的能量转移,从而获得最大灵敏度。
MEMS陀螺仪概况介绍

1、微机械陀螺仪的工作原理MEMS陀螺仪利用科里奥利力(Coriolis force,又称为科氏力)现象。
科氏力是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。
科里奥利力来自于物体运动所具有的惯性,在旋转体系中进行直线运动的质点,由于惯性的作用,有沿着原有运动方向继续运动的趋势,但是由于体系本身是旋转的,在经历了一段时间的运动之后,体系中质点的位置会有所变化,而它原有的运动趋势的方向,如果以旋转体系的视角去观察,就会发生一定程度的偏离。
2、微机械陀螺仪的性能参数MEMS陀螺仪的重要参数包括:分辨率(Resolution)、零角速度输出(零位输出)、灵敏度(Sensitivity)和测量范围。
这些参数是评判MEMS陀螺仪性能好坏的重要标志,同时也决定陀螺仪的应用环境。
分辨率是指陀螺仪能检测的最小角速度,该参数与零角速度输出其实是由陀螺仪的白噪声决定。
这三个参数主要说明了该陀螺仪的内部性能和抗干扰能力。
对使用者而言,灵敏度更具有实际的选择意义。
测量范围是指陀螺仪能够测量的最大角速度。
不同的应用场合对陀螺仪的各种性能指标有不同的要求。
3、微机械陀螺仪的结构MEMS陀螺仪的设计和工作原理可能各种各样,但是主要都采用振动部件传感角速度的概念。
绝大多数的MEMS陀螺仪依赖于相互正交的振动和转动引起的交变科里奥利力。
图3所示为振动陀螺的动力学系统的简单结构示意图。
该系统为2-D的振动系统,有两个正交的振动模态。
其中一个振动模态为质量块在x 方向振动,振动频率为。
另一个振动模态为质量块在y方向振动,振动频率为。
与的值比较接近。
工作时,驱动质量块使之在x轴上以接近于的频率(驱动频率)振动,如果振动系统以角速度绕Z轴转动,则会产生一个沿Y轴方向的科里奥利力,从而使得质量块在Y轴方向上产生频率为的振动响应,通过测试Y轴方向的运动就能完成角速度的检测。
一般的MEMS陀螺仪由梳齿结构的驱动部分(图4)和电容板形状的传感部分(图5)组成,基本结构如图6所示。
mems陀螺仪原理

mems陀螺仪原理
MEMS陀螺仪是一种基于微电子机械系统技术的传感器,用于测量物体的角速度。
它的原理基于一个微小的旋转惯性质量体,当物体发生旋转时,质量体会受到转动的作用力,从而引起其相对于固定参考框架的位移。
通过测量位移的变化,可以计算出物体的角速度。
在MEMS陀螺仪中,旋转惯性质量体通常由微机电系统的特殊材料制成,如硅。
质量体与周围固定参考框架之间通过微细悬臂或弹簧连接。
当物体发生旋转时,惯性力将作用在质量体上,导致其发生位移。
这种位移可以通过观察质量体与悬臂(或弹簧)之间的相对位置来检测。
为了测量位移,MEMS陀螺仪通常采用了一些传感技术。
其中一种常见的方法是通过光学传感器来测量质量体的位移。
通过激光二极管产生一束光线,然后照射到质量体上,并由光敏元件接收返回的光线。
根据接收到的光信号的强度变化,可以计算出质量体的位移。
另一种常见的传感方法是基于电容的测量。
在这种情况下,质量体和悬臂或弹簧之间形成一个电容。
当质量体发生位移时,电容的值也会发生变化。
通过测量电容值的变化,可以确定质量体的位移。
综上所述,MEMS陀螺仪利用微小的旋转惯性质量体以及相应的传感技术来测量物体的角速度。
通过测量质量体的位移,
可以计算出物体的旋转速度。
这种技术在很多应用中都得到了广泛的应用,如导航系统、无人机、平衡控制等。
MEMS陀螺仪工作原理

MEMS陀螺仪工作原理MEMS陀螺仪是一种基于微电子机械系统(MEMS)技术的惯性传感器,用于测量和检测设备的旋转,例如飞行器、导航系统和移动设备。
这种陀螺仪基于科里奥利效应和惯性运动等原理,能够准确地测量设备的旋转角速度。
MEMS陀螺仪的工作原理基于两个主要的物理现象:科里奥利效应和惯性运动。
科里奥利效应是指当一个物体处于旋转状态时,在它上面施加一个力或者保持外力产生瞬时性的移动,将会引起物体相对于旋转轴的力的偏转。
利用科里奥利效应,MEMS陀螺仪可以测量设备绕旋转轴的旋转速度。
当设备开始旋转时,由于科里奥利效应,感应质量体会产生一个偏转力。
这个力会导致质量体以一定的频率进行振动。
感应电极会检测到这种振动,并将其转化成电信号输出。
具体来说,当感应质量体振动时,感应电极会产生一个电势差。
这个电势差可以通过测量电流或电压来获得。
通过将这个电势差与事先校准好的标准电势差进行比较,可以得到感应质量体的位移。
在旋转速度恒定时,感应质量体的振动频率与旋转速度成正比。
因此,通过测量感应质量体振动的频率,可以推导出设备的旋转速度。
为了提高测量的准确性和稳定性,MEMS陀螺仪通常与其他传感器结合使用,例如加速度计和磁力计。
这些传感器可以用来消除误差或校正陀螺仪的测量结果。
此外,MEMS陀螺仪还可以通过使用多个陀螺仪来进行冗余测量,提高系统的可靠性。
总结起来,MEMS陀螺仪的工作原理是基于科里奥利效应和惯性运动的。
通过检测感应质量体的振动频率,可以测量设备的旋转速度。
MEMS 陀螺仪具有体积小、功耗低、成本低和精度高等优点,因此在许多应用领域中得到了广泛的应用。
MEMS陀螺仪的原理与应用优势分析

MEMS陀螺仪的原理与应用优势分析MEMS陀螺仪(Micro-Electro-Mechanical Systems gyroscope)是一种利用微机电系统技术制造的陀螺仪。
它基于微机电系统(MEMS)的原理,采用微型的加速度传感器和补偿器,用于测量和检测设备的角速度和方向变化。
下面将对MEMS陀螺仪的原理和应用优势进行详细分析。
MEMS陀螺仪的原理主要基于角动量守恒定律。
当一个物体绕一个固定点旋转时,其角动量保持不变。
因此,MEMS陀螺仪通过测量和检测旋转物体围绕固定点的角动量变化来确定其角速度和方向。
在MEMS陀螺仪中,有两个主要的工作原理:电容效应和表面波效应。
首先,电容效应原理是利用固定的电容和可移动电容之间旋转的部分引起的电容变化来测量角速度。
这种原理利用了微机电系统中的微小工作间隙和电容结构,当设备旋转时,旋转的部分会引起电容间距的变化,从而产生电容变化,进而通过电路将电容变化转换为电压变化,最终测量出角速度。
其次,表面波效应原理是利用固定的波导和通过旋转感应器引起的表面波频率变化来测量角速度。
MEMS陀螺仪将固定波导和可旋转感应器相互排列,波导的表面波频率与波导材料和尺寸相关,而旋转感应器的旋转将改变波导的尺寸,进而影响表面波频率。
因此,通过测量表面波频率的变化,可以获取设备的角速度和方向信息。
MEMS陀螺仪具有许多应用优势。
首先,它具有小型化和集成化的特点。
MEMS陀螺仪利用微机电系统技术制造,可以实现微型化和集成化,从而在体积和重量上具有明显的优势。
这使得MEMS陀螺仪可以广泛应用于移动设备、汽车电子、航空航天等领域,提高产品的性能和可靠性。
其次,MEMS陀螺仪具有高精度和高灵敏度。
由于MEMS陀螺仪基于微型加速度传感器和补偿器,可以实现高精度的角速度测量和方向检测。
这使得MEMS陀螺仪在导航系统、姿态控制和稳定系统等方面具有重要应用,可以提供精确的角度信息。
此外,MEMS陀螺仪具有低功耗和低成本的特点。
MEMS陀螺仪技术原理_三轴陀螺仪技术原理

MEMS陀螺仪技术原理_三轴陀螺仪技术原理MEMS是什么呢?MEMS(Micro Electro Mechanical systems,微电子机械系统)是建立在微米/纳米技术基础上的前沿技术,其是一种可对微米/纳米材料进行设计、加工、制造、测量和控制的技术。
它可将机械构件、光学系统、驱动部件、电控系统集成为一整体单元的微型系统。
与传统的利用角动量守恒原理的陀螺仪相比,MEMS陀螺仪使用了不同的工作原理。
传统的陀螺仪是一个不停转动的物体,其转轴的指向不随承载它的支架旋转而变化。
要把这样一个不停转动的没有支撑的能旋转的物体用微机械技术在硅片衬底上加工出来,显然难上加难。
为此,MEMS陀螺仪在基于传统陀螺仪特性的基础上利用科里奥利力来实现了设备的小型化。
科里奥利力(Coriolis force)也就时常说的哥里奥利力、科氏力,它是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述,其来自于物体运动所具有的惯性,由于地球自转运动而作用于地球上运动质点的偏向力就是这样的代表,地转偏向力有助于解释一些地理现象,如河道的一边往往比另一边冲刷得更厉害。
MEMS陀螺仪是科里奥利力的最常见应用,MEMS陀螺仪利用科里奥利力(旋转物体在径向运动时所受到的切向力),旋转中的陀螺仪可对各种形式的直线运动产生反映,通过记录陀螺仪部件受到的科里奥利力可以进行运动的测量与控制。
为了产生这种力,MEMS 陀螺仪通常安装有两个方向的可移动电容板,径向的电容板加震荡电压迫使物体作径向运动,横向的电容板测量由于横向科里奥利运动带来的电容变化。
这样,MEMS陀螺仪内的陀螺物体在驱动下就会不停地来回做径向运动或震荡,从而模拟出科里奥利力不停地在横向来回变化的运动,并可在横向作与驱动力差90的微小震荡。
这种科里奥利力好比角速度,所以由电容的变化便可以计算出MEMS陀螺仪的角速度。
三轴角速度与旋转速率成正比以意法半导体的MEMS陀螺仪为例,其核心元件是一个微加工机械单元,在设计上按照一个音叉机制运转(音叉机制的工作原理是通过安装在音叉基座上的一对压电晶体使音叉在一定共振频率下振动,当音叉开关的音叉与被测介质相接触时,音叉的频率和振幅将改变,音叉开关的这些变化由智能电路来进行检测,处理并将之转换为一个开关信号)。
mems陀螺仪工作原理

mems陀螺仪工作原理mems陀螺仪是由microelectromechanical systems(简称MEMS)制成的一种传感器,它可以检测和记录来自环境的物理运动,如旋转、加速度和位移。
它可以用于航空航天、汽车、智能手机和其他电子设备,以及实时监控系统等领域。
本文将介绍mems陀螺仪的工作原理。
一、MEMS陀螺仪的结构MEMS陀螺仪是一种小型、低成本的传感器,一般由两个部分组成,分别是检测部分和控制部分。
检测部分由一个微机械的旋转轴组成,它的运动传感器可以检测旋转轴的角位移、角速度和角加速度。
控制部分负责检测部分的控制,它由多个电子元件和电路组成,包括放大器、滤波器、可编程逻辑控制器等。
二、MEMS陀螺仪的工作原理MEMS陀螺仪的工作原理是利用检测部分的运动传感器检测旋转轴的角位移、角速度和角加速度,然后将信号输入到控制部分。
控制部分对信号进行放大、滤波和编码,然后将指令发送给外部设备,以控制或检测物理运动。
三、MEMS陀螺仪的优点MEMS陀螺仪在小型化、低成本、低功耗等方面具有明显优势,能够满足许多应用场合的需求。
除此之外,它还具有良好的可靠性和可重复性,能够提供精确的测量结果。
四、MEMS陀螺仪的应用MEMS陀螺仪可以应用于航空航天、汽车、智能手机和其他电子设备,以及实时监控系统等领域。
在航空航天领域,MEMS陀螺仪可以用于飞行控制、导航和航空飞行模拟等应用;在汽车领域,MEMS陀螺仪可以用于车辆安全控制、车辆悬架系统和驾驶员辅助系统等应用;在智能手机和其他电子设备领域,MEMS陀螺仪可以用于游戏控制、虚拟现实系统和家居智能控制等应用;在实时监控系统领域,MEMS 陀螺仪可以用于机器人控制、运动检测和地面监控等应用。
五、结论MEMS陀螺仪作为一种小型、低成本、低功耗的传感器,可以应用于航空航天、汽车、智能手机和其他电子设备,以及实时监控系统等领域,具有良好的可靠性和可重复性,能够提供精确的测量结果,是一种非常有用的传感器。
mems陀螺仪原理

mems陀螺仪原理
mems陀螺仪是一种基于微电子机械系统(MEMS)技术的陀
螺仪,其原理是利用惯性力和Coriolis效应来测量物体的旋转
角度。
mems陀螺仪通常由一个微小的敏感元件和一个驱动元件组成。
敏感元件用于感知物体的旋转运动,而驱动元件则用于提供驱动力。
这两者共同工作,使得mems陀螺仪能够准确测量物体
的旋转角度。
敏感元件通常由微小的振动体构成,它们被放置在一个微小的腔体内。
当物体发生旋转时,惯性力作用在振动体上,导致其发生位移。
这个位移随着旋转角速度的增加而增加,从而可以用来测量旋转角度的大小。
同时,驱动元件可以通过施加振动力来保持敏感元件的振动。
这种振动力可以通过微小的电极施加,从而实现对振动体的控制。
通过控制驱动元件的振动频率和振动幅度,可以确保敏感元件在操作范围内保持稳定的振动状态。
在mems陀螺仪中,Coriolis效应起到了关键的作用。
当敏感
元件振动时,由于物体的旋转,振动体会感受到一个由Coriolis力引起的横向力,这个力与振动方向垂直。
通过测量
这个横向力的大小,可以确定物体的旋转角速度。
综上所述,mems陀螺仪通过利用惯性力和Coriolis效应,结
合微电子机械系统技术,实现对物体旋转角度的准确测量。
它
在航空航天、汽车导航、智能手持设备等应用领域有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陀螺仪是用来测量角速率的器件,在加速度功能基础上,可以进一步发展,构建陀螺仪。
陀螺仪的内部原理是这样的:对固定指施加电压,并交替改变电压,让一个质量块做振荡式来回运动,当旋转时,会产生科里奥利加速度,此时就可以对其进行测量;这有点类似于加速度计,解码方法大致相同,都会用到放大器。
角速率由科氏加速度测量结果决定
- 科氏加速度 = 2 × (w ×质量块速度)
- w是施加的角速率(w = 2 πf)
通过14 kHz共振结构施加的速度(周期性运动)快速耦合到加速度计框架
- 科氏加速度与谐振器具有相同的频率和相位,因此可以抵消低速外部振动
该机械系统的结构与加速度计相似(微加工多晶硅)
信号调理(电压转换偏移)采用与加速度计类似的技术
施加变化的电压来回移动器件,此时器件只有水平运动没有垂直运动。
如果施加旋转,可以看到器件会上下移动,外部指将感知该运动,从而就能拾取到与旋转相关的信号。
上面的动画,只是抽象展示了陀螺仪的工作原理,而真实的陀螺仪内部构造是下面这个样子。
PS:陀螺仪可以三个一起设计,分别对应于所谓滚动、俯仰和偏航。
任何了解航空器的人都知道,俯仰是指航空器的上下方向,偏航是指左右方向,滚动是指向左或向右翻滚。
要正确控制任何类型的航空器或导弹,都需要知道这三个参数,这就会用到陀螺仪。
它们还常常用于汽车导航,当汽车进入隧道而失去GPS信号时,这些器件会记录您的行踪。
无人机在飞行作业时,获取的无人机影像通常会携带配套的POS数据。
从而在处理中可以更加方便的处理影像。
而POS数据主要包括GPS数据和
IMU数据,即倾斜摄影测量中的外方位元素:(纬度、经度、高程、航向角(Phi)、俯仰角(Omega)及翻滚角(Kappa))。
GPS数据一般用X、Y、Z表示,代表了飞机在飞行中曝光点时刻的地理位置。
飞控是由主控MCU和惯性测量模块(IMU,Inertial Measurement Unit)组成。
IMU提供飞行器在空间姿态的传感器原始数据,一般由陀螺仪传感器/加速度传感器/电子罗盘提供飞行器9DOF数据。
IMU中的传感器用来感知飞行器在空中的姿态和运动状态,这有个专有名词叫做运动感测追踪,英文Motion Tracking。
运动感测技术主要有四种基础运动传感器,下面分别说明其进行运动感测追踪的原理。
微机电系统(MEMS)
IMU中使用的传感器基本上都是微机电系统(MEMS),是半导体工业中非常重要的一个分支。
微机电系统(MEMS, Micro-Electro-Mechanical System)是一种先进的制造技术平台。
微机电系统是微米大小的机械系统,是以半导体制造技术为基础发展起来的。
我们的四轴飞行器上用到的加速度陀螺仪MPU6050,电子罗盘
HMC5883L都是微机电系统,属于传感MEMS分支。
传感MEMS技术是指用微电子微机械加工出来的、用敏感元件如电容、压电、压阻、热电耦、谐振、隧道电流等来感受转换电信号的器件和系统。
加速器(G-sensors)
加速器可用来感测线性加速度与倾斜角度,单一或多轴加速器可感应结合线性与重力加速度的幅度与方向。
含加速器的产品,可提供有限的运动感测功能。
加速度计的低频特性好,可以测量低速的静态加速度。
在我们的飞行器上,就是对重力加速度g(也就是前面说的静态加速度)的测量和分析,其它瞬间加速度可以忽略。
记住这一点对姿态解算融合理解非常重要。
当我们把加速度计拿在手上随意转动时,我们看的是重力加速度在三个轴上的分量值。
加速度计在自由落体时,其输出为0。
为什么会这样呢?这里涉及到加速度计的设计原理:加速度计测量加速度是通过比力来测量,而不是通过加速度。
陀螺仪(Gyros)
陀螺仪是利用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。
利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。
陀螺仪可感测一轴或多轴的旋转角速度,可精准感测自由空间中的复杂移动动作,因此,陀螺仪成为追踪物体移动方位与旋转动作的必要运动传感器。
不像加速器与电子罗盘,陀螺仪不须借助任何如重力或磁场等的外在力量,能够自主性的发挥其功能。
所以,从理论上讲只用陀螺仪是可以完成姿态导航的任务的。
陀螺仪的特性就是高频特性好,可以测量高速的旋转运动。
缺点是存在零点漂移,容易受温度/加速度等的影响。
电子罗盘(E-Compasses)
电子罗盘也叫数字指南针,磁力计,是利用地磁场来定北极的一种方法。
现在一般有用磁阻传感器和磁通门加工而成的电子罗盘。
电子罗盘可由地球的磁场来感测方向。
运用电子罗盘的消费性电子产品应用,包含在手机的地图应用程序显示正确方向,或为导航应用程序提供前进方向数据。
然而,电子设备或建筑材料的磁场干扰,比地球磁场来得强,导致电子罗盘传感器的输出值,较容易受到各种环境因素的影响,尤其在室内更是如此,因此,电子罗盘须要透过频繁的校正,才能维持前进方向数据的准确度。
压力传感器(Barometers)
压力传感器又叫做气压计,会藉由气压的变化来感测物体的相对与绝对高度,常被运用于与运动、健身、方位推测等应用有关的消费性产品中,例如,可感测使用者的移动层楼,调整地图信息。
IMU数据主要包含了:航向角(Phi)、俯仰角(Omega)及翻滚角(Kappa)三个数据。
1、航向角(Phi)
航向角英文缩写是:Phi。
定义为:飞机和航天飞机的纵轴与地球北极
之间的夹角。
示意图如下图所示:
2、俯仰角(Omega)
俯仰角英文缩写是:Omega。
定义为:平行于机身轴线并指向飞行器前方的向量与地面的夹角。
示意图如下:
3、翻滚角(Kappa)
翻滚角又叫侧滚角,英文缩写是Kappa。
定义为:光轴与十周之间的夹角。
示意图如下图所示:。