《生活中的轴对称》测试题
(必考题)初中数学七年级数学下册第五单元《生活中的轴对称》检测题(包含答案解析)

一、选择题1.在下列四个图案的设计中,没有运用轴对称知识的是( )A .B .C .D . 2.下列图案中,是轴对称图形的有( )A .1个B .2个C .3个D .4个3.如图,在四边形ABCD 中,∠A=120°,∠C=80°.将△BMN 沿着MN 翻折,得到△FMN .若MF ∥AD ,FN ∥DC ,则∠F 的度数为( )A .70°B .80°C .90°D .100°4.如图,将长方形ABCD 沿线段EF 折叠到''EB C F 的位置,若'105EFC ∠=︒,'DFC ∠的度数为( )A .20︒B .30C .40︒D .50︒5.下面有4个汽车标致图案,其中不是轴对称图形为( )A .B .C .D .6.如图,在33⨯的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中ABC ∆是一个格点三角形.则图中与ABC ∆成轴对称的格点三角形有( )A .2个B .4个C .6个D .8个7.如图,四边形 ABCD 中,AD //BC ,DC BC ⊥,将四边形沿对角线BD 折叠,点A 恰好落在DC 边上的点A'处,A'BC 20︒∠=,则A D 'B ∠的度数是 ( )A .15°B .25°C .30°D .40° 8.在汉字“生活中的日常用品”中,成轴对称的有( )A .3个B .4个C .5个D .6个 9.如图,已知ABC 为等腰三角形, , 90AB AC BAC =∠<︒,将ABC 沿AC 翻折至,ADCE 为BC 的中点,F 为AD 的中点,线段EF 交AC 于点G ,若()1FCD GEC S m m S =≠,则AG GC=( )A .mB .11m m +-C .1m +D .1m -10.如图,在△ABC 中,∠A =70°,∠B =90°,点A 关于BC 的对称点是A ',点B 关于AC 的对称点是B ',点C 关于AB 的对称点是C ',若△ABC 的面积是1,则△A 'B 'C '的面积是( )A .2B .3C .4D .5 11.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是( ) A . B .C .D .12.将一张正方形纸片ABCD 按如图所示的方式折叠,AE 、AF 为折痕,点B 、D 折叠后的对应点分别为B′、D′,若∠B′A D′=16°,则∠EAF 的度数为( ).A .40°B .45°C .56°D .37°二、填空题13.如图,将直线y x =-沿y 轴向下平移后的直线恰好经过点()1,2A -,且与y 轴交于点B ,在x 轴上存在一点P 使得PA PB +的值最小,则点P 的坐标为______________.14.将一张长为12.6m .宽为()6.3acm a >的长方形纸片按如图折叠出一个正方形,并将正方形剪下,这一过程称为第一次操作,将余下的长方形纸片再次折叠出一个正方形,并把正方形再剪下,则称为第二次操作,……,如此操作下去,若前四次剪下后的长方形纸片长与宽之比都小于2:1,当第五次操作后,剩下图形的长与宽之比为2:1,则a =________cm .15.有一条长方形纸带,按如图所示沿AB 折叠,若140︒∠=,则纸带重叠部分中____CAB ︒∠=16.如图,有一张长方形纸片ABCD,点E.F 分别在边AB 、CD 上,连接EF,将∠BEF 对折,点B 落在直线EF 上的点B /处,得折痕EM;将∠AEF 对折,点A 落在直线EF 上的点A’处,得折痕EN,则∠MEN 的度数为__________.17.如图,将一条两边沿互相平行的纸带折叠,若144∠=︒,则α∠=__________.18.如图,长方形纸片ABCD ,点E ,F 分别在边AB ,CD 上,连接EF ,将BEF ∠对折B 落在直线EF 上的点'B 处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点'A 得折痕EN ,若6215'BEM ∠=︒,则AEN ∠=____.19.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.20.如图,在△ABC 中,AB =10,AC =6,BC =8,将△ABC 折叠,使点C 落在AB 边上的点E 处,AD 是折痕,则△BDE 的周长为_____.三、解答题21.如图,ABC 中,AD 平分BAC ∠,P 为AD 延长线上一点,PE BC ⊥于E ,已知80ACB ∠=︒,24B ∠=︒,求P ∠的度数.22.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(﹣4,7),(﹣1,5). (1)请在如图所示的网格平面内画出平面直角坐标系;(2)请画出△ABC 关于y 轴对称的△A 1B 1C 1;(3)直接写出点B 1的坐标.23.如图,以AB 为对称轴,画出下面图形的对称图形,观察这个图形和它的轴对称图形构成什么三角形,根据你所学习的轴对称图形的基本特征,结合你所画的图形写出两个正确结论.24.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为()4,5A -,()1,3C -.(1)请在如图所示的网格内作出x 轴、y 轴;(2)请作出ABC ∆关于y 轴对称的111A B C ∆(不写画法),并写出点1B 的坐标; (3)求出ABC ∆关于x 轴对称的222A B C ∆的面积.25.如图所示,(1)写出顶点C 的坐标.(2)作ABC 关于y 轴对称的111A B C △(3)计算ABC 的面积.26.如图,在平面直角坐标系中()3,2A -、()4,3B --、()1,1C --.(1)在图中作出ABC ∆关于y 轴对称的图形111A B C ∆;(2)写出1A 、1B 、1C 的坐标,分别是1A (____,_____)、1B (____,_____)、1C (____,_____);(3)ABC ∆的面积是______________.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】直接利用轴对称图形的定义得出符合题意的答案.【详解】解:A、,是轴对称图形,故此选项错误;B、,是轴对称图形,故此选项错误;C、,不是轴对称图形,故此选项正确;D、,是轴对称图形,故此选项错误;故选:C.【点睛】本题考查了轴对称图形,正确把握轴对称图形的定义是解题的关键.2.B解析:B【分析】根据轴对称图形的概念对各图形分析判断即可得解.【详解】第一个图形不是轴对称图形,第二个图形不是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,综上所述,是轴对称图形的有2个.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.B解析:B【分析】首先利用平行线的性质得出∠BMF=120°,∠FNB=80°,再利用翻折变换的性质得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,进而求出∠B的度数以及得出∠F的度数.【详解】∵MF∥AD,FN∥DC,∠A=120°,∠C=80°,∴∠BMF=120°,∠FNB=80°,∵将△BMN沿MN翻折得△FMN,∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,∴∠F=∠B=180°-60°-40°=80°,故选B.【点睛】主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.4.B解析:B【分析】由轴对称的性质可求出∠EFC的度数,可由式子∠EFC+∠EFC'-180°直接求出∠DFC'的度数.【详解】解:由翻折知∠EFC=∠EFC'=105°,∴∠EFC+∠EFC'=210°,∴∠DFC'=∠EFC+∠EFC'-180°=210°-180°=30°.故选:B.【点睛】本题考查了翻折变化(轴对称)的性质及角的计算,解题关键是熟练掌握并能够灵活运用轴对称变换的性质等.5.C解析:C【分析】根据轴对称图形的定义以及性质进行判断即可.【详解】A. 属于轴对称图形,正确;B. 属于轴对称图形,正确;C. 不属于轴对称图形,错误;D. 属于轴对称图形,正确;故答案为:C.【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的定义以及性质是解题的关键.6.C解析:C【分析】直接利用轴对称图形的性质分别得出符合题意的答案.【详解】符合题意的三角形如图所示:满足要求的图形有6个故选:C【点睛】本题主要考查利用轴对称来设计轴对称图形,关键是要掌握轴对称的性质和轴对称图形的含义.7.B解析:B【分析】由题意利用互余的定义和平行线的性质以及轴对称的性质,进行综合分析求解.【详解】,解:∵∠A′BC=20°,DC BC∴∠BA′C=70°,∴∠DA′B=110°,∴∠DAB=110°,∵AD//BC,∴∠ABC=70°,∴∠ABA′=∠ABC-∠A′BC=70°-20°=50°,∵∠A′BD=∠ABD,∠ABA′=25°.∴∠A′BD=12故选:B.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变进行分析.8.A解析:A【分析】根据轴对称的定义,找出成轴对称的字,即可解答.【详解】在汉字“生活中的日常用品”中,成轴对称的字有“中、日、品”3个;故选A.【点睛】本题考查轴对称,解题关键是熟练掌握轴对称的定义.9.D解析:D【分析】连接AE ,由三角形的中线将三角形面积分成相等的两部分,用m 表示出△AEG 的面积,再由等高三角形面积比等于底边之比求解即可.【详解】解:如图,连接AE ,设1CEG S =,则FCD Sm =, ∵F 为AD 的中点, 2ACD ACB SS m ∴==, 1AEG S m ∴=- ∴1AEG CEG S AG m CG S==-故选:D.【点睛】 本题主要考查了与三角形中线有关的面积问题,掌握三角形的中线将三角形面积分成相等的两部分是解题的关键.10.B解析:B【分析】BB′的延长线交A′C′于E ,如图,根据轴对称的性质得到DB′=DB ,BB′⊥AC ,BC=BC′,AB=A′B ,则可判断△ABC ≌△A′BC′,所以∠C=∠A′C′B ,AC=A′C′,则AC ∥A′C′,所以DE ⊥A′C′,且BD=BE ,即B′E=3BD ,然后利用三角形面积公式可得到S △A′B′C′=3S △ABC .【详解】BB ′的延长线交A ′C ′于E ,如图,∵点B关于AC的对称点是B',∴DB′=DB,BB′⊥AC,∵点C关于AB的对称点是C',∴BC=BC′,∵点A关于BC的对称点是A',∴AB=A′B,而∠ABC=∠A′BC′,∴△ABC≌△A′BC′(SAS),∴∠C=∠A′C′B,AC=A′C′,∴AC∥A′C′,∴DE⊥A′C′,而△ABC≌△A′BC′,∴BD=BE,∴B′E=3BD,∴S△A′B′C′=12A′C′×B′E=3×12×BD×AC=3S△ABC=3×1=3.故选:B.【点睛】本题考查了轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.11.A解析:A【分析】根据轴对称图形的概念求解.【详解】A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,折叠后两边可重合.12.D解析:D【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等.【详解】解:由折叠可知∠DAF=∠D′AF ,∠B′AE=∠B′AD′,由题意可知:∠DAF+∠D′AF+∠BAE+∠B′AE -∠B′AD′=∠BAD ,∵∠B′A D′=16°∴可得:2×(∠B′FA +∠B′A D′)+2×(∠D′AE +∠B′A D′)-16°=90°则∠B′FA+∠D′AE +∠B′A D′=∠EAF=37°故选D.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.二、填空题13.【分析】先作点B 关于x 轴对称的点B 连接AB 交x 轴于P 则点P 即为所求根据待定系数法求得直线为y=-x-1进而得到点B 的坐标以及点B 的坐标再根据待定系数法求得直线AB 的解析式即可得到点P 的坐标【详解】作 解析:1,03⎛⎫ ⎪⎝⎭【分析】先作点B 关于x 轴对称的点B',连接AB',交x 轴于P ,则点P 即为所求,根据待定系数法求得直线为y=-x-1,进而得到点B 的坐标以及点B'的坐标,再根据待定系数法求得直线AB'的解析式,即可得到点P 的坐标.【详解】作点B 关于x 轴对称的点B ',连接AB ',交x 轴于P ,则点P 即为所求,设直线y x =-沿y 轴向下平移后的直线解析式为y x a =-+把()1,2A -代入可得,1a =-,则平移后的直线为1y x =--,令0x =,则1y =-,即()01B -,所以()0,1B设直线AB 的解析式为y kx b =+,把()1,2A -,()0,1B 代入可得,3k =-,1b =所以31y x =-+令0y =,则13x =所以P 1,03⎛⎫ ⎪⎝⎭. 故答案为:1,03⎛⎫ ⎪⎝⎭【点睛】本题考查了一次函数图象上点的坐标特征,轴对称-最短路线问题,涉及到待定系数法求解析式,解题的关键是利用轴对称找出所求的点P 的位置.14.8【分析】根据题意求出第五次操作后剩余长方形的长和宽的表达式根据题意列出关于a 的方程即可求解【详解】∵第一次操作后长方形纸片的长为a(cm)宽为(126-a )cm ;第二次操作后长方形纸片的长为(12解析:8【分析】根据题意求出第五次操作后,剩余长方形的长和宽的表达式,根据题意,列出关于a 的方程,即可求解.【详解】∵第一次操作后长方形纸片的长为a( cm),宽为(12.6-a )cm ;第二次操作后长方形纸片的长为(12.6-a )cm ,宽为(2a-12.6)cm ;第三次操作后长方形纸片的长为(2a-12.6)cm ,宽为(25.2-3a )cm ;第四次操作后长方形纸片的长为(25.2-3a )cm ,宽为(5a-37.8)cm ;第五次操作后长方形纸片的长为(5a-37.8)cm ,宽为(63-8a )cm ; 又∵第五次操作后,剩下图形的长与宽之比为2:1,∴5a-37.8=2×(63-8a ),解得:a=7.8.故答案是:7.8【点睛】本题主要考查折叠的性质以及一元一次方程的应用,根据题意找出等量关系,列出方程,是解题的关键.15.70【分析】根据两直线平行同位角相等得到再由折叠的性质得到则问题得解【详解】由下图可知//又由折叠的性质得到且故答案为:70【点睛】本题考查平行线的性质折叠问题与角的计算需要计算能力和逻辑推理能力属 解析:70【分析】根据两直线平行同位角相等得到240∠=︒,再由折叠的性质得到34∠=∠,则问题得解.【详解】由下图可知BE //AF1240∴∠=∠=︒又由折叠的性质得到34∠=∠,且234180∠+∠+∠=︒180234702︒-∠∴∠=∠==︒ 故答案为:70.【点睛】本题考查平行线的性质、折叠问题与角的计算,需要计算能力和逻辑推理能力,属中档题. 16.90°【分析】根据折叠的性质可知∠MEB=∠MEB/∠NEA=∠NEA/即可求得∠MEN 的度数【详解】∵∠BEF 对折点B 落在直线EF 上的点B/;将∠AEF 对折点A 落在直线EF 上的点A/∴∠MEB=∠解析:90°【分析】根据折叠的性质,可知,∠MEB=∠MEB /,∠NEA=∠NEA /,即可求得∠MEN 的度数.【详解】∵∠BEF 对折,点B 落在直线EF 上的点B /;将∠AEF 对折,点A 落在直线EF 上的点A / ∴∠MEB=∠MEB /,∠NEA=∠NEA /,∴∠MEN=∠MEB /+∠NEA /=°°111809022AEB ∠=⨯=. 【点睛】本题主要考查折叠的性质,掌握角的和差倍分运算,是解题的关键. 17.【分析】如图根据平行线的性质可得∠1=∠2根据折叠的性质可得∠3=∠2+再利用平角等于180°得到关于的方程然后求解即可【详解】解:∵纸片两边平行∴∠1=∠2=44°由于折叠∴∠3=∠2+∴∠2+2解析:68︒【分析】如图,根据平行线的性质可得∠1=∠2,根据折叠的性质可得∠3=∠2+α∠,再利用平角等于180°得到关于α的方程,然后求解即可.【详解】解:∵纸片两边平行,∴∠1=∠2=44°,由于折叠,∴∠3=∠2+α∠,∴∠2+2α∠=180°,∴α∠=68°.故答案为:68°.【点睛】本题主要考查平行线的性质,折叠的性质,解此题的关键在于熟练掌握其知识点. 18.【分析】先根据折叠的性质求出∠B′EM根据邻补角求出∠AEA′再根据折叠的性质即可求出∠AEN【详解】解:根据折叠可知:EM平分∠BEB′∴∠B′EM=∠BEM=62°15′∴∠AEA′=180°-解析:2745'︒【分析】先根据折叠的性质求出∠B′EM,根据邻补角求出∠AEA′,再根据折叠的性质即可求出∠AEN.【详解】解:根据折叠可知:EM平分∠BEB′,∴∠B′EM=∠BEM=62°15′,∴∠AEA′=180°-2×62°15′=55°30′,EN平分∠AEA′,∴∠AEN=∠A′EN=12∠AEA′=12×55°30′=27°45′,故答案为:27°45′.【点睛】本题考查了折叠的性质,邻补角的定义,以及角的计算、度分秒的换算,解决本题的关键是掌握折叠的性质.19.5【分析】作DF⊥AB于F根据角平分线的性质得到DE=DF根据三角形的面积公式计算即可;【详解】如图:作DF⊥AB于F∵BD平分∠ABCDE⊥BCDF⊥AB∴DE=DF∴×AB×DF+×BC×DE=解析:5【分析】作DF⊥AB于F,根据角平分线的性质得到DE=DF,根据三角形的面积公式计算即可;【详解】如图:作DF⊥AB于F,∵ BD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF,∴12×AB×DF+12×BC×DE=ABCS,即12×AB×2+12×7×2=12,解得:AB=5.故答案为:5.【点睛】本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键;20.12【分析】根据题意利用翻折不变性可得AE=ACCD=DE进而利用DE+BD+BE=CD+BD+E=BC+BE即可解决问题【详解】解:由翻折的性质可知:AE=ACCD=DE且AB=10AC=6BC=解析:12【分析】根据题意利用翻折不变性可得AE=AC,CD=DE进而利用DE+BD+BE=CD+BD+E=BC+BE即可解决问题.【详解】解:由翻折的性质可知:AE=AC,CD=DE,且AB=10,AC=6,BC=8,∴BE=AB-AE=10-6=4,∴△BDE的周长=DE+BD+BE=CD+BD+E=BC+BE=8+4=12.故答案为:12.【点睛】本题考查翻折变换,解题的关键是熟练掌握翻折变换的性质.三、解答题21.28°【分析】在△ABC中,利用三角形内角和定理可求出∠BAC的度数,结合角平分线的定义可得出∠BAD的度数,在△ABD中,利用三角形外角性质可求出∠PDE的度数,再在△PDE中利用三角形内角和定理可求出∠P 的度数.【详解】解:在ABC 中,80ACB ∠=︒,24B ∠=︒,18076BAC ACB B ∴∠=︒-∠-∠=︒. AD 平分BAC ∠, 1382BAD BAC ∴∠=∠=︒. PDE ∠是ABD △的外角,243862PDE B BAD ∴∠=∠+∠=︒+︒=︒,PE BC ⊥于E ,90PED ∴∠=︒,906228P ∴∠=︒-︒=︒.【点睛】本题考查了三角形内角和定理、角平分线的定义以及对顶角,利用三角形内角和定理及角平分线的定义,求出∠ADC 的度数是解题的关键.22.(1)见解析;(2)见解析;(3)(2,3)【分析】(1)根据A ,C 两点坐标确定平面直角坐标系即可.(2)分别作出A ,B ,C 的对应点A 1,B 1,C 1的位置即可.(3)根据B 1的位置写出坐标即可.【详解】(1)平面直角坐标系如图所示:(2)如图,△A 1B 1C 1即为所求.(3)根据作图得,B 1(2,3).【点睛】本题考查作图-轴对称变换,平面直角坐标系等知识,解题的关键是灵活运用所学知识解决问题.23.'ACC ∆是等腰三角形 结论:不唯一,【分析】根据轴对称性质和等腰三角形定义可得,画出来的图形构成等腰三角形.【详解】'ACC ∆是等腰三角形结论:不唯一,【点睛】考核知识点:画轴对称图形.理解轴对称图形的性质.24.(1)图如解析所示;(2)图如解析所示,()121B ,;(3)4.【分析】(1)把根据A 、C 的坐标找出坐标原点,画出x 轴、y 轴即可.(2)分别找出A 、B 、C 三点关于y 轴的对称点,顺次连接起来即可.(3) △A 2B 2C 2和△ABC 是关于x 轴对称的图形,所以△A 2B 2C 2的面积等于△ABC 的面积,求出△ABC 的面积即可.【详解】解:(1)如下图所示(2)如图所示,()121B ,(3)△A 2B 2C 2的面积等于△ABC 的面积11=22+22=422ABC CBD ADCABC S S S S ∆∆∆∆=+⨯⨯⨯⨯ △A 2B 2C 2的面积为4.【点睛】本题主要考查的是作图中的轴对称变换,关键是确定组成图形的关键点的对称点位置. 25.(1)(-2,-1);(2)作图见解析;(3)4.5.【分析】(1)利用第三象限点的坐标特征写出C 点坐标;(2)利用关于y 轴对称的点的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可; (3)用一个矩形的面积分别减去三个三角形的面积可计算出△ABC 的面积.【详解】(1)C 点坐标为(-2,-1);(2)如图,△A 1B 1C 1为所作;(3)△ABC 的面积=5×3-12×5×2-12×2×1-12×3×3=4.5. 【点睛】 本题考查了作图-对称轴变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.26.(1)如图所示,见解析;(2)3,2;4,-3;1,-1;(3)132. 【分析】(1)根据网格结构找出点A 、B 、C 关于y 轴的对称点111A B C 、、的位置,然后顺次连接即可;(2)由点关于y 轴对称点的特点填空即可;(3)根据△ABC 所在的矩形的面积减去四周三个直角三角形的面积列式计算即可得解.【详解】(1)如图所示:(2)A 1(3,2),B 1(4,-3),C 1(1,-1),故答案为3,2;4,-3;1,-1;(3)S△ABC=5×3-12×5×1-12×2×3-12×2×3=132.故答案为:132.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.。
北师大版七年级数学下册第五章《生活中的轴对称》测试卷(含答案)

北师大版七年级数学下册第五章《生活中的轴对称》测试卷(含答案)一、选择题(每题3分,共30分)1.下列各选项中左边的图形与右边的图形成轴对称的是( )2.下面四个选项中的图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )3.下列轴对称图形中,对称轴最多..的是( )A.正方形 B.等边三角形C.等腰三角形 D.线段4.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数是( )A.30° B.40°C.45° D.60°5.如图,在△ABC中,AB的垂直平分线交AC于点E,若AE=2,则B,E两点间的距离是( )A.2 B.3 C.4 D.56.能用无刻度直尺,直接准确画出下列轴对称图形的所有对称轴的是( )7.下列说法正确的是( )A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴8.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,E为OP上一点,则下列结论中错误..的是( )A.CE=DE B.∠CPO=∠DEPC.∠CEO=∠DEO D.OC=OD9.如图,有一张直角三角形纸片,两直角边AC=5 cm,BC=10 cm,将△ABC折叠,使点B与点A重合,折痕为DE,则△ACD的周长为( )A.10 cm B.12 cmC.15 cm D.20 cm10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.下面4个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题(每题3分,共30分)11.如图所示的图形中,对称轴的条数大于3的有________个.12.△ABC 和△A ′B ′C ′关于直线l 对称,若△ABC 的周长为12 cm ,△A ′B ′C ′的面积为 6 cm 2,则△A ′B ′C ′的周长为________,△ABC 的面积为________.13.已知等腰三角形的顶角是底角的4倍,则顶角的度数为________.14.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于D ,若CD =12BD ,点D 到边AB 的距离为6,则BC 的长是________.15.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E ,F 是AD 的三等分点,若△ABC 的面积为12 cm 2,则图中阴影部分的面积为__________.16.如图,AC ,BD 相交于点O ,AB ∥DC ,AB =BC ,∠D =40°,∠ACB =35°,则∠AOD =________.17.如图,这是一组按照某种规律摆放成的图案,则第2 021个图案________轴对称图形(填“是”或“不是”).18.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF=________.19.如图,在正方形网格中,阴影部分是涂灰7个小正方形所形成的图案,再将网格内空白的一个小正方形涂灰,使得到的新图案成为一个轴对称图形的涂法有________种.20.两组邻边分别相等的四边形我们称它为筝形.如图,在四边形ABCD中,AB=AD,BC=DC,AC与BD相交于点O,下列判断正确的有__________(填序号).①AC⊥BD;②AC,BD互相平分;③CA平分∠BCD;④∠ABC=∠ADC=90°;⑤筝形ABCD的面积为12 AC·BD.三、解答题(21题8分,26题12分,其余每题10分,共60分) 21.把图中的图形补成轴对称图形,其中MN,EF为各图形的对称轴.22.如图,D为△ABC的边BC的延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB,且CF交AB于点F,试判断CE与CF的位置关系.23.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,∠DAE与∠DAC的度数比为2∶1,求∠B的度数.24.如图,已知△ABC是等腰三角形,且AB=AC,D是△ABC外一点,连接AD,BD.已知AB=AD,AD∥BC,∠D=35°,求∠DAC的度数.25.如图,校园有两条路OA,OB,在交叉口附近有两块宣传牌C,D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你画出灯柱的位置点P,并说明理由.26.如图①,△ABC为等腰直角三角形,∠BAC=90°,点D为直线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD 左侧作等腰直角三角形ADE,连接CE.(1)当点D在线段BC上时(不与点B重合),线段CE和BD的数量关系与位置关系分别是什么?请给予说明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图②中画出相应的图形,并说明理由.参考答案一、1.C 2.D 3.A 4.B 5.A6.A 7.C 8.B 9.C 10.A二、11.312.12 cm;6 cm213.120°14.1815.6 cm216.75°点拨:因为AB=BC,所以∠BAC=∠ACB=35°.因为AB∥CD,所以∠ABD=∠D=40°.所以∠AOB=180°-35°-40°=105°.所以∠AOD=180°-105°=75°.17.是18.60°点拨:因为AB=BC=CD=DE=EF,所以∠BCA=∠A =15°.所以∠ABC=150°.所以∠CBD=∠CDB=30°.所以∠ACD=135°.所以∠CED=∠ECD=45°.所以∠ADE=120°.所以∠EDF=∠EFD=60°.所以∠DEF=60°.19.320.①③⑤三、21.解:如图所示.22.解:因为CD=CA,E是AD的中点,所以∠ACE=∠DCE.因为CF平分∠ACB,所以∠ACF=∠BCF.因为∠ACE+∠DCE+∠ACF+∠BCF=180°,所以∠ACE+∠ACF=90°,即∠ECF=90°.所以CE⊥CF.23.解:设∠DAC=x,则∠DAE=2x.因为DE是AB的垂直平分线,所以DA=DB.所以∠B=∠DAB=2x.因为∠C=90°,所以2x+(2x+x)=90°,x=18°.所以∠B=36°.24.解:因为AD∥BC,所以∠D=∠DBC,∠DAC=∠ACB.因为AB=AC=AD,所以∠D=∠ABD,∠ACB=∠ABC=∠ABD+∠DBC=2∠D=2×35°=70°.所以∠DAC=70°.25.解:如图,到∠AOB两边距离相等的点在这个角的平分线上,而到宣传牌C,D的距离相等的点则在线段CD的垂直平分线上,故它们的交点P 即为所求.26.解:(1)CE =BD ,且CE ⊥BD .说明:由题可知AC =AB ,AE =AD .因为∠EAD =∠BAC =90°,所以∠EAD -∠CAD =∠BAC -∠CAD ,即∠EAC =∠DAB .在△ACE 和△ABD 中,⎩⎪⎨⎪⎧AC=AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS).所以CE =BD ,∠ECA =∠DBA .所以∠ECD =∠ECA +∠ACD =∠DBA +∠ACD =180°-90°=90°.所以CE ⊥BD .(2)(1)的结论仍然成立.理由如下:画出的图形如图所示.由题可知AC =AB ,AE =AD .因为∠CAB =∠DAE =90°,所以∠CAB +∠CAD =∠DAE +∠CAD ,即∠CAE =∠BAD .在△ACE 和△ABD 中,⎩⎪⎨⎪⎧AC =AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS).所以CE =BD ,∠ACE =∠B .所以∠BCE =∠ACE +∠ACB =∠B +∠ACB =180°-90°=90°. 所以CE ⊥BD .。
生活中的轴对称 检测题

生活中的轴对称 检测题一、选择题1. 下列图形中,是轴对称图形的有 ( )A.1个B.2个C.3个2.从镜子中看到钟的时间是8点25分,正确的时间应是几点?( )A.3点25分B.3点30分C.3点35分 D.3点45分3. 下列图案中,有且只有三条对称轴的是( )4. 下列图形中,是轴对称图形的有( )个.①角;②线段;③等腰三角形;④等边三角形;⑤三角形 .A.1个 B.2个 C. 3个 D.4个5.如右图,在桌面上竖直放置两块镜面相对的平面镜,在两镜之间放一个小皮球,那么在两镜中小皮球的像共有( )个A.1个 B.2个 C.4个 D.无数个6.等腰三角形的一个角为100°,则它的底角为( )A.100°B.40°C.100°或40°D.不能确定二.填空题:7.小明衣服上的号码在镜子中如图,则小明衣服上的实际号码为 .8.我国传统的土木结构房屋中,窗子常用各种图案装饰,如图所示是一种常见的装饰图方案,这个图案共有 条对称轴. 9.一辆汽车的牌照在车下方水坑中的像是则这辆汽车的牌照号码应为 . 10. 举出你知道的轴对称图形(不少于4个), .11. 把一张写有“A 、B 、C 、D 、E 、1、2、3、4、5”字母和数字字样的长方形纸条,平放在一张平面镜前的桌子上,则镜子里纸条上的字母和数字不改变的是 .12.如下图,由小正方形组成的L 形图中,请你用三种方法分别在图中添一个小正方形,使它成为轴对称图形.13.以给定图形“○○、△△、 ”(两个圆、两个等边三角形、两条平行线段)为构件,构思独特且有意义的轴对称图形.举例:如图,左框中是符合要求的一个图形。
你还能构思出.5题 B A C D 8题解说词:两盏电灯 解说词三、解答题(共60分)14.请分别补充下列轴对称图形的另一部分.(虚线为对称轴)⑴ ⑵ ⑶15. 用若干根火柴可以摆出一些优美的图案,下图是用火柴棒摆成的一个图案,此图案的含义是天平(或公平),请你用5根或5根以上的火柴棒摆成一个轴对称图案,并说明你画出的图案的含义 .图案:含义:16. 某汽车探险队要从A 城穿越沙漠去B 城,途中需要到河流L 边为汽车加水,汽车在河边。
精编北师大版七年级数学下册第五章《生活中的轴对称》单元测试卷(5套试题)含答案

第五章《生活中的轴对称》单元测试卷1一、选择题1.下列说法中,不正确的是 ( )A.等腰三角形底边上的中线就是它的顶角平分线B.等腰三角形底边上的高就是底边的垂直平分线的一部分C.一条线段可看作以它的垂直平分线为对称轴的轴对称图形D.两个三角形能够重合,它们一定是轴对称的2.下列推理中,错误的是 ( )A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形3.在等边三角形ABC中,CD是∠ACB的平分线,过D作DE∥BC交AC于E,若△ABC的边长为a,则△ADE的周长为 ( )4A.2a B.a3C.1.5a D.a4.等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是( )A.9cm B.12cmC.9cm和12cm D.在9cm与12cm之间5.观察图7—108中的汽车商标,其中是轴对称图形的个数为 ( )A.2B.3C.4D.56.对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点;(4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为 ( )A .0B .1C .2D .37.△ABC 中,AB =AC ,点D 与顶点A 在直线BC 同侧,且BD =AD .则BD 与CD 的大小关系为 ( )A .BD >CDB .BD =CDC .BD <CDD .BD 与CD 大小关系无法确定8.下列图形中,不是轴对称图形的是 ( ) A .互相垂直的两条直线构成的图形 B .一条直线和直线外一点构成的图形C .有一个内角为30°,另一个内角为120°的三角形D .有一个内角为60°的三角形9.在等腰△ABC 中,AB =AC ,O 为不同于A 的一点,且OB =OC ,则直线AO 与底边BC 的关系为 ( )A .平行B .垂直且平分C .斜交D .垂直不平分10.三角形的三个顶点的外角平分线所在的直线两两相交,所围成的三角形一定是 ( )A .锐角三角形B .钝角三角形C .等腰三角形D .直角三角形二、填空题1.正五角星形共有_______条对称轴. 2.黑板上写着在正对着黑板的镜子里的像是__________.3.已知等腰三角形的腰长是底边长的34,一边长为11cm ,则它的周长为________. 4.(1)等腰三角形,(2)正方形,(3)正七边形,(4)平行四边形,(5)梯形,(6)菱形中,一定是轴对称图形的是_____________.5.如果一个图形沿某一条直线折叠后,直线两旁的部分能够_______,那么这个图形叫做轴对称图形,这条直线叫做___________.6.如图7—109,在△ACD中,AD=BD=BC,若∠C=25°,则∠ADB=________.7.已知:如图7—110,△ABC中,AB=AC,BE∥AC,∠BDE=100°,∠BAD=70°,则∠E =_____________.8.如图7—111,在Rt△ABC中,B为直角,DE是AC的垂直平分线,E在BC上,∠BAE:∠BAC=1:5,则∠C=_________.9.如图7—112,∠BAC=30°,AM是∠BAC的平分线,过M作ME∥BA交AC于E,作MD⊥BA,垂足为D,ME=10cm,则MD=_________.10.如图7—113,OE是∠AOB的平分线,BD⊥OA于D,AC⊥BO于C,则关于直线OE对称的三角形有________对.三、解答题1.如图7—114,∠XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.2.如图7—115,图中的图形是轴对称图形吗?如果是轴对称图形,请作出它们的对称轴.3.已知∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,求PQ之长.4.如图7—116,在△ABC中,C为直角,∠A=30°,CD⊥AB于D,若BD=1,求AB之长.5.如图7—117,在△ABC中,C为直角,AB上的高CD及中线CE恰好把∠ACB三等分,若AB=20,求△ABC的两锐角及AD、DE、EB各为多少?6.如图7—118,AD、BE分别是等边△ABC中BC、AC上的高.M、N分别在AD、BE的延长线上,∠CBM=∠ACN.求证:AM=BN.7.如图7—119,点G在CA的延长线上,AF=AG,∠ADC=∠GEC.求证:AD平分∠BAC.8.已知:如图7—120,等腰直角三角形ABC中,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足EA=CF.求证:DE=DF.参考答案一、1.D 2.B 3.C 4.B 5.C 6.C 7.D 8.D 9.B 10.A 二、1.5 2.3.cm 3121或cm 41214.等腰三角形,正方形,正七边形,菱形5.互相重合,对称轴 6.80° 7.50° 8.40° 9.5cm 10.4 三、1.分别以直线Ox ,Oy 为对称轴,作P 点的对应点P '和P '',连结P P '''交Ox 于M ,交Oy 于N 则PM +MN +NP 最短.如图所示.2.略 3.2 4.45.∠A=60°,∠B=30°,AD =5cm ,DE =5cm ,EB =10cm 6.先证△ENC≌△DMB(ASA ), ∴ DM=EN. 再加上AD =BE 即可.7.∵ AF=AG ,∴ ∠G=∠AFG.又∵ ∠ADC=∠GEC,∴ AD∥GE.∴ ∠G=∠CAD. ∴ ∠AFG=∠BAD.∴ ∠CAD=∠BAD. ∴ AD 平分∠BAC.8.连结AD.在△ADF 和△BDE 中,可证得: BD =AD ,BE =AF ,∠B=∠D AF. ∴ △ADF≌△BDE.∴ DE=DF.第五章《生活中的轴对称》单元测试卷2选择题(每题5分,共30分)1、下列图形中,不是轴对称图形的是()A.等腰三角形 B.线段 C.钝角 D.直角三角形2、下列图案中,有且只有三条对称轴的是()3、等腰三角形一腰上的高与底边所成的角等于()A.顶角B.顶角的一半C.顶角的两倍D.底角的一半4、等腰三角形两边的长分别是2cm和5cm,则这个三角形的周长是( )A.9cmB.12cmC.9cm或12cmD.在9cm和12cm之间5、下列图案中,不能用折叠剪纸方法得到的是()6、将写有字母F的纸条正对镜面,则镜中出现的会是()二、填空题(每题5分,共25分)1、把一张纸对折,任意剪成一个形状,把它打开后所得到的图形关于这条折痕成______图形.2、我国传统木结构房屋,窗子常用各种图案装饰,如右图所示是一种常见的图案,这个图案有______条对称轴.3、前后两辆车,从前一辆的反光镜里看到后一辆车的车牌号是则后面这辆车的实际车牌号是___________.4、等腰三角形的三个内角与顶角相邻的一个外角之和是310°,则底角度数为________.5、如图,在△ABC 中,∠BAC=110°,PM 和QN 分别垂直平分AB 和AC ,则∠PAQ=_________. 三、画图题(每题5分,共10分)把下列各图补成以直线l 为对称轴的轴对称图形. 1、 2、四、解答题(第1题5分,第2、3、4题10分,共35分) 1、如图是由一个等腰三角形(AB=AC )和一个圆(O 为圆心)所成的轴对称图形,则AO 与BC 有怎样的位置关系?试说明理由。
生活中的轴对称检测

生活中的轴对称检测题姓名班级一、选择题(每小题3分,共24分)1.下列图形中不一定是轴对称图形的是 ( )(A) 直角三角形 (B) 线段 (C) 钝角 (D) 等腰三角形2.如果等腰三角形的周长为20,其中一边长为8,那么这个等腰三角形的底边长是( )(A) 6 (B) 4 (C) 4或6 (D) 123.下列图形中,轴对称图形的个数是()A.3个 B. 4个 C. 5个 D. 6个4.下列说法中,正确的是 ( )①等腰三角形一边上的中线也是这边上的高.②一条线段可看作以它的垂直平分线为对称轴的轴对称图形③等腰三角形顶角的平分线是它的一条对称轴.④两个三角形关于某条直线成轴对称,那么这两个三角形全等.A.1个B.2个C.3个D.4个5、将一个正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形,将纸片展开,得到的图形是()6.如图14-18所示,下列图案中,是轴对称图形的是( )A.(1)(2)B.(1)(3)C.(1)(4)D.(2)(3)7、正六边形有多少条对称轴()A.1条B.3条C.6条 D,无数条8.到三角形的三个顶点距离相等的点是 ( )A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点二、填空题(每小题3分,共27分)9、如图,MP,NQ 分别垂直平分AB,AC,且BC=16cm,则APQ ∆的周长为10、如图,AE//BD,C 是BD 上的点,且AB=BC, ACD ∠=110︒,则EAB ∠= 度.11、如右图,由小正方形组成的“L ”形图中,请你在图中添加一个小正方形使它成为轴对称图形12、如图所示,两个三角形关于某条直线对称,则α= .13、等腰三角形的一内角等于30°,则其它两个内角各为 .14、等腰三角形的两边的边长分别为4cm 和9cm ,则第三边的长是 cm .15、如图,已知在中,AB=AC,AD=BD=BC,求A ∠= 度16.小强从镜子中看到的电子表的读数如图所示,则电子表的实际读数是.B 17.仔细观察下列图案,并按规律在横线上画出合适的图形.第16题图BE三、耐心做一做:(每题6分,共18分)18、如图,某市有一块由三条马路围成的三角形绿地,现准备在其中建一个小亭供人们小憩,使小亭中心到三条马路的距离相等,请用尺规作出小亭中心的位置. A B C AB C19、如图,请用尺规做出BC 边上的中线.20、两个班级的学生分别在如图中的M ,N 两处参加植树劳动,现在要在道路AB 、AC 的交叉区域内设一个茶水供应点P ,使P 到两条道路的距离相等,且PN=PM ,请用尺规在示意图上找出这个点的位置;(保留画图痕迹)。
生活中的轴对称 测试题

l O DC BA 图2B C 3050图1 D C B A 图3 A C D EB 图4 图7第五章 生活中的轴对称 测试题一、选择题1.在线段、直线、射线、角、等腰三角形、任意的一个三角形、五角星这些图形中,轴对称图形有( )A .6个B .5个C .4个D .3个2. 下列图案中,有且只有三条对称轴的是( )3.下列说法中正确的是( )A.①②③④ B.①②③ C. ②③④ D. ②④① 角平分线上任意一点到角的两边的线段长相等 ②角是轴对称图形③线段不是轴对称图形 ④ 线段垂直平分线上的点到这条线段两个端点的距离相等4.下列说法正确的是( )A.任何一个图形都有对称轴 B. 两个全等三角形一定关于某条直线对称C. 点A ,点B 在直线m 两旁,且AB 与直线m 交于点O ,若AO =BO ,则点A 与点B 关于直线m 对称D. 若△ABC 与△DEF 成轴对称,则△ABC ≌△DEF5.下列说法中错误的是( ) A .两个关于某直线对称的图形一定能够完全重合B .对称图形的对称点一定在对称轴的两侧C .成轴对称的两个图形,其对应点的连线的垂直平分线是它们的对称轴D .平面上两个能够完全重合的图形不一定关于某直线对称 6.如右图,△ABC 中,AB=AC,D 是BC 的中点,则下列结论中不正确...的是( ) A.∠B=∠C B. AD 平分∠BAC C. AB=2BD D. AD ⊥BC 第6题图 7、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ). 第7题图A .1个B .2个C .3个D .4个8. 如图1,△ABC 与△A /B /C /关于直线l 对称,则∠B 的度数为( )A .30° B .50° C .90° D .100°9.如图2,把长方形ABCD 沿EF 对折后使两部分重合,若∠1=50°,则∠AEF=( )A.110°B.115°C.120°D.130°10.如图3,AB=AC,BD=BC,若∠A=40°,则∠ABD 的度数是( )A .20° B .30° C .35° D .40°11.如图4,在△ABC 中,AB=AC ,∠A=36°,AB 的中垂线DE 交AC 于D ,交AB 于E ,下述结论错误..的是( ) A .BD 平分∠ABC B .点D 是线段AC 的中点 C .AD=BD=BC D .△BDC 的周长等于AB+BC图5 12. 如图5,△ABC 中,∠BAC =100°,DF 、EG 分别是AB 、AC 的垂直平分线,则∠DAE 等于( )A. 50°B. 45°C. 30°D. 20°二、填空题1.等腰三角形的两个内角之比是1:2,那么这个等腰三角形的顶角度数为___________.2.ΔABC 和ΔA ’B’C’关于直线l 对称,若ΔABC 的周长为12cm ,ΔA’B’C’的面积为6cm 2,则ΔA’B’C’的周长为___________,ΔABC 的面积为_________。
初中数学生活中的轴对称综合题(含答案)

初中数学生活中的轴对称综合题一、单选题(共10道,每道10分)1.下列轴对称图形中,对称轴的条数为3个的图形是(__)A.圆B.等腰三角形C.正方形D.等边三角形答案:D试题难度:三颗星知识点:轴对称图形2.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且以格占为顶点的三角形,这样的三角形共有()个.A.2B.3C.4D.5答案:D试题难度:三颗星知识点:轴对称的性质3.如图,在△ABC中,点O是∠ABC的平分线与线段BC的垂直平分线OD的交点,OF⊥AB于点F,OE⊥AC于点E,则下列结论中不一定成立的是()A.OB=OCB.OD=OFC.OA=OB=OCD.BD=DC答案:C试题难度:三颗星知识点:角平分线的性质;垂直平分线的性质4.如图,已知线段AB的端点A在直线l上(AB与l不垂直)请在直线l上另找一点C,使△ABC 是等腰三角形,这样的点能找()个.A.1B.2C.3D.4答案:D试题难度:三颗星知识点:等腰三角形的判定5.如图,AB=AC,DE垂直平分AB,交AB与D,交AC于E,若∠A=38°,则∠EBC=____;若△ABC的周长等于28,BC=8,则△BCE的周长为(__)A.31°;28B.33°;20C.33°;18D.31°;20答案:C试题难度:三颗星知识点:等腰三角形的性质6.如图,四边形ABCD沿直线l对折后互相重合,如果AD∥BC,有下列结论:①AB∥CD②AB=CD③AB⊥BC④A O=OC,其中正确的结论有()A.1个B.2个C.3个D.4个答案:C试题难度:三颗星知识点:轴对称的性质7.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A. B.C. D.答案:B试题难度:三颗星知识点:翻折变换(折叠问题)8.如图,点P关于OA、OB的对称点分别为C、D,连结CD,交OA于M,交OB于N,若△PMN的周长=8厘米,则CD为()厘米.A.8B.4C.10D.6答案:A试题难度:三颗星知识点:翻折变换(折叠问题)9.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是(__)A.1号袋B.2号袋C.3号袋D.4号袋答案:B试题难度:三颗星知识点:轴对称的性质10.跟我学剪五角星:如图,先将一张长方形纸片按图①的虚线对折,得到图②,然后将图②沿虚线折叠得到图③,再将图③沿虚线BC剪下△ABC,展开即可得到一个五角星.若想得到一个正五角星(如图④,正五角星的5个角都是36°),则在图③中应沿什么角度剪即∠ABC的度数为(__)A.126°B.108°C.90°D.72°答案:A试题难度:三颗星知识点:剪纸问题。
生活中的轴对称(经典例题)

班级小组姓名成绩(满分120)一、轴对称现象(一)轴对称和轴对称图形(共4小题,每题3分,题组共计12分)例1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个例1.变式1.下列图形中对称轴最多是()A.圆B.正方形C.角D.线段例1.变式2.如图所示的图形是由棋子围成的正方形图案,图案的每条边有4个棋子,这个图案有条对称轴.例1.变式3.如图所示的方格纸中,请你把任意五个方格涂黑,使这五个方格构成一个轴对称图形(图形不能重复,至少设计三个)二、探索轴对称的性质(一)轴对称的性质(共4小题,每题3分,题组共计12分)例2.下列说法:①长方形的对称轴有两条;②角是轴对称图形,它的平分线就是它的对称轴;③两点关于连接它们的线段的垂直平分线对称.其中正确的有()A.1个B.2个C.3个D.0个例2.变式1.如图,△ABC与△A'B'C'关于直线l对称,且∠A=78°,∠C'=48°,则∠B的度数为()A.48°B.54°C.74°D.78°例2.变式2.如图所示,AC垂直平分线段BD,若AB=3cm,CD=5cm,则四边形ABCD的周长是()A.11cmB.13cmC.16cmD.18cm例2.变式3.如图,把一张长方形纸ABCD折叠,使点C与点A重合,折痕为EF.如果∠DEF=123°,那么∠BAF=.(三)轴对称的性质及应用(共4小题,每题3分,题组共计12分)例3.轴对称图形对应点连线被,对应角、对应线段都.例3.变式1.如图,∠AOB内有一点P,分别画出P关于OA,OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,若P1P2=5cm,则△PMN的周长为多少?例3.变式2.如图,将长方形纸片ABCD沿其对角线AC折叠,使点B落到点B'的位置,AB'与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.16B.19C.22D.25例3.变式3.如图,在△ABC中,∠ACB=90°,点D在边AB上,连接CD,将△BCD沿CD翻折得到△ECD,使DE∥AC,CE交AB于点F,若∠B=α,则∠ADC的度数是(用含α的代数式表示).三、简单的轴对称图形(一)等腰三角形的性质(共4小题,每题3分,题组共计12分)例4.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.腰上的高所在的直线D.顶角平分线所在的直线例4.变式1.等边三角形对称轴的条数是()A.1B.2C.3D.4例4.变式2.如图所示的正方形网格中,网格线的交点称为格点.已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6B.7C.8D.9例4.变式3.等腰三角形中有一个角是50°,那么这个等腰三角形的底角是.(二)等腰三角形的性质二(共4小题,每题3分,题组共计12分)例5.下列说法中正确的是()A.关于某条直线对称的两个三角形是全等三角形B.全等三角形一定是关于某条直线对称的C.两个图形关于某条直线对称,则这两个图形一定分别位于这条直线的两侧D.若A,B两点关于直线MN对称,则AB垂直平分MN例5.变式1.如图,BD是△ABC的角平分线,∠ABD=36°,∠C=72°,则图中的等腰三角形有个.例2.变式2.如图,在△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=.例5.变式3.有一个三角形的支架如图所示,AB=AC,小明过点A和BC边的中点D又架了一个细木条,经测量∠B=30°,你在不用任何测量工具的前提下,能得到∠BAD和∠ADC的度数吗?(三)线段和角的轴对称性(共4小题,每题3分,题组共计12分)例6.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,已知PE=3,则点P到AB的距离是()A.3B.4C.5D.6例6.变式1.如图所示,下列推理中正确的个数是()①因为OC平分∠AOB,点P,D,E分别在OC,OA,OB上,所以PD=PE;②因为P在OC上,PD⊥OA,PE⊥OB,所以PD=PE;③因为P在OC上,PD⊥OA,PE⊥OB,且OC平分∠AOB,所以PD=PE.A.0B.1C.3D.4例6.变式2.小明把一张长方形的纸对折了两次,如图所示,使A,B都落在DC上,折痕分别是DE,DF,则∠EDF的度数为.例6.变式3.如图,已知△ABC中,DE垂直平分AC,且交AC于点E,交BC于点D,△ABD的周长是20,AC=8,你能计算出△ABC的周长吗?(四)等腰(边)三角形的性质的综合应用(共4小题,每题3分,题组共计12分)例7.在△ABC中,若BC=AC,∠A=58°,则∠C=,∠B=.例7.变式1.等边三角形的两条中线相交所成的钝角度数是.例7.变式2.如图P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,则∠BAC=.例7.变式3.如图,已知△ABC中,∠C=90°,AC<BC,D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连接AD,若∠B=37°,求∠CAD的度数.(五)轴对称图形的综合运用(共4小题,每题3分,题组共计12分)例8.如图所示,△ABC中,∠B与∠C的平分线相交于点O,过点O作MN∥BC,分别交AB,AC于点M,N,若AB=6cm,AC=9cm,BC=12cm,则△AMN的周长为.例8.变式1.如图所示,将两个全等的有一个角为30°的直角三角形拼在一起,其中两条较长直角边在同一条直线上,则图中等腰三角形有个.例8.变式2.如图所示,在△ABC中,AB=AC,AD⊥BC于D,AB+AC+BC=50cm,AB+BD+AD=40cm,则AD=cm.例8.变式3.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;照这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=.(六)轴对称图形的综合运用二(共4小题,每题3分,题组共计12分)例9.如图,D,E是△ABC的BC边上的两点,且BD=DE=EC=AD=AE,求∠BAC的度数.例9.变式1.如图,∠1=∠2,AE⊥OB于点E,BD⊥OA于点D,AE,BD交于点C,试说明AC=BC.例9.变式2.如图所示,△ABC是等边三角形,点D是AC的中点,DE∥AB,AE∥BC,DE与AE交于点E,点G是AE的中点,GF∥DE,EF∥AC,EF交GF于点F,若AB=4cm,则图形ABCDEFG的外围的周长是多少?例9.变式3.如图,△ABC中,AB=2AC,∠1=∠2,DA=DB,你能说明DC⊥AC吗?四、利用轴对称进行设计(共4小题,每题3分,题组共计12分)例10.如图,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形例10.变式1.如左下图,将一张正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个大小相等的圆洞,最后将正方形纸片展开,得到的图案是右下图中的()例10.变式2.当你面对镜子的时候,右手拿笔向左挥动,对于镜子中的像来说是()A.右手拿笔,向右挥动B.左手拿笔,向左挥动C.右手拿笔,向左挥动D.左手拿笔,向右挥动例10.变式3.某一车牌在平面镜中的像是,则这辆车的实际号码是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B.关于某直线对称的两个图形全等 C.面积相等的两个三角形对称
D.轴对称指的是两个图形沿着某一直线对折后重合
13.如图,下列图案是我国几家银行的标志,其中不是轴对称图形的
有( )
14.线段AB和CD互相垂直平分于O点,且OC=AB,顺次连结A、D、 B、C,那么图中的等腰直角三角形共有( )
A.4个 B.6个 C.8个 D.10个 三、指出下列图形中的轴对称图形,并画出它们的对称轴. 五.今天是2003年9月1日,小明拿起一盒牛奶刚要喝,妈妈说:“儿 子,牛奶保质期过了,别喝了”,小明从镜子里看到保质期的数字是,
二、选.( )
12.下列图形中,不是轴对称图形的是( )
A.角 B.等边三角形 C.线段 D.不等边三角形
6.两个图形关于某直线对称,对称点一定在
A.这直线的两旁B.这直线的同旁 C.这直线上 D.这直线两旁或这
直线上
13.下列说法中错误的是
A.两个对称的图形对应点连线的垂直平分线就是它们的对称轴
图2
图3
8.等腰三角形的周长是25 cm,一腰上的中线将周长分为3∶2两部分,
则此三角形的底边长为_____.
9.如图3,OC平分∠AOB,D为OC上任一点,DE⊥OB于E,若DE=4
cm,则D到OA的距离为_____.
10.请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在
横线上的空白处填上恰当的图形.
《生活中的轴对称》测试题 班级 姓名 一、填空题 1.△ABC中,AD⊥BC于D,且BD=CD,若AB=3,则AC=_____. 2.等腰三角形的一个角为100°,则它的两底角为_____. 3.△ABC中,∠A=40°,∠B=70°,则△ABC为_____三角形.因为 . 4.底角等于顶角一半的等腰三角形是_____三角形,画出此三角形斜 边上的高,这时图中有_____个等腰三角形. 5.等腰三角形的周长为22 cm,其中一边的长是8 cm,则其余两边长分别 为_____. 6.26个大写英文字母中,有些字母可以看成轴对称图形,例如_ _(至少写出4个) 7.图2中三角形1与_____成轴对称图形,整个图形中共有_____条对称 轴.
图5
牛奶真的过期了吗?为什么?
六.如图,已知:△ABC中,BC<AC,AB边上的垂直平分线DE交AB 于D,交AC于E,AC=9 cm,△BCE的周长为15 cm,求BC的长.
七.以给定的图形“”(两个圆、两个三角形、两条平行线段)为构件,构思 独特且有意义的图形.举例:(如图5),左框中是符合要求的一个图形, 你还能构思出其他的图形吗?请在右框中画出与之不同的一个图形,并 写出一两句贴切、诙谐的解说词.