(完整版)高考数学复习综合练习题

合集下载

2024届高考数学复习:专项(参变分离法解决导数问题)练习(附答案)

2024届高考数学复习:专项(参变分离法解决导数问题)练习(附答案)

2024届高考数学复习:专项(参变分离法解决导数问题)练习一、单选题1.已知函数()e x b f x ax -=+(),a b ∈R ,且(0)1f =,当0x >时,()cos(1)f x x x >-恒成立,则a 的取值范围为( ) A .()0,+?B .()1e,-+∞C .(),e -∞D .()e,+∞2.若函数()ln x f x x x ae =+没有极值点,则实数a 的取值范围是( ) A .1,e ⎛⎫+∞ ⎪⎝⎭B .10,e ⎛⎫ ⎪⎝⎭C .1,e∞⎛⎤-- ⎥⎝⎦D .1,0e⎛⎫- ⎪⎝⎭3.若函数()24ln f x x x b x =-++在()0,∞+上是减函数,则b 的取值范围是( ) A .(],2-∞- B .(),2-∞-C .()2,-+∞D .[)2,-+∞4.已知函数()x ef x ex e -=+-(e 为自然对数的底数),()ln 4g x x ax ea =--+.若存在实数1x ,2x ,使得()()121f x g x ==,且211x e x ≤≤,则实数a 的最大值为( ) A .52eB .25e e + C .2e D .1 5.设函数()1axf x xe x-=-在()0,∞+上有两个零点,则实数a 的取值范围( )A .2,e ⎛⎫-∞ ⎪⎝⎭B .()1,eC .12,e e ⎛⎫⎪⎝⎭D .20,e ⎛⎫ ⎪⎝⎭6.已知关于x 的方程()22ln 2x x x k x +=++在1,2⎡⎫+∞⎪⎢⎣⎭上有两解,则实数k 的取值范围为( )A .ln 21,15⎛⎤+ ⎥⎝⎦B .9ln 21,105⎛⎤+ ⎥⎝⎦C .(]1,2D .(]1,e7.若函数()2sin cos cos =++f x x x x a x 在R 上单调递增,则实数a 的取值范围是( ) A .[]1,1-B .[]1,3-C .[]3,3-D .[]3,1--8.若关于x 的不等式(a +2)x ≤x 2+a ln x 在区间[1e,e ](e 为自然对数的底数)上有实数解,则实数a 的最大值是( ) A .﹣1B .12(1)-+ee eC .(3)1--e e e D .(2)1--e e e 9.已知函数()1xf x e x =--,()ln 1g x x ax =--(0a >,e 为自然对数的底数).若存在()00x ∈+∞,,使得()()000f x g x ⋅>,则实数a 的取值范围为( ) A .()0,1B .10,e ⎛⎫ ⎪⎝⎭C .210,e ⎛⎫ ⎪⎝⎭D .310,e ⎛⎫ ⎪⎝⎭10.已知函数()3x f x e ax =+-,其中a R ∈,若对于任意的12,[1,)x x ∈+∞,且12x x <,都有()21x f x ()()1212x f x a x x -<-成立,则a 的取值范围是( )A .[3,)+∞B .[2,)+∞C .(,3]-∞D .(,2]-∞11.已知函数()()()2122x x f x m e m R =+++∈有两个极值点,则实数m 的取值范围为( )A .10e ⎡⎤-⎢⎥⎣⎦B .111e⎛⎫--- ⎪⎝⎭C .1e ⎛⎫-∞- ⎪⎝⎭,D .()0+∞,12.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( ) A .()1,+∞ B .[)3,+∞ C .(],1-∞D .(],3-∞13.对于函数()f x ,把满足()00f x x =的实数0x 叫做函数()f x 的不动点.设()ln f x a x =,若()f x 有两个不动点,则实数a 的取值范围是( ) A .()0,eB .(),e +∞C .()1,+∞D .()1,e14.已知函数()xe f x ax x =-,()0,x ∈+∞,当21x x >时,不等式()()1221f x f x x x <恒成立,则实数a 的取值范围为( ) A .(],e -∞ B .(),e -∞C .,2e ⎛⎫-∞ ⎪⎝⎭D .,2e ⎛⎤-∞ ⎥⎝⎦二、多选题15.对于函数()2ln xf x x=,下列说法正确的是( )A .()f x 在x =12eB .()f x 有两个不同的零点C .()2f f f <<D .若()21f x k x<-在()0,∞+上恒成立,则2e k >16.关于函数()e cos xf x a x =-,()π,πx ∈-下列说法正确的是( ) A .当1a =时,()f x 在0x =处的切线方程为y x = B .若函数()f x 在()π,π-上恰有一个极值,则0a = C .对任意0a >,()0f x ≥恒成立D .当1a =时,()f x 在()π,π-上恰有2个零点三、解答题17.已知函数()ln f x a x ax =+-,且()0f x ≤恒成立.(1)求实数a 的值;(2)记()()h x x f x x =+⎡⎤⎣⎦,若m ∈Z ,且当()1,x ∈+∞时,不等式()()1h x m x >-恒成立,求m 的最大值.18.已知函数32()()f x ax bx x R =+∈的图象过点(1,2)P -,且在P 处的切线恰好与直线30x y -=垂直.(1)求()f x 的解析式;(2)若()()3g x mf x x =-在[1,0]-上是减函数,求m 的取值范围. 19.已知函数()()()21ln 1f x x a x x =-+-+(0a >).(1)讨论函数()f x 的单调性; (2)若关于x 的不等式()1ln x xf x x x-'≥在()1+∞,上恒成立,求实数a 的取值范围. 20.已知函数()212f x x =,()ln g x a x =. (1)若曲线()()y f x g x =-在2x =处的切线与直线370x y +-=垂直,求实数a 的值;(2)设()()()h x f x g x =+,若对任意两个不等的正数1x ,2x ,都有()()12122h x h x x x ->-恒成立,求实数a 的取值范围;(3)若[]1,e 上存在一点0x ,使得()()()()00001f xg x g x f x ''+<-'成立,求实数a 的取值范围.21.已知函数()ln 1f x x x =++,2()2g x x x =+. (1)求函数()()()h x f x g x =-在(1,(1))h 处的切线方程;(2)若实数m 为整数,且对任意的0x >时,都有()()0f x mg x -≤恒成立,求实数m 的最小值. 22.设函数()()xf x a x e =-.(1)求函数的单调区间;(2)若对于任意的[)0,x ∈+∞,不等式()2f x x ≤+恒成立,求a 的取值范围.23.已知函数()ln f x mx nx x =+的图象在点(),()e f e 处的切线方程为4y x e =-.(本题可能用的数据:ln 20.69≈, 2.71828e = 是自然对数的底数)(1)求函数()f x 的解析式;(2)若对任意(1,)x ∈+∞,不等式2[()1](1)f x t x ->-恒成立,求整数t 的最大值. 24.已知函数()()()1ln f x a x x a R =-+∈. (1)当1a =-时,求()f x 的极值;(2)设()()1F x f x =+,若()0F x <对[)1,x ∈+∞恒成立,求实数a 的取值范围. 25.已知函数323()2f x x ax =-+. (1)讨论函数()f x 的单调性; (2)设1a =,当12x ≥时,()()xf x x k e >-,实数k 的取值范围.参考答案一、单选题1.已知函数()e x b f x ax -=+(),a b ∈R ,且(0)1f =,当0x >时,()cos(1)f x x x >-恒成立,则a 的取值范围为( ) A .()0,+?B .()1e,-+∞C .(),e -∞D .()e,+∞【答案】B 【要点分析】 由()0e1bf -==,可得0b =,从而()e xf x ax =+,从而当0x >时,e cos(1)xa x x>--恒成立,构造函数()()e ,0,xs x x x=∈+∞,可得()()min 1e s x s ==,结合1x =时,cos(1)x -取得最大值1,从而e cos(1)xx x--的最大值为1e -,只需1e a >-即可.【答案详解】 由题意,()0e1bf -==,解得0b =,则()e x f x ax =+,则当0x >时,e cos(1)xax x x +>-,即e cos(1)xa x x>--恒成立,令()()e ,0,xs x x x =∈+∞,则()()2e 1x x s x x-'=, 当()0,1∈x 时,()0s x '<,()1,∈+∞x 时,()0s x '>, 所以()s x 在()0,1上是减函数,在()1,+?是增函数,()()min 1e s x s ==,又因为当1x =时,cos(1)x -取得最大值1,所以当1x =时,e cos(1)xx x--取得最大值1e -,所以1e a >-. 故选:B. 【名师点睛】关键点名师点睛:本题考查不等式恒成立问题,解题关键是将原不等式转化为e cos(1)xa x x>--,进而求出e cos(1)xx x--的最大值,令其小于a 即可.考查学生的逻辑推理能力,计算求解能力,属于中档题.2.若函数()ln x f x x x ae =+没有极值点,则实数a 的取值范围是( ) A .1,e ⎛⎫+∞ ⎪⎝⎭B .10,e ⎛⎫ ⎪⎝⎭C .1,e∞⎛⎤-- ⎥⎝⎦D .1,0e⎛⎫- ⎪⎝⎭【答案】C 【要点分析】先对函数求导,然后结合极值存在的条件转化为函数图象交点问题,分离参数后结合导数即可求解. 【答案详解】由题意可得,()1ln 0x f x x ae '=++=没有零点, 或者有唯一解(但导数在点的两侧符号相同),即1ln xxa e +-=没有交点,或者只有一个交点但交点的两侧符号相同. 令1ln ()x xg x e +=,0x >,则1ln 1()xx x g x e --'=, 令1()ln 1h x x x=--则()h x 在()0,∞+上单调递减且()10h =,所以当01x <<时,()0h x >,()0g x '>,()g x 单调递增, 当1x >时,()0h x <,()0g x '<,()g x 单调递减, 故当1x =时,()g x 取得最大值1(1)g e=, 又0x →时,()g x →-∞,x →+∞时,()0g x →, 结合图象可知,1a e -≥即1a e≤-. 故选:C.【名师点睛】方法名师点睛:已知函数没有极值点,求参数值(取值范围)常用的方法: (1)分离参数法:先求导然后将参数分离,转化成求函数的值域问题加以解决;(2)数形结合法:先求导然后对导函数变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.3.若函数()24ln f x x x b x =-++在()0,∞+上是减函数,则b 的取值范围是( )A .(],2-∞-B .(),2-∞-C .()2,-+∞D .[)2,-+∞【答案】A 【要点分析】2()4ln f x x x b x =-++在()0,∞+上是减函数等价于()'0f x ≤在()0,∞+上恒成立,利用分离参数求解即可. 【答案详解】∵2()4ln f x x x b x =-++在()0,∞+上是减函数,所以()'0f x ≤在()0,∞+上恒成立,即'()240bf x x x=-++≤,即224b x x ≤-, ∵22242(1)22x x x -=--≥-,∴2b ≤-,故选:A. 【名师点睛】本题主要考查“分离参数”在解题中的应用、函数的定义域及利用单调性求参数的范围,属于中档题. 利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间[],a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围. 4.已知函数()x ef x ex e -=+-(e 为自然对数的底数),()ln 4g x x ax ea =--+.若存在实数1x ,2x ,使得()()121f x g x ==,且211x e x ≤≤,则实数a 的最大值为( ) A .52eB .25e e + C .2eD .1【答案】C 【要点分析】根据()1f e =可求得22e x e ≤≤,利用()21g x =得到22ln 3x a x e +=+,将问题转化为()ln 3x h x x e+=+,2,x e e ⎡⎤∈⎣⎦的最大值的求解问题,利用导数求得()max h x ,从而求得结果.【答案详解】()01f e e e e =+-= ,1x e ∴=,又211x e x ≤≤且20x >,22e x e ∴≤≤, 由()21g x =,即22ln 41x ax ea --+=,整理得:22ln 3x a x e+=+,令()ln 3x h x x e+=+,2,x e e ⎡⎤∈⎣⎦,则()()()()()221ln 3ln 2ex e x x x x h x x e x e +-+--'==+-, e y x= 和ln y x =-在2,e e ⎡⎤⎣⎦上均为减函数, ln 2e y x x∴=--在2,e e ⎡⎤⎣⎦上单调递减,max 1ln 220y e ∴=--=-<, 即()0h x '<在2,e e ⎡⎤⎣⎦上恒成立,()h x ∴在2,e e ⎡⎤⎣⎦上单调递减,()()max ln 322e h x h e ee +∴===,即实数a 的最大值为2e .故选:C. 【名师点睛】本题考查导数在研究函数中的应用,解题关键是能够通过分离变量的方式将问题转化为函数最值的求解问题,进而利用导数求得函数最值得到结果. 5.设函数()1axf x xe x-=-在()0,∞+上有两个零点,则实数a 的取值范围( ) A .2,e ⎛⎫-∞ ⎪⎝⎭B .()1,eC .12,e e ⎛⎫⎪⎝⎭D .20,e ⎛⎫ ⎪⎝⎭【答案】D 【要点分析】令()0f x =,进行参变分离得()2ln >0x a x x =,设()()2ln >0xg x x x=,将问题等价于y = a 与()g x 在()0+∞,有两个交点.求导,要点分析导函数的正负得出函数()g x 的单调性,从而作出图象和最值,运用数形结合的思想可得选项. 【答案详解】令()0f x =,即10axxe x--=,解得()2ln >0x a x x =,设()()2ln >0x g x x x =,所以()f x 在()0+∞,有两个零点等价于y = a 与()g x 在()0+∞,有两个交点. 因为()()()2'21ln 0>0x g x xx -==,得x e =,所以()g x 在(0,e )上单调递增,在()e +∞,上单调递减,所以()()max 2g x g e e==. 如图所示,画出()g x 的大致图象。

2024届高考数学复习:精选历年真题、好题专项(二项式定理)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(二项式定理)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(二项式定理)练习一. 基础小题练透篇1.已知(2x +1)n 的展开式中,第三项和第四项的二项式系数相等,则n =( ) A .7 B .6 C .5 D .42.[2023ꞏ上海市月考]在⎝⎛⎭⎫x -1x 7的二项展开式中,系数最大的是第( )项A .3B .4C .5D .63.[2023ꞏ福建省莆田第一中学高三考试]在⎝⎛⎭⎫x -2x 6的展开式中,常数项为( )A .80B .-80C .160D .-160 4.[2023ꞏ福建省福州第八中学高三训练](x +2y )(x -y )5的展开式中的x 3y 3项系数为( ) A .30 B .10 C .-30 D .-105.[2023ꞏ重庆市检测]若(x 2+1)(4x +1)8=a 0+a 1(2x +1)+a 2(2x +1)2+…+a 10(2x +1)10,则a 1+a 2+…a 10等于( )A .2B .1C .54D .-146.[2023ꞏ江西省联考]已知(x +1)4+(x -2)8=a 0+a 1(x -1)+a 2(x -1)2+…+a 8(x -1)8,则a 3=( )A .64B .48C .-48D .-647.[2023ꞏ湖南省高三第一次大联考]设(1+2x )n =a 0+a 1x +a 2x 2+…+a n x n ,若a 5=a 6,则n =( )A .6B .7C .8D .98.[2023ꞏ云南省昆明市高三检测]若(3x +x )n 的展开式的所有项的系数和与二项式系数和的比值是32,则展开式中x 3项的系数是__________.二. 能力小题提升篇1.[2023ꞏ辽宁省凤城市月考]在(x -1)n 的二项展开式中,仅有第6项的二项式系数最大,则n =( )A .8B .9C .10D .112.[2023ꞏ江苏省常州市高三模拟 ]若(1-ax +x 2)(1-x )8的展开式中含x 2的项的系数为21,则a =( )A .-3B .-2C .-1D .13.[2023ꞏ上海市一模]二项式(x +13x)30的展开式中,其中是有理项的项数共有( )A .4项B .7项C .5项D .6项4.[2023ꞏ吉林省吉林市月考]若二项式⎝⎛⎭⎫12-x n 的展开式中所有项的系数和为164 ,则展开式中二项式系数最大的项为( )A .-52 x 3B .154 x 4 C .-20x 3 D .15x 45.[2023ꞏ浙江省高三联考](x-23x)6的展开式的中间一项的系数是__________.(用数字作答).6.[2023ꞏ浙江嘉兴检测]已知⎝⎛⎭⎫3x 2+1x n展开式中的各二项式系数的和比各项系数的和小240,则n =__________;展开式中的系数最大的项是________.三. 高考小题重现篇1.[2020ꞏ北京卷]在(x -2)5的展开式中,x 2的系数为( ) A .-5 B .5 C .-10 D .102.[2019ꞏ全国卷Ⅲ](1+2x 2)(1+x )4的展开式中x 3的系数为( ) A .12 B .16 C .20 D .243.[2022ꞏ新高考Ⅰ卷]⎝⎛⎭⎫1-yx (x +y )8的展开式中x 2y 6的系数为________________(用数字作答).4.[2020ꞏ全国卷Ⅲ]⎝⎛⎭⎫x 2+2x 6的展开式中常数项是______(用数字作答).5.[2021ꞏ上海卷]已知二项式(x +a )5展开式中,x 2的系数为80,则a =________. 6.[2021ꞏ浙江卷]已知多项式(x -1)3+(x +1)4=x 4+a 1x 3+a 2x 2+a 3x +a 4,则a 1=________,a 2+a 3+a 4=________.四. 经典大题强化篇1.已知(2x -1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5.求下列各式的值: (1)a 0+a 1+a 2+…+a 5; (2)|a 0|+|a 1|+|a 2|+…+|a 5|; (3)a 1+a 3+a 5.2.[2023ꞏ江西省景德镇一中考试]已知函数f (n ,x )=⎝⎛⎭⎫2m +m x n (m >0,x >0).(1)当m =2时,求f (7,x )的展开式中二项式系数最大的项;(2)若f (10,x )=a 0+a 1x +a 2x 2 +…+a 10x 10 ,且a 2=180,参考答案一 基础小题练透篇1.答案:C答案解析:因为(2x +1)n的展开式中,第三项和第四项的二项式系数相等,所以C 2n =C 3n ,由组合数的性质可得n =2+3=5.2.答案:C答案解析:在二项式⎝ ⎛⎭⎪⎫x -1x 7 的展开式中,通项公式为T r +1=C r 7 ·x 7-r ·⎝ ⎛⎭⎪⎫-1x r =(-1)r C r7 x 7-2r,故第r +1项的系数为(-1)r C r7 ,当r =0,2,4,6时,系数为正,因为C 07 <C 17 =C 67 <C 27 <C 47 ,所以当r =4时,系数最大的项是第5项. 3.答案:D答案解析:由于x ,1x互为倒数,故常数项为第4项,即常数项为C 36 x 3⎝ ⎛⎭⎪⎫-2x 3 =20×(-8)=-160.故选D. 4.答案:B答案解析:因为(x +2y )(x -y )5=x (x -y )5+2y (x -y )5,(x -y )5的通项为:T r +1=C r5 x 5-r (-y )r ,令r =3,则T 4=C 35 x 2(-y )3,令r =2,则T 3=C 25 x 3(-y )2,所以x 3y 3的系数为C 35 (-1)3+2C 25 (-1)2=-10+20=10. 故选B. 5.答案:D答案解析:令x =0,则a 0+a 1+a 2+…+a 10=(0+1)×(0+1)8=1,令x =-12,则a 0=⎝ ⎛⎭⎪⎫14+1 ×(-2+1)8=54 ,∴a 1+a 2+…+a 10=1-54 =-14 . 6.答案:C答案解析:由(x +1)4+(x -2)8=[(x -1)+2]4+[(x -1)-1]8=a 0+a 1(x -1)+a 2(x -1)2+…+a 8(x -1)8,得a 3·(x -1)3=C 14 ·(x -1)3·2+C 58 ·(x -1)3·(-1)5,∴a 3=8-C 58 =-48.故选C. 7.答案:C答案解析:(1+2x )n 展开式第r +1项T r +1=C r n (2x )r =C r n 2r x r,∵a 5=a 6,∴C 5n 25=C 6n 26,即C 5n =2C 6n ,∵n !5!(n -5)! =2×n !6!(n -6)! , 整理得n -5=3,∴n =8. 故选C.8.答案:15答案解析:令x =1,得所有项的系数和为4n ,二项式系数和为2n ,所以4n 2n =2n=32,即n =5,(3x +x )5的第r +1项为C r5 ·(3x )5-r·⎝ ⎛⎭⎪⎫x 12 r=C r 5 ·35-r ·x 5-r2 .令5-r2=3,得r =4,所以x 3项的系数是C 45 ×3=15.二 能力小题提升篇1.答案:C答案解析:因为在(x -1)n的二项展开式中,仅有第6项的二项式系数最大,即C 5n 最大,所以n =10.2.答案:C答案解析:(1-x )8展开式第r +1项T r +1=C r 8 18-r (-x )r =(-1)r C r 8 x r,(1-ax +x 2)(1-x )8的展开式中含x 2的项的系数为1·(-1)2C 28 -a ·(-1)C 18 +1·(-1)0C 08 ,所以1·(-1)2C 28 -a ·(-1)C 18 +1·(-1)0C 08 =21,解方程可得a =-1,故选C.3.答案:D答案解析:二项式(x +13x )30的展开式中,通项公式为C r 30 ·(x )30-r·(13x)r=C r30 ·x15-56r,0≤r ≤30,∴r =0,6,12,18,24,30时满足题意,共6项. 4.答案:A答案解析:令x =1可得⎝ ⎛⎭⎪⎫12-1 n=⎝ ⎛⎭⎪⎫-12 n =164 =⎝ ⎛⎭⎪⎫-12 6 ,所以n =6,展开式有7项,所以二项式⎝ ⎛⎭⎪⎫12-x 6 展开式中二项式系数最大的为第4项T 4=(-1)3C 36 ⎝ ⎛⎭⎪⎫12 6-3x 3=-52x 3. 5.答案:-16027答案解析:由二项式展开式可知,⎝⎛⎭⎪⎪⎫x 3-23x 6的展开式的中间一项的系数为C 36 ⎝ ⎛⎭⎪⎫13 3·(-2)3=-16027. 6.答案:4 108x 5答案解析:⎝ ⎛⎭⎪⎫3x 2+1x n 展开式中,各二项式系数的和比各项系数的和小240,即2n -(3+1)n =-240,化简得22n -2n -240=0,解得2n =16或2n=-15(不合题意,舍去),所以n =4.所以⎝ ⎛⎭3x 2+1x 4=81x 8+4×27x 5+6×9x 2+4×3x +1x4 ,展开式中的系数最大的项是108x 5.三 高考小题重现篇1.答案:C答案解析:由二项式定理得(x -2)5的展开式的通项T r +1=C r 5 (x )5-r (-2)r=C r 5 (-2)rx 5-r2 ,令5-r 2=2,得r =1,所以T 2=C 15 (-2)x 2=-10x 2,所以x 2的系数为-10.2.答案:A答案解析:展开式中含x 3的项可以由“1与x 3”和“2x 2与x ”的乘积组成,则x 3的系数为C 34 +2C 14 =4+8=12.3.答案:-28答案解析:因为⎝⎛⎭⎪⎫1-y x()x +y 8=()x +y 8-y x()x +y 8,所以⎝⎛⎭⎪⎫1-y x()x +y 8的展开式中含x 2y 6的项为C 68 x 2y 6-y xC 58 x 3y 5=-28x 2y 6,⎝ ⎛⎭⎪⎫1-y x ()x +y 8的展开式中x 2y 6的系数为-28. 4.答案:240答案解析:展开式的通项为T r +1=C r6 (x 2)6-r·⎝ ⎛⎭⎪⎫2x r=2r C r 6 x12-3r ,令12-3r =0,解得r =4,故常数项为24C 46 =240.5.答案:2答案解析:(x +a )5的展开式的通项为T r +1=C r 5 x 5-r a r ,令5-r =2,得r =3,则C 35 a 3=80,解得a =2.6.答案:5 10答案解析:(x -1)3展开式的通项T r +1=C r 3 x 3-r ·(-1)r ,(x +1)4展开式的通项T k +1=C k 4 x 4-k ,则a 1=C 03 +C 14 =1+4=5;a 2=C 13 (-1)1+C 24 =3;a 3=C 23 (-1)2+C 34 =7;a 4=C 33 (-1)3+C 44 =0.所以a 2+a 3+a 4=3+7+0=10.四 经典大题强化篇1.答案解析:(1)令x =1,得a 0+a 1+a 2+…+a 5=1.(2)令x =-1,得-35=-a 0+a 1-a 2+a 3-a 4+a 5.由(2x -1)5的通项T r +1=C r 5 (-1)r ·25-r ·x 5-r, 知a 1,a 3,a 5为负值,所以|a 0|+|a 1|+|a 2|+…+|a 5|=a 0-a 1+a 2-a 3+a 4-a 5=35=243. (3)由a 0+a 1+a 2+…+a 5=1,-a 0+a 1-a 2+…+a 5=-35,得2(a 1+a 3+a 5)=1-35,所以a 1+a 3+a 5=1-352=-121.2.答案解析:(1)当m =2时,f (7,x )=⎝ ⎛⎭⎪⎫1+2x 7 的展开式共有8项,二项式系数最大的项为第四项或第五项,所以T 4=C 37 ⎝ ⎛⎭⎪⎫2x 3 =280x3 或T 5=C 47 ⎝ ⎛⎭⎪⎫2x 4=560x4 .(2)①f (10,x )=⎝ ⎛⎭⎪⎫2m +m x 10 的通项公式为T r +1=C r 10 ⎝ ⎛⎭⎪⎫2m10-r⎝ ⎛⎭⎪⎫m x r=210-r ·m 2r -10·C r 10 x -r ,且f (10,x )=a 0+a 1x+a 2x2 +…+a n xn ,所以1x2 的系数为a 2=28C 210 m -6=180,解得m=2,所以f (10,x )的通项公式为T r +1=C r10 ⎝ ⎛⎭2x r=2r C r 10 x -r ,所以a r =2r C r10 ,当r =0时,a 0=1,令x =1,∑10i =1a i =310-1=59 048, ②设a r =2r C r10 为a i (0≤i ≤10)中的最大值,则⎩⎨⎧2r C r 10 ≥2r -1C r -110 2r C r 10 ≥2r +1C r +110, 解得⎩⎪⎨⎪⎧2(11-r )≥r r +1≥2(10-r ) ,即193 ≤r ≤223 ,r ∈N ,所以r =7,所以(a i )max =a 7=27C 710 =15 360.。

高三数学综合练习题

高三数学综合练习题

高三数学综合练习题综合练习题一:1. 已知集合$A = \{1, 2, 3, 4, 5\}$,集合$B = \{3, 4, 5, 6, 7\}$,求集合$A$与集合$B$的交集。

2. 已知函数$f(x) = x^2 + 2x + 1$,求函数$f(x)$在$x = -1$处的函数值。

3. 设集合$C = \{x|x \text{是正整数}, x \leq 10\}$,集合$D = \{2, 4, 6, 8, 10\}$,求集合$C$与集合$D$的并集。

4. 已知等差数列$\{a_n\}$的通项公式为$a_n = 2n + 1$,求当$n =5$时的数列值。

5. 已知方程$2x^2 - 5x + 2 = 0$,求方程的解。

综合练习题二:1. 已知函数$g(x) = \sqrt{x} + 1$,求函数$g(x)$的定义域。

2. 设集合$E = \{x|x \text{是偶数}, 1 \leq x \leq 10\}$,集合$F = \{2, 4, 6, 8, 10\}$,求集合$E$与集合$F$的差集。

3. 已知等比数列$\{b_n\}$的首项为$3$,公比为$2$,求当$n = 4$时的数列值。

4. 已知方程$3x^2 + 2x - 1 = 0$,求方程的解。

综合练习题三:1. 已知函数$h(x) = \frac{1}{x}$,求函数$h(x)$的定义域。

2. 设两个集合$G = \{1, 2, 3, 4, 5\}$,$H = \{3, 4, 5, 6, 7\}$,求集合$G$与集合$H$的对称差。

3. 已知等差数列$\{c_n\}$满足$c_1 = 2$,$c_2 = 5$,求当$n = 3$时的数列值。

4. 已知方程$x^2 + 4x + 4 = 0$,求方程的解。

综合练习题四:1. 已知函数$j(x) = \log(x)$,求函数$j(x)$的定义域。

2. 设两个集合$I = \{1, 2, 3, 4, 5\}$,$J = \{3, 4, 5, 6, 7\}$,求集合$I$与集合$J$的交集。

2024届全国高考数学一轮复习好题专项(导数的综合应用)练习(附答案)

2024届全国高考数学一轮复习好题专项(导数的综合应用)练习(附答案)

2024届全国高考数学一轮复习好题专项(导数的综合应用)练习一、基础练习1.(2021ꞏ沙坪坝区ꞏ重庆一中高三其他模拟)已知e 为自然对数的底数,a ,b 为实数,且不等式()ln 310x e a x b +-++≤对任意()0,x ∈+∞恒成立,则当3b a+取最大值时,实数a 的值为( ) A .3eB .31e +C .4eD .41e +2.(2021ꞏ湖南高三其他模拟)已知函数()e ax f x =a 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .,2e ⎛⎫+∞⎪⎝⎭C .10,2e ⎛⎫ ⎪⎝⎭D .1,2e ⎛⎫+∞⎪⎝⎭3.(2021ꞏ四川遂宁市ꞏ高三三模(理))已知函数()()2xh x x e =-,()212a a g x x x =-,又当()0h x ≥时,()()h x g x ≥恒成立,则实数a 的取值范围是( )A .(2,e ⎤-∞⎦B .(],e -∞C .(20,e ⎤⎦D .(]0,e4.(2021ꞏ全国高三其他模拟)已知f (x )是定义在区间[﹣2,2]上的偶函数,当x ∈[0,2]时,f (x )=xxe ,若关于x 的方程2f 2(x )+(2a ﹣1)f (x )﹣a =0有且只有2个实数根,则实数a 的取值范围是( )A .[﹣1e ,﹣22e ] B .[﹣1e ,﹣22e ) C .(﹣22e,0)D .(﹣22e ,0)∪{﹣1e}5.(2021ꞏ宁夏银川市ꞏ高三其他模拟(理))平行于x 轴的直线与函数ln ,0,(),0,x x f x e x x>⎧⎪=⎨-<⎪⎩的图像交于,A B 两点,则线段AB 长度的最小值为( ) A .1e e-B .1e e+C .eD .2e6.(2021ꞏ正阳县高级中学高三其他模拟(理))已知2m <-,若关于x 的不等式22e 2x mx n x +<+恒成立,则实数n 的取值范围为( ) A .[)3e,+∞B .)2e ,⎡+∞⎣C .[)e,+∞D .[)2e,+∞7.【多选题】(2021ꞏ河北衡水中学高三其他模拟)已知函数()3e exxx a f x x -=-+-,则下列结论中正确的是( )A .若()f x 在区间[]1,1-上的最大值与最小值分别为M ,m ,则0M m +=B .曲线()y f x =与直线y ax =-相切C .若()f x 为增函数,则a 的取值范围为(],2-∞D .()f x 在R 上最多有3个零点8.(2021ꞏ黑龙江大庆市ꞏ高三一模(理))用总长11m 的钢条制作一个长方体容器的框架,如果所制容器底面一条边比另一条边长1m ,则该容器容积的最大值为________m 3(不计损耗). 9.(2021ꞏ湖南高三其他模拟)中国最早的化妆水是1896年在香港开设的广生行生产的花露水,其具有保湿、滋润、健康皮肤的功效.已知该化妆水容器由一个半球和一个圆柱组成(其中上半球是容器的盖子,化妆水储存在圆柱中),容器轴截面如图所示,上部分是半圆形,中间区域是矩形,其外周长为12cm .则当圆柱的底面半径r =___________时,该容器的容积最大,最大值为___________.10.(2021ꞏ全国高三其他模拟)若函数ln ()1xxf x ae x=--只有一个零点,则实数a 的取值范围是 ________. 二、提升练习1.(2021ꞏ全国高三其他模拟)若不等式ln x ax b ≤+恒成立,则2a b +的最小值为( ) A .2B .3C .ln 2D .52.(2021ꞏ北京高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,则()f x 有两个零点; ②0k ∃<,使得()f x 有一个零点; ③0k ∃<,使得()f x 有三个零点; ④0k ∃>,使得()f x 有三个零点. 以上正确结论得序号是_______.3.(2021ꞏ四川省绵阳南山中学高三其他模拟(文))设函数()()222ln xf x x x e aex e x =-+-,其中e 为自然对数的底数,曲线()y f x =在()()22f ,处切线的倾斜角的正切值为2322e e +.(1)求a 的值; (2)证明:()0f x >.4.(2021ꞏ全国高三其他模拟(理))已知函数()()ln e xf x x m x -=+-.(1)若()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,求m 的值; (2)在(1)的条件下,证明:当0x >时,()0f x >; (3)当1m >时,求()f x 的零点个数.5.(2021ꞏ黑龙江哈尔滨市ꞏ哈尔滨三中高三其他模拟(文))已知函数2211()(1)ln (0)22f x x a x a x a a =-+++>. (1)讨论()f x 的单调性;(2)若函数()y f x =只有一个零点,求实数a 的取值范围.6.(2021ꞏ河北高三其他模拟)已知函数2ln 1()(ln )()2k x f x x k x+=+∈R . (1)当0k =时,求证:()1f x ≤; (2)当0k ≠时,讨论()f x 零点的个数.7.(2021ꞏ重庆市育才中学高三二模)已知函数()x f x e =,()1g x ax =+. (1)已知()()f x g x ≥恒成立,求a 的值;(2)若(0,1)x ∈,求证:21ln 11()x x f x x-+-<. 8.(2021ꞏ全国高三其他模拟)已知函数()()ln x a f x a x+=+,()0,x ∈+∞.(1)当0a =时,讨论函数()f x 的单调性; (2)若函数()f x 存在极大值M ,证明:12M e≤<.9.(2021ꞏ重庆高三二模)已知函数()ln ()f x ax x a R =+∈在1x =处取得极值. (1)若对(0,),()1x f x bx ∀∈+∞≤-恒成立,求实数b 的取值范围;(2)设()()(2)x g x f x x e =+-,记函数()y g x =在1,14⎡⎤⎢⎥⎣⎦上的最大值为m ,证明:(4)(3)0m m ++<. 10.(2021ꞏ江苏南通市ꞏ高三一模)已知函数()()21ln 22f x ax ax x =+-,0a >. (1)求函数()f x 的增区间;(2)设1x ,2x 是函数()f x 的两个极值点,且12x x <,求证:122x x +>. 三、真题练习1.(2021ꞏ全国高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图像与x 轴没有公共点,求a 的取值范围.2.(2021ꞏ全国高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.3.(2021ꞏ全国高考真题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 4.(2020·山东海南省高考真题)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.5.(2020·浙江省高考真题)已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点;(Ⅱ)记x 0为函数()y f x =在(0)+∞,上的零点,证明:0x ≤≤; (ⅱ)00(e )(e 1)(1)x x f a a ≥--.6.(2019·全国高考真题(理))已知函数.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线的切线.()11ln x f x x x -=-+e x y =参考答案一、基础练习1.(2021ꞏ沙坪坝区ꞏ重庆一中高三其他模拟)已知e 为自然对数的底数,a ,b 为实数,且不等式()ln 310x e a x b +-++≤对任意()0,x ∈+∞恒成立,则当3b a+取最大值时,实数a 的值为( ) A .3e B .31e +C .4eD .41e +【答案】C 【答案解析】不等式(3)10lnx e a x b +-++…对任意(0,)x ∈+∞恒成立,化为不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立,必然有0a >.令1=x e,化为:31b a e +….令4a e =,1b =.利用导数研究函数的单调性极值最值即可得出结论. 【答案详解】解:不等式(3)10lnx e a x b +-++…对任意(0,)x ∈+∞恒成立, 则不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立, 则0a >. 令1=x e,则131a b e -+--…,化为:31b a e +…. 令4a e =,1b =.不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立,即不等式20lnx ex -+…对任意(0,)x ∈+∞恒成立, 令()2f x lnx ex =-+,则1()1()e x e f x e x x --'=-=,可得:1=x e 时,函数()f x 取得极大值即最大值,1(1120f e=--+=, 满足题意.可以验证其他值不成立. 故选:C .2.(2021ꞏ湖南高三其他模拟)已知函数()e ax f x =a 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .,2e ⎛⎫+∞⎪⎝⎭C .10,2e ⎛⎫ ⎪⎝⎭D .1,2e ⎛⎫+∞ ⎪⎝⎭【答案】C 【答案解析】函数零点即方程ax e =的解,2ax e x =(0x >),取对数得2ln ax x =,此方程有两个解,引入函数()ln 2g x x ax =-,利用导数求得函数的单调性,函数的变化趋势,然后由零点存在定理可得结论.【答案详解】显然(0)1f =,()e ax f x =有两个零点,即方程ax e =,2ax e x =在(0,)+∞上有两个解,两边取对数得到2ln ax x =,令()ln 2g x x ax =-,1()2g x a x '=-,()g x 在10,2a ⎛⎫ ⎪⎝⎭单调递增,在1,2a ⎛⎫+∞ ⎪⎝⎭单调递减,又当0x →时,()g x →-∞,当x →+∞时,()g x →-∞, 因为()g x 有两个零点,则11ln 1022g a a ⎛⎫=->⎪⎝⎭, 解得12e a <.所以正数a 的取值范围是10,2e ⎛⎫⎪⎝⎭. 故选:C .3.(2021ꞏ四川遂宁市ꞏ高三三模(理))已知函数()()2xh x x e =-,()212a a g x x x =-,又当()0h x ≥时,()()h x g x ≥恒成立,则实数a 的取值范围是( )A .(2,e ⎤-∞⎦B .(],e -∞C .(20,e ⎤⎦D .(]0,e【答案】A 【答案解析】首先根据()0h x ≥求出2x ≥,进而参变分离解决恒成立的问题即可. 【答案详解】因为()()2xh x x e =-,所以()0h x ≥,即2x ≥,所以当2x ≥时,()()h x g x ≥恒成立,即()2122xa a x e x x -≥-, 即()()1222xx e x ax -≥-, 当2x =时,()()1222xx e x ax -≥-恒成立,符合题意;当()2,x ∈+∞时,有12xe ax ≥,即2xe xa ≥,令()2x e m x x =,则()()2210x e x m x x-'=>,所以()m x 在()2,x ∈+∞上单调递增,而()22m e =,所以2e a ≥,故选:A.4.(2021ꞏ全国高三其他模拟)已知f (x )是定义在区间[﹣2,2]上的偶函数,当x ∈[0,2]时,f (x )=xxe ,若关于x 的方程2f 2(x )+(2a ﹣1)f (x )﹣a =0有且只有2个实数根,则实数a 的取值范围是( )A .[﹣1e ,﹣22e ]B .[﹣1e ,﹣22e ) C .(﹣22e,0)D .(﹣22e ,0)∪{﹣1e}【答案】D 【答案解析】利用导数研究函数在定义域上的单调性,得出1()f x e≤;结合题意得出()f x 在[]02,有且仅有1个解,计算(0)(2)f f 、的值即可. 【答案详解】当[]02x ∈,时()xxf x e =, 则1()x xf x e-'=令()=0f x ',解得1x =,所以当[]01x ∈,时()0f x '>,()f x 单调递增; 当[]12x ∈,时()0f x '<,()f x 单调递减, 所以max 1()(1)f x f e==,故1()f x e≤在定义域上恒成立,由22()(21)()0f x a f x a +--=有且只有2个实数根, 得方程[]12()()02f x a f x ⎡⎤+-=⎢⎥⎣⎦有2个解,又1()f x e≤,所以111()022f x e -≤-<,则()f x 在[]02,有且仅有1个解, 因为22(0)0(2)f f e ==,,则220a e <-<或1a e-=, 所以220a e-<<或1a e =-,即实数的取值范围是2210e e ⎛⎫⎧⎫--⎨⎬ ⎪⎝⎭⎩⎭,, 故选:D5.(2021ꞏ宁夏银川市ꞏ高三其他模拟(理))平行于x 轴的直线与函数ln ,0,(),0,x x f x e x x>⎧⎪=⎨-<⎪⎩的图像交于,A B 两点,则线段AB 长度的最小值为( ) A .1e e-B .1e e+C .eD .2e【答案】D 【答案解析】画出函数图像,数形结合构造函数,利用导数判断函数单调性并求函数最值即可. 【答案详解】根据题意,画出()f x 的图象如下所示:令()f x t =,(0)t >,故可得lnx t =,解得t x e =;e t x -=,解得e x t=-.故可得(),,,te A e t B t t ⎛⎫- ⎪⎝⎭,(0)t >, 故()teAB g t e t==+,(0)t >, 故可得()2te g t e t ='-,()30te g t e t'=+>'恒成立, 故()g t '是单调递增函数,且()10g '=,关于()0g t '<在()0,1成立,()0g t '>在()1,+∞成立, 故()g t 在()0,1单调递减,在()1,+∞单调递增, 故()()12min g t g e e e ==+=. 即||AB 的最小值为2e . 故选:D6.(2021ꞏ正阳县高级中学高三其他模拟(理))已知2m <-,若关于x 的不等式22e 2x mx n x +<+恒成立,则实数n 的取值范围为( ) A .[)3e,+∞ B .)2e ,⎡+∞⎣C .[)e,+∞D .[)2e,+∞【答案】D 【答案解析】参变分离可得222e x mx x n +-<,研究函数()222exmx xf x +-=,根据导函数()()22e x m x x m f x ⎛⎫--- ⎪⎝⎭'=以及2m <-,可得函数()f x 的极大值为22222e 0e m m f m -⎛⎫==> ⎪⎝⎭,当2x >,()2220ex mx x f x -+=<,所以()2max 2e m f x -⎡⎤=⎣⎦,根据()f x 的最大值的范围即可得解. 【答案详解】由22e 2xmx n x +<+,得222exmx x n +-<, 令()222exmx xf x +-=,则()()22e xm x x m f x ⎛⎫--- ⎪⎝⎭'=,当2m <-时,210m-<<, 函数()f x 在2,m ⎛⎫-∞ ⎪⎝⎭,()2,+∞上单调递增,在2,2m ⎛⎫⎪⎝⎭上单调递减,故函数()f x 的极大值为22222e 0e mm f m -⎛⎫==> ⎪⎝⎭,极小值为()24220e m f -=<, 且2x >时,()2220ex mx x f x -+=<,所以()2max 2e m f x -⎡⎤=⎣⎦,由2m <-, 得22e 2e m -<,由()f x n <恒成立,得2e n ≥, 故选:D .7.【多选题】(2021ꞏ河北衡水中学高三其他模拟)已知函数()3e exxx a f x x -=-+-,则下列结论中正确的是( )A .若()f x 在区间[]1,1-上的最大值与最小值分别为M ,m ,则0M m +=B .曲线()y f x =与直线y ax =-相切C .若()f x 为增函数,则a 的取值范围为(],2-∞D .()f x 在R 上最多有3个零点 【答案】ACD 【答案解析】由定义法确定函数的奇偶性,再求导数判断函数的单调性与切线斜率,以及零点情况. 【答案详解】因为对于任意x ∈R ,都有()()()()3e e x x x x a xf x f -=-+---=--, 所以()f x 为奇函数,其图象关于原点对称,故A 正确.又()2e e 3xxx a f x =++-',令()f x a '=-,得2e e 30x x x -++=(*),因为e 0x >,e 0x ->,所以方程(*)无实数解,即曲线()y f x =的所有切线的斜率都不可能为a -,故B 错误.若()f x 为增函数,则()f x ¢大于等于0,即2e e 3x x a x -≤++,2e e 32x x x -++≥, 当且仅当0x =时等号成立,所以2a ≤,故C 正确.令()0f x =,得0x =或2e e x x x a x --+=(0x ≠).设()2e e x x g x x x--=+,则()()()21e 1e 2x x x x x x g x -'=-+++,令()()()1e 1e x xx x t x -=-++,则()()e exxx x t -='-.当0x >时,()0t x '>,当0x =时,()0t x '=,当0x <时,()0t x '>,所以函数()t x 为增函数,且()00t =,所以当0x >时,()0t x >,从而()0g x ¢>,()g x 单调递增.又因为对于任意0x ≠,都有()()g x g x -=,所以()g x 为偶函数,其图象关于y 轴对称. 综上,()g x 在(),0-?上单调递减,在()0,+?上单调递增,则直线y a =与()y g x =最多有2个交点,所以()f x 在R 上最多有3个零点,故D 正确. 故选ACD .8.(2021ꞏ黑龙江大庆市ꞏ高三一模(理))用总长11m 的钢条制作一个长方体容器的框架,如果所制容器底面一条边比另一条边长1m ,则该容器容积的最大值为________m 3(不计损耗). 【答案】916. 【答案解析】设长方体的底面边长为,a b ,高为h ,由题可得3217244V b b b =--+,求出函数导数,判断单调性,即可求出最值. 【答案详解】设长方体的底面边长为,a b ,高为h ,则由题可得1a b =+,()411a b h ++=,则可得784b h -=,则708b <<, 则该容器容积()32781712444b V abh b b b b b -==+⋅⋅=--+,217176624212V b b b b ⎛⎫⎛⎫'=--+=--+ ⎪⎪⎝⎭⎝⎭,当10,2b ⎛⎫∈ ⎪⎝⎭时,0V '>,V 单调递增;当17,28b ⎛⎫∈ ⎪⎝⎭时,0V '<,V 单调递减, ∴当12b =时,max 916V =,即该容器容积的最大值为916. 故答案为:916.9.(2021ꞏ湖南高三其他模拟)中国最早的化妆水是1896年在香港开设的广生行生产的花露水,其具有保湿、滋润、健康皮肤的功效.已知该化妆水容器由一个半球和一个圆柱组成(其中上半球是容器的盖子,化妆水储存在圆柱中),容器轴截面如图所示,上部分是半圆形,中间区域是矩形,其外周长为12cm .则当圆柱的底面半径r =___________时,该容器的容积最大,最大值为___________.【答案】8 c m 2π+ ()32128 c m 2ππ+ 【答案解析】设圆柱的底面半径为r ,圆柱的高为h ,根据已知条件可得出262h r π+=-,根据柱体的体积公式可得()23262V r r πππ+=-,利用导数可求得V 的最大值及其对应的r 的值,即为所求.【答案详解】设圆柱的底面半径为r ,圆柱的高为h . 则由题意可得2212r h r π++=,所以()1222622r h r ππ-++==-.由0h >,得122r π<+. 故容器的容积()22232212660222V r h r r r r r πππππππ++⎛⎫⎛⎫==-=-<< ⎪ ⎪+⎝⎭⎝⎭,容易忽略上半球是容器的盖子,化妆水储存在圆柱中.()232122V r r πππ+'=-,令0V '=,解得0r =(舍)或82r π=+. 显然当80,2r π⎛⎫∈ ⎪+⎝⎭时,0V '>,函数()23262V r r πππ+=-单调递增; 当812,22r ππ⎛⎫∈⎪++⎝⎭时,0V '<,函数()23262V r r πππ+=-单调递减. 所以当8cm 2r π=+时,V 取得最大值, 此时2862cm 22h ππ+=-⨯=+,()23281282cm 22V ππππ⎛⎫=⨯= ⎪+⎝⎭+. 故答案为:8 c m 2π+;()32128 c m 2ππ+. 10.(2021ꞏ全国高三其他模拟)若函数ln ()1xxf x ae x=--只有一个零点,则实数a 的取值范围是 ________. 【答案】0a ≤或1a e= 【答案解析】将函数的零点转化为方程ln (0)x x x a x xe +=>的根,令ln ()xx xg x xe +=,利用导数研究函数的图象特征,即可得到答案; 【答案详解】ln ln 10(0)x x x x xae a x x xe +--=⇔=>, 令ln ()xx x g x xe+=,则'2()(1ln )()x x x x g x x e +--=, ''()01ln 0,()01ln 0,g x x x g x x x >⇔--><⇔--<令()1ln u x x x =--,则'1()10u x x=--<在0x >恒成立, ∴()1ln u x x x =--在(0,)+∞单调递减,且(1)0u =, ∴''()001,()01g x x g x x >⇒<<<⇒>,∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且1(1)g e=,当x →+∞时,()0g x →, 如图所示,可得当0a ≤或1a e =时,直线y a =与ln xx x y xe +=有且仅有一个交点, 故答案为:0a ≤或1a e=1.(2021ꞏ全国高三其他模拟)若不等式ln x ax b ≤+恒成立,则2a b +的最小值为( ) A .2 B .3C .ln 2D .5【答案】C 【答案解析】构造函数()ln f x ax x b =-+,根据函数的单调性及最值可得ln 1b a ≥--,故22ln 1a b a a +≥--,再构造()2ln 1g x x x =--,求得函数()g x 的最小值即可. 【答案详解】由ln x ax b ≤+恒成立,得ln 0ax x b -+≥, 设()ln f x ax x b =-+,()1f x a x'=-, 当0a ≤时,()0f x ¢<,()f x 在()0,+?上单调递减,不成立;当0a >时,令()0f x ¢=,解得1x a=,故函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增, 故()10f x f a ⎛⎫≥≥⎪⎝⎭,即11ln 0a b a a ⎛⎫⋅-+≥ ⎪⎝⎭,ln 1b a ≥--,练提升22ln 1a b a a +≥--,设()2ln 1g x x x =--,()12g x x'=-, 令()0g x ¢=,12x =, 故()g x 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 故()1112ln 1ln 2222g x g ⎛⎫⎛⎫≥=⨯--=⎪ ⎪⎝⎭⎝⎭, 即2ln 2a b +≥, 故选:C.2.(2021ꞏ北京高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,则()f x 有两个零点; ②0k ∃<,使得()f x 有一个零点; ③0k ∃<,使得()f x 有三个零点; ④0k ∃>,使得()f x 有三个零点. 以上正确结论得序号是_______. 【答案】①②④ 【答案解析】由()0f x =可得出lg 2x kx =+,考查直线2y kx =+与曲线()lg g x x =的左、右支分别相切的情形,利用方程思想以及数形结合可判断各选项的正误. 【答案详解】对于①,当0k =时,由()lg 20f x x =-=,可得1100x =或100x =,①正确; 对于②,考查直线2y kx =+与曲线()lg 01y x x =-<<相切于点(),lg P t t -,对函数lg y x =-求导得1ln10y x '=-,由题意可得2lg 1ln10kt t k t +=-⎧⎪⎨=-⎪⎩,解得100100lg e t k e e ⎧=⎪⎪⎨⎪=-⎪⎩, 所以,存在100lg 0k e e=-<,使得()f x 只有一个零点,②正确; 对于③,当直线2y kx =+过点()1,0时,20k +=,解得2k =-,所以,当100lg 2e k e-<<-时,直线2y kx =+与曲线()lg 01y x x =-<<有两个交点, 若函数()f x 有三个零点,则直线2y kx =+与曲线()lg 01y x x =-<<有两个交点,直线2y kx =+与曲线()lg 1y x x =>有一个交点,所以,100lg 220e k ek ⎧-<<-⎪⎨⎪+>⎩,此不等式无解, 因此,不存在0k <,使得函数()f x 有三个零点,③错误;对于④,考查直线2y kx =+与曲线()lg 1y x x =>相切于点(),lg P t t ,对函数lg y x =求导得1ln10y x '=,由题意可得2lg 1ln10kt t k t +=⎧⎪⎨=⎪⎩,解得100lg 100t ee k e =⎧⎪⎨=⎪⎩,所以,当lg 0100ek e<<时,函数()f x 有三个零点,④正确.故答案为:①②④.3.(2021ꞏ四川省绵阳南山中学高三其他模拟(文))设函数()()222ln xf x x x e aex e x =-+-,其中e 为自然对数的底数,曲线()y f x =在()()22f ,处切线的倾斜角的正切值为2322e e +. (1)求a 的值; (2)证明:()0f x >.【答案】(1)2a =;(2)证明见答案解析. 【答案解析】(1)求出函数的导函数,再代入计算可得;(2)依题意即证()()2222ln 0xf x x x e ex e x =-+->,即()12ln 2x x x e e x--+>,构造函数()()222x g x x e e-=-+,()ln xh x x =,利用导数说明其单调性与最值,即可得到()()>g x h x ,从而得证; 【答案详解】解:(1)因为()()222ln xf x x x e aex e x =-+-,所以()()222xef x x e ae x'=-+-,()22332222e ef ae e =+=+',解得2a =.(2)由(1)可得()()2222ln xf x x x e ex e x =-+-即证()()()2212ln 22ln 02x x x f x x x e ex e x x e e x-=-+->⇔-+>. 令()()222x g x x e e-=-+,()()21x g x x e -=-',于是()g x 在()0,1上是减函数,在()1,+∞上是增函数,所以()()11g x g e≥=(1x =取等号). 又令()ln x h x x =,则()21ln xh x x -'=,于是()h x 在()0,e 上是增函数,在(),e +∞上是减函数,所以()()1h x h e e≤=(x e =时取等号).所以()()>g x h x ,即()0f x >.4.(2021ꞏ全国高三其他模拟(理))已知函数()()ln e xf x x m x -=+-.(1)若()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,求m 的值; (2)在(1)的条件下,证明:当0x >时,()0f x >; (3)当1m >时,求()f x 的零点个数.【答案】(1)1m =;(2)证明见答案解析;(3)有一个零点. 【答案解析】(1)利用导数的几何意义求解即可(2)利用导数,得到()f x 在()0,∞+上单调递增,由()00f =,即可证明()0f x >在()0,∞+上恒成立 (3)由(2)可知当1m >且0x >时,()()ln 1e0xf x x x ->+->,即()f x 在()0,∞+上没有零点,再根据,0x m +>,得到x m >-, 对(),0x m ∈-进行讨论,即可求解 【答案详解】解:(1)因为()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,所以()112f '=, 因为()()11e x f x x x m -+-'=+, 所以()11112f m ='=+,解得1m =. (2)由(1)得当1m =时,()()()21e 11e 11ex xx x f x x x x -+-=+-=++', 当0x >时,因为()0f x '>,所以()f x 在()0,∞+上单调递增, 因为()00f =,所以()0f x >在()0,∞+上恒成立. (3)由(2)可知当1m >且0x >时,()()ln 1e 0xf x x x ->+->,即()f x 在()0,∞+上没有零点,当(),0x m ∈-时,()()()()2e 111e e x xxx m x m f x x x m x m -++--=+-=++',令()()2e 1xg x x m x m =++--,(),0x m ∈-,则()e 21xg x x m =++-'单调递增,且()e21e 10mm g m m m m ---=-+-=--<',()00g m '=>,所以()g x '在(),0m -上存在唯一零点,记为0x ,且()0,x m x ∈-时,()0g x '<,()0,0x x ∈时,()0g x '>, 所以()g x 在()0,m x -上单调递减,在()0,0x 上单调递增, 因为1m >, 所以()e0mg m --=>,()010g m =-<,因为()()00g x g <,所以()00g x <,所以()g x 在()0,m x -上存在唯一零点1x ,且在()0,0x 上恒小于零, 故()1,x m x ∈-时,()0g x >;()1,0x x ∈时,()0g x <,所以()f x 在()1,m x -上单调递增,在()1,0x 上单调递减,且()0ln 0f m =>, 所以()f x 在(),0m -上至多有一个零点, 取()e 2e ,0mm x m m -=-+∈-, 则有()()22ln e 0mf x x m m <++=,所以由零点存在定理可知()f x 在(),0m -上只有一个零点, 又f (0)不为0,所以()f x 在(),m -+∞上只有一个零点.5.(2021ꞏ黑龙江哈尔滨市ꞏ哈尔滨三中高三其他模拟(文))已知函数2211()(1)ln (0)22f x x a x a x a a =-+++>. (1)讨论()f x 的单调性;(2)若函数()y f x =只有一个零点,求实数a 的取值范围.【答案】(1)答案见答案解析;(2)01a <<+或a e >.【答案解析】 (1)求得()'fx ,对a 进行分类讨论,由此求得()f x 的单调区间.(2)根据(1)的结论,结合函数的极值以及零点个数,求得a 的取值范围. 【答案详解】 (1)()()()'1x x a f x x--=,当01a <<时,由()'00f x x a >⇒<<或1x >,所以()f x 在()0,a ,()1,+∞单调递增,由()'01fx a x <⇒<<,所以()f x 在(),1a 单调递减;当1a >时,由()'001fx x >⇒<<或x a >,所以()f x 在()0,1,(),a +∞单调递增,由()'01f x x a <⇒<<,所以()f x 在()1,a 单调递减;当1a =时,()()2'10x f x x-=≥⇒()f x 在()0,∞+单调递增.(2)1(1)(1(12f a a ⎡⎤⎡⎤=--⎣⎦⎣⎦,()(ln 1)f a a a =-, 由(1)知当01a <<时,()f x 在x a =处,有极大值,且()0f a <,此时函数有一个零点; 当1a =时,()f x 在()0,∞+单调递增,且()10f <,此时函数有一个零点;当1a >时,()0,1,(),a +∞单调递增,()1,a 单调递减,()f x 在x a =处,有极小值,()f x 在1x =处,有极大值,则当()10f <,或()0f a >时函数有一个零点,有11a <<或a e >.综上:01a <<+或a e >.6.(2021ꞏ河北高三其他模拟)已知函数2ln 1()(ln )()2k x f x x k x+=+∈R . (1)当0k =时,求证:()1f x ≤; (2)当0k ≠时,讨论()f x 零点的个数.【答案】(1)证明过程见解答;(2)当0k <时,()f x 有两个零点,当0k >时,()f x 有一个零点. 【答案解析】(1)将0k =代入,对()f x 求导,得到其单调性,判断其最值,即可得证;(2)令t lnx =,则()0f x =即为2102t k t t e ++=,显然0t ≠,进一步转化为212t k t t e +-=,令21()(0)t t h t t t e+=≠,利用导数作出()h t 的大致图象,进而图象判断方程解的情况,进而得到函数()f x 零点情况. 【答案详解】(1)证明:当0k =时,1()(0)lnx f x x x +=>,则2()lnxf x x'=-, ∴当(0,1)x ∈时,()0f x '>,()f x 单增,当(1,)x ∈+∞时,()0f x '<,()f x 单减,()f x f ∴…(1)1=,即得证;(2)令t lnx =,则()0f x =即为2102t k t t e++=,当0t =,即1x =时,该方程不成立,故1x =不是()f x 的零点; 接下来讨论0t ≠时的情况,当0t ≠时,方程可化为212tk t t e +-=, 令21()(0)t t h t t t e +=≠,则222()tt th t t e++'=-,当0t <时,22220t t ++-=-<…,当且仅当t =当0t >时,22220t t +++=+>…,当且仅当t =时取等号,∴当0t <时,()0h t '>,()h t 单增,当0t >时,()0h t '<,()h t 单减,且当0t →时,()h t →+∞,(1)0h -=,当1t <-时,()0h t <,当0t >时,()0h t >, 函数()h t 的大致图象如下:由图象可知,当02k -<,即0k >时,212t k t t e +-=只有一个解,则()f x 有一个零点,当02k ->,即0k <时,212tk t t e +-=有两个解,则()f x 有两个零点. 综上,当0k <时,()f x 有两个零点,当0k >时,()f x 有一个零点. 7.(2021ꞏ重庆市育才中学高三二模)已知函数()x f x e =,()1g x ax =+. (1)已知()()f x g x ≥恒成立,求a 的值;(2)若(0,1)x ∈,求证:21ln 11()x x f x x-+-<. 【答案】(1)1a =;(2)证明见答案解析. 【答案解析】(1)作差,设()()()1x h x f x g x e ax =-=--,利用导数求出()h x 的最小值为(ln )ln 10h a a a a =--≥,只需1ln 10a a +-≤;设1()ln 1a a aϕ=+-,利用导数求出min ()(1)0a ϕϕ==,解出1a =; (2)利用1x e x >+把原不等式转化为证明1ln 111x x x x -+-<+,即证:21ln 10x x x-++>, 设21()ln 1F x x x x=-++,利用导数求出最小值,即可证明.【答案详解】(1)设()()()1x h x f x g x e ax =-=--,()x h x e a '=-,当0a ≤时,()0x h x e a '=->,()h x 单增,当,()x h x →-∞→-∞,不满足恒成立 当0a >,()h x 在(,ln )x a ∈-∞单减,()h x 在(ln ,)x a ∈+∞单增, 所以()h x 的最小值为(ln )ln 10h a a a a =--≥,即11ln 0a a --≥,即1ln 10a a+-≤ 设1()ln 1a a a ϕ=+-,21()a a aϕ-'=,所以()ϕx 在(0,1)x ∈单减,()ϕx 在(1,)+∞单增, 即min()(1)0a ϕϕ==,故1ln 10a a+-≤的解只有1a =,综上1a =(2)先证当(0,1)x ∈时,1x e x >+恒成立.令()1x h x e x =--,求导()10x h x e '=->,所以()h x 在(0,1)x ∈上单调递增,()(0)0h x h >=,所以1x e x >+所以要证1ln 11x x x e x -+-<,即证1ln 111x x x x-+-<+, 即证211ln 1x x x x x x +-++-<+,即证:21ln 10x x x -++>, 设21()ln 1F x x x x=-++,求导22111()2(1)20F x x x x x x x '=--=--<,所以()F x 在(0,1)上单调递减,所以()(1)10F x F >=>,即原不等式成立.所以当(0,1)x ∈时,如1ln 11()x x f x x-+-<成立. 8.(2021ꞏ全国高三其他模拟)已知函数()()ln x a f x a x+=+,()0,x ∈+∞.(1)当0a =时,讨论函数()f x 的单调性; (2)若函数()f x 存在极大值M ,证明:12M e≤<. 【答案】(1)当()0,x e ∈时,()f x 单调递增;当(),x e ∈+∞时,()f x 单调递减;(2)证明见答案解析. 【答案解析】(1)将0a =代入函数,并求导即可分析单调性;(2)求导函数,讨论当0a =,01a <<与1a ≥时分析单调性,并判断是否有极大值,再求解极大值,即可证明.【答案详解】(1)()f x 的定义域是()0,∞+ 当0a =时,()ln x f x x =,()21ln xf x x -'=, 令()0f x '=,得x e =,所以当()0,x e ∈时,()0f x '>,()f x 单调递增; 当(),x e ∈+∞时,()0f x '<,()f x 单调递减;(2)()()()()()22ln ln xx a x x a x ax a f x x x x a -+-+++'==+, 令()()()()ln ,0,g x x x a x a x =-++∈+∞, 则()()ln g x x a '=-+,由()f x 的定义域是()0,∞+,易得0a ≥,当0a =时,由(1)知,()f x 在x e =处取得极大值,所以()1==M f e e. 当1a ≥时,()0g x '<在()0,x ∈+∞上恒成立,所以()g x 在()0,∞+上单调递减,()ln 0g x a a <-<,所以()0f x '<,故()f x 没有极值. 当01a <<时,令()0g x '=,得1x a =-,所以当()0,1x a ∈-时,()0g x '>,()g x 单调递增;当()1,x a ∈-+∞时,()0g x '<,()g x 单调递减. 所以当()0,1x a ∈-时,()ln 0g x a a >->,又()110g a a -=->,()0-=-<g e a a ,且1-<-e a a ,所以存在唯一()01,∈--x a e a ,使得()()()0000ln g x x x a x a =-+⋅+,当()00,x x ∈时,()0g x >,即()0f x '>,()f x 单调递增;当()0,x x ∈+∞时,()0g x <,即()0f x '<,()f x 单调递减.所以当0x x =时,()f x 取得极大值,所以()()000ln x a M f x a x +==+,所以()()()()000000011ln M x a x x a x a x a x a x a=++-=++-+⋅+++. 令0x a t +=,则()1,t e ∈,设()1ln h t t t t t=+-,()1,t e ∈, 则()21ln 0h t t t'=--<, 所以()h t 在()1,e 上单调递减, 所以()12<<h t e ,所以12<<M e. 综上,若函数()f x 存在极大值M ,则12M e≤<. 9.(2021ꞏ重庆高三二模)已知函数()ln ()f x ax x a R =+∈在1x =处取得极值. (1)若对(0,),()1x f x bx ∀∈+∞≤-恒成立,求实数b 的取值范围;(2)设()()(2)x g x f x x e =+-,记函数()y g x =在1,14⎡⎤⎢⎥⎣⎦上的最大值为m ,证明:(4)(3)0m m ++<. 【答案】(1)211b e -≤;(2)证明见答案解析. 【答案解析】(1)由条件求出a ,然后由()1f x bx ≤-可得1ln 1+x b x x≤-,然后用导数求出右边对应函数的最小值即可;(2)11()(1)e 1(1)(xx g x x x e x x'=--+=--,令()1e x h x x =-,然后可得存在01(,1)2x ∈使得()00h x =,即01ex x =,即00ln x x =-,然后可得0max 000000000012()()(2)ln (2)12x m g x g x x e x x x x x x x x ===--+=---=--,然后判断出函数2()12G x x x=--的单调性即可. 【答案详解】 (1)∵1()f x a x'=+,(1)10f a '=+=,∴1a =-,由已知()1f x bx ≤-,即ln 1x x bx -≤-,即1ln 1+x b x x≤-对()0,x ∀∈+∞恒成立, 令1ln ()1x t x x x =+-,则22211ln ln 2()x x t x x x x --'=--=,易得()t x 在2(0,)e 上单调递减,在2(,)e +∞上单调递增, ∴2min 21()()1t x t e e==-,即211b e -≤. (2)()()(2)e (2)e ln x x g x f x x x x x =+-=--+,则11()(1)e 1(1)(xx g x x x e x x'=--+=--. 当114x <<时,10x -<,令()1e xh x x=-, 则21()e 0xh x x'=+>,所以()h x 在1[,1]4上单调递增.∵121(()e 202h h x ==-<,(1)10h e =->,∴存在01(,1)2x ∈使得()00h x =,即01ex x =,即00ln x x =-. ∴当01(,)4x x ∈时,()0h x <,此时()0g x '>; 当0(,1)x x ∈时,()0h x >,此时()0g x '<; 即()g x 在01(,)4x 上单调递增,在0(),1x 上单调递减,则0max 000000000012()()(2)ln (2)12xm g x g x x e x x x x x x x x ===--+=---=--. 令2()12G x x x =--,1(,1)2x ∈,则22222(1)()20x G x x x '-=-=>,∴()G x 在1(,1)2x ∈上单调递增,则1()(42G x G >=-,()(1)3G x G <=-, ∴43m -<<-.∴()()430m m ++<.10.(2021ꞏ江苏南通市ꞏ高三一模)已知函数()()21ln 22f x ax ax x =+-,0a >. (1)求函数()f x 的增区间;(2)设1x ,2x 是函数()f x 的两个极值点,且12x x <,求证:122x x +>.【答案】(1)答案见答案解析;(2)证明见答案解析. 【答案解析】(1)求函数的导数,分类讨论,解不等式即可求解;(2)根据极值点可转化为1x ,2x 是方程2210-+=ax x 的两个不相等的正实数根,可得12x >且1x ≠,要证122x x +>,只要证212x x >-,利用构造函数的单调性证明即可. 【答案详解】(1)由题意得()21212ax ax x f x x x-+=+='-(0x >). 令()0f x '>,则2210ax x -+>.①当()2240a ∆=--≤,即1a ≥时,2210ax x -+>在()0,∞+上恒成立,即()f x 的增区间为()0,∞+;②当()2240a ∆=-->,即01a <<时,10x a -<<或1x a+>,即()f x 的增区间为10,a ⎛⎫ ⎪ ⎪⎝⎭和1,a ⎛⎫++∞ ⎪ ⎪⎝⎭.综上,当1a ≥时,()f x 的增区间为()0,∞+;当01a <<时,()f x 的增区间为10,a ⎛⎫- ⎪ ⎪⎝⎭和1,a ⎛⎫++∞ ⎪ ⎪⎝⎭. (2)因为()221x x ax xf -+'=(0x >),()f x 有两个极值点1x ,2x , 所以1x ,2x 是方程2210-+=ax x 的两个不相等的正实数根,可求出 从而()2240a ∆=-->,0a >,解得01a <<. 由2210-+=ax x 得221x a x -=. 因为01a <<,所以12x >且1x ≠.令()221x g x x -=,12x >且1x ≠,则()()321x g x x-'=,所以当112x <<时,()0g x '>,从而()g x 单调递增;当1x >时,()0g x '<,从而()g x 单调递减, 于是1222122121x x a x x --==(12112x x <<<). 要证122x x +>,只要证212x x >-,只要证明()()212g x g x <-. 因为()()12g x g x =,所以只要证()()112g x g x <-. 令()()()()()1111122112212122x x F x g x g x x x ---=--=-- 则()()()()1113311212212x x F x xx --⎡⎤-⎣⎦'=+-()()()11331121212x x x x --=+- ()()1331111212x x x ⎡⎤=--⎢⎥-⎢⎥⎣⎦()()()()22211111331141222x x x x x x x ⎡⎤--+-+⎣⎦=-.因为1112x <<, 所以()10F x '>,即()1F x 在1,12⎛⎫⎪⎝⎭上单调递增,所以()()110F x F <=,即()()112g x g x <-, 所以212x x >-,即122x x +>.1.(2021ꞏ全国高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图像与x 轴没有公共点,求a 的取值范围. 【答案】(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >. 练真题(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围. 【答案详解】(1)函数的定义域为()0,∞+,又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>, 当10x a <<时,()0f x '<;当1x a>时,()0f x '>; 所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点, 所以()y f x =的图象在x 轴的上方, 由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭, 故33ln 0a +>即1a e>. 2.(2021ꞏ全国高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.【答案】1;证明见答案详解 【答案解析】(1)由题意求出'y ,由极值点处导数为0即可求解出参数a ; (2)由(1)得()()ln 1()ln 1x x g x x x +-=-,1x <且0x ≠,分类讨论()0,1x ∈和(),0x ∈-∞,可等价转化为要证()1g x <,即证()()ln 1ln 1x x x x +->-在()0,1x ∈和(),0x ∈-∞上恒成立,结合导数和换元法即可求解(1)由()()()n 1'l a f x a x f x x ⇒==--,()()'ln xy a x x ay xf x ⇒=-=+-, 又0x =是函数()y xf x =的极值点,所以()'0ln 0y a ==,解得1a =; (2)由(1)得()()ln 1f x x =-,()()ln 1()()()ln 1x x x f x g x xf x x x +-+==-,1x <且0x ≠,当 ()0,1x ∈时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x >-< , ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->;同理,当(),0x ∈-∞时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x <-> , ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->;令()()()1ln 1h x x x x =+--,再令1t x =-,则()()0,11,t ∈+∞ ,1x t =-, 令()1ln g t t t t =-+,()'1ln 1ln g t t t =-++=,当()0,1t ∈时,()'0g x <,()g x 单减,假设()1g 能取到,则()10g =,故()()10g t g >=; 当()1,t ∈+∞时,()'0g x >,()g x 单增,假设()1g 能取到,则()10g =,故()()10g t g >=; 综上所述,()()ln 1()1ln 1x x g x x x +-=<-在()(),00,1x ∈-∞ 恒成立3.(2021ꞏ全国高考真题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见答案解析. 【答案解析】(1)求出函数的导数,判断其符号可得函数的单调区间; (2)设1211,x x a b==,原不等式等价于122x x e <+<,前者可构建新函数,利用极值点偏移可证,后者可设21x tx =,从而把12x x e +<转化为()()1ln 1ln 0t t t t -+-<在()1,+∞上的恒成立问题,利用导数可。

高中数学数列专题复习(综合训练篇含答案)

高中数学数列专题复习(综合训练篇含答案)

数列高考复习含答案———综合训练篇一、选择题:1. 在等差数列{}n a 中,12031581=++a a a ,则1092a a -的值为 ( D )A .18B .20C .22D .242.等差数列{}n a 满足:30,8531==+S a a ,若等比数列{}n b 满足,,4311a b a b ==则5b 为( B ) A .16B .32C .64D .273.等差数列{}n a 中,,27,39963741=++=++a a a a a a 则数列{}n a 的前9项之和S 9等于 ( C )A .66B .144C .99D .2974.各项都是正数的等比数列{}n a 的公比q ≠1,且2a ,321a ,1a 成等差数列,则5443a a a a ++为(A ) A .215- B .215+ C .251- D .215+或215-5.设等比数列{}n a 的前n 项和为n S ,若,336=S S 则=69S S( B ) A. 2 B.73 C. 83D.3 6.已知等差数列{}n a 的前n 项的和为n S ,且210S =,555S =,则过点(,)n P n a 和2(2,)()n Q n a n N *++∈的直线的一个方向向量的坐标是 ( B )A.1(2,)2B.1(,2)2-- C.1(,1)2-- D.(1,1)-- 7.设a 、b 、c 为实数,3a 、4b 、5c 成等比数列,且a 1、b 1、c 1成等差数列,则a c c a +的值为( C ) A .1594B .1594±C .1534 D .1534±8. 已知数列{}n a 的通项,1323211⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=--n n n a 则下列表述正确的是 ( A ) A .最大项为,1a 最小项为3a B .最大项为,1a 最小项不存在 C .最大项不存在,最小项为3a D .最大项为,1a 最小项为4a9.已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99.以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是(B )A .21B .20C .19D .189.一系列椭圆都以一定直线l 为准线,所有椭圆的中心都在定点M ,且点M 到l 的距离为2,若这一系列椭圆的离心率组成以43为首项,31为公比的等比数列,而椭圆相应的长半轴长为a i =(i=1,2,…,n),设b n =2(2n+1)·3n -2·a n ,且C n =11+n n b b ,T n =C 1+C 2+…+C n ,若对任意n ∈N*,总有T n >90m 恒成立,则m 的最大正整数为( B )A .3B .5C .6D .9二、填空题:10.已知等差数列{}n a 前n 项和S n =-n 2+2tn ,当n 仅当n=7时S n 最大,则t 的取值范围是 (6.5,7.5) .11. 数列{}n a 的通项公式是⎪⎩⎪⎨⎧=)(2)(2为偶数为奇数n n na nn ,则数列的前2m (m 为正整数)项和是 2m+1+m 2-2 .12.已知数列{}n a 满足:434121,0,,N ,n n n n a a a a n *--===∈则2009a =________;2014a =_________.【答案】1,0【解析】本题主要考查周期数列等基础知识.属于创新题型.依题意,得2009450331a a ⨯-==,2014210071007425210a a a a ⨯⨯-====.∴应填1,0.13.在数列{}n a 和{}n b 中,b n 是a n 与a n +1的等差中项,a 1 = 2且对任意*N n ∈都有3a n +1-a n = 0,则数列{b n }的通项公式 nn b 34= . 14. 设P 1,P 2,…P n …顺次为函数)0(1>=x xy 图像上的点(如图),Q 1,Q 2,…Q n …顺次为x 轴上的点,且n n n Q P Q Q P O Q OP 122111,,-∆∆∆ ,…,均为等腰直解三角形(其中P n 为直角顶点).设Q n 的坐标为(*)0)(0,N x n ∈,则数列{a n }的通项公式为n x n 2=*)N n ∈ .三、解答题:15.已知}{n a 是等比数列,S n 是其前n 项的和,a 1,a 7,a 4成等差数列,求证:2S 3,S 6,S 12-S 6,成等比数列.15. [解法1]由已知.21,2,26361311741q q q a q a a a a a =+∴=+=+………………(2分)当66663124373124126361,2()2()2()2q S S S S a a a S a q a q a q S S q ≠-=+++=++= 时…………(4分).1)1(1)1()1()1(266616318633S S qq a S q q a q S S q =⋅--=⋅--⋅+=+=………………(8分)当,)(2,6,6,3,126612316121613S S S S a S S a S a S q =-=-===同样有时……(10分)所以,61263,,2S S S S -成等比数列.………………………………………………(12分) [解法2]由已知636131174121,2,2q q q a q a a a a a =+∴=+=+,……………(2分)当,36)12(32)(2,1231314122a a a a S S S q =-⨯=-=时∴==.36)6(232126a a S ∴=-.)(2266122S S S S 61263,,2S S S S -成等比数列.…(6分)当,221)1(2111212,1633636q q q q S S q ⋅=+=--⋅=≠时…………………………(8分) ∴61263,,2S S S S -成等比数列.……………………………………………………(11分)综上,61263,,2S S S S -成等比数列.………………………………………………(12分)16.已知数列{a n }的前n 项和为S n ,且对任意自然数n 总有p a p S n n (),1(-=为常数,且q q n b b p p n n (2}{),1,0+=≠≠中有数列为常数)。

高考数学总复习经典练习题--集合·(理)

高考数学总复习经典练习题--集合·(理)

课时作业1 §1.1集合对应学生用书P 261一、选择题1.下列集合中恰有2个元素的集合是( ) A .{x 2-x =0} B .{y |y 2-y =0} C .{x |y =x 2-x }D .{y |y =x 2-x }解析:A 选项集合表示只有一个方程x 2-x =0的集合.B 中,∵y 2-y =0,∴y =0或y =1,∴{y |y 2-y =0}={0,1},恰有两个元素;C 中集合表示函数y =x 2-x 的定义域,为R ;D 中集合表示的是y =x 2-x 的值域为⎣⎢⎡⎭⎪⎫-14,+∞.答案:B2.(2013·浙江卷)设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(∁R S )∪T =( )A .(-2,1]B .(-∞,-4]C .(-∞,1]D .[1,+∞)解析:∁R S ={x |≤-2},又T ={x |-4≤x ≤1},故(∁R S )∪T ={x |x ≤1}.答案:C3.(2013·广州测试)已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素,若A ∩B 非空,则A ∩B 的元素个数为( )A .mnB .m +nC .m -nD .n -m解析:作出韦恩图,可知m >n ,且A ∩B 的元素个数肯定比m 小,只有C 符合要求.答案:C4.设集合A ={3,log 2(a 2-3a +4)},集合B ={2,a,6},若A ∩B ={1},则集合A ∪B 的真子集个数是( )A .15B .12C .7D .3解析:依题意,log 2(a 2-3a +4)=1,所以a 2-3a +4=2,即a 2-3a +2=0,解得a =1或a =2,而B ={2,a,6},所以a =2舍去.所以A ∪B ={1,2,3,6},因此集合A ∪B 的真子集的个数是24-1=15.答案:A5.(2013·天津调查)若实数a ,b ,c 满足a 2+a +b i<2+c i(其中i 2=-1),集合A ={x |x =a },B ={x |x =b +c },则A ∩∁R B 为( )A .ØB .{0}C .{x |-2<x <1}D .{x |-2<x <0或0<x <1}解析:由于只有实数间才能比较大小,故a 2+a +b i<2+c i ⇔⎩⎪⎨⎪⎧ a 2+a <2,b =c =0,解得⎩⎪⎨⎪⎧-2<a <1,b =c =0,因此A ={x |-2<x <1},B ={0},故A ∩(∁R B )={x |-2<x <1}∩{x |x ∈R ,x ≠0}={x |-2<x <0或0<x <1}.答案:D6.设集合A ={x ||x -a |<1,x ∈R },B ={x ||x -b |>2,x ∈R },若A ⊆B ,则实数a ,b 必满足( )A.|a+b|≤3 B.|a+b|≥3C.|a-b|≤3 D.|a-b|≥3解析:|x-a|<1⇔-1<x-a<1⇔a-1<x<a+1,|x-b|>2⇔x<b-2或x>b+2,∵A⊆B,∴a+1≤b-2,或b+2≤a-1,即b-a≥3或a-b≥3⇒|a-b|≥3.答案:D二、填空题7.已知A={y|y=x2-2x-1,x∈R},B={x|-2≤x<8},则集合A与B的关系是________.解析:∵A={y|y=(x-1)2-2,x∈R}={y|y≥-2},B={y|-2≤y<8},∴B A.答案:B A8.(2013·山西月考)设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.解析:依题意得A={0,3},因此有32+3m=0,m=-3.经检验,符合条件.答案:-39.对于平面上的点集Ω,如果连接Ω中任意两点的线段必定包含于Ω,则称Ω为平面上的凸集.给出平面上4个点集的图形如下(阴影区域及其边界):其中为凸集的是________.(写出所有凸集相应图形的序号)解析:在图形①中,连接最上面的两个端点的线段,显然不在图形中;②满足新定义;③满足新定义;④不满足,当分别连接两个圆上的点时不满足新定义.答案:②③10.某地对农户抽样调查,结果如下:电冰箱拥有率为49%,电视机拥有率85%,洗衣机拥有率为44%,拥有上述三种电器中两种或三种的占63%,三种电器齐全的为25%,那么一种电器也没有的相对贫困户所占比例为________.解析:不妨设调查了100户农户,U ={被调查的100户农户}, A ={100户中拥有电冰箱的农户}, B ={100户中拥有电视机的农户}, C ={100户中拥有洗衣机的农户},由图可知,A ∪B ∪C 的元素个数为49+85+44-63-25=90. ∴∁U (A ∪B ∪C )的元素个数为100-90=10. ∴所占比例为:10%. 答案:10% 三、解答题11.(1)已知A ={a +2,(a +1)2,a 2+3a +3}且1∈A ,求实数a 的值;(2)已知M ={2,a ,b },N ={2a,2,b 2}且M =N ,求a ,b 的值. 解:(1)由题知:a +2=1或(a +1)2=1或a 2+3a +3=1, ∴a =-1或-2或0,据元素的互异性排除-1,-2. ∴a =0即为所求.(2)由题知,⎩⎪⎨⎪⎧ a =2a b =b 2或⎩⎪⎨⎪⎧ a =b 2b =2a ⇒⎩⎪⎨⎪⎧ a =0b =1或⎩⎪⎨⎪⎧a =0b =0或⎩⎪⎨⎪⎧a =14b =12,据元素的互异性得⎩⎪⎨⎪⎧a =0b =1或⎩⎪⎨⎪⎧a =14b =12即为所求.12.设全集U =R ,函数y =log 2(6-x -x 2)的定义域为A ,函数y =1x 2-x -12的定义域为B .(1)求集合A 与B ; (2)求A ∩B 、(∁U A )∪B .解:(1)函数y =log 2(6-x -x 2)要有意义需满足:6-x -x 2>0,解得-3<x <2,∴A ={x |-3<x <2}. 函数y = 1x 2-x -12要有意义需满足x 2-x -12>0,解得x <-3或x >4,∴B ={x |x <-3或x >4}. (2)A ∩B =Ø.∁U A ={x |x ≤-3或x ≥2}, ∴(∁U A )∪B ={x |x ≤-3或x ≥2}.13.已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )(x -3a )<0}. (1)若A B ,求a 的取值范围; (2)若A ∩B =∅,求a 的取值范围; (3)若A ∩B ={x |3<x <4},求a 的取值范围. 解:∵A ={x |x 2-6x +8<0}, ∴A ={x |2<x <4}.(1)当a >0时,B ={x |a <x <3a },当A B 时,应满足⎩⎨⎧a ≤2,3a >4.或⎩⎪⎨⎪⎧a <2,3a ≥4⇒43≤a ≤2;当a <0时,B ={x |3a <x <a },当A B 时,应满足⎩⎨⎧ 3a ≤2a >4或⎩⎨⎧3a <2a ≥4⇒a ∈∅,∴43≤a ≤2时,AB .(2)要满足A ∩B =∅,当a >0时,B ={x |a <x <3a },a ≥4或3a ≤2, ∴0<a ≤23或a ≥4;当a <0时,B ={x |3a <x <a },a ≤2或a ≥43, ∴a <0,验证知当a =0时也成立. 综上所述,{a |a ≤23,或a ≥4}时A ∩B =∅. (3)要满足A ∩B ={x |3<x <4}, 显然a >0且a =3时成立,此时B ={x |3<x <9},且A ∩B ={x |3<x <4}. 故所求a 的值为3.。

高考数学《计数原理》综合复习练习题(含答案)

高考数学《计数原理》综合复习练习题(含答案)一、单选题1.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( ) A .9B .8C .7D .62.将2本不同的数学书和1本语文书在书架上随机排成一行,则不同的排列顺序有( )种 A .6B .4C .3D .23.中国古代的五经是指:《诗经》、《尚书》、《礼记》、《周易》、《春秋》,甲、乙、丙、丁、戊5名同学分别选取了其中一本不同的书作为课外兴趣研读,若甲乙都没有选《诗经》,乙也没选《春秋》,则5名同学所有可能的选择有 A .18种B .24种C .36种D .54种4.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,如果规定每位同学必须报名,则不同的报名方法共有( ) A .10种B .20种C .25种D .32种5.若2228n n n A C --=,则n =( )A .6B .7C .8D .96.演讲社团里现有水平相当的4名男生和5名女生,从中随机选出3名同学作为代表队到市里参加“最美逆行者”的演讲比赛,代表队中既有男生又有女生的不同选法共有( ) A .140种B .80种C .70种D .35种7.在(1-x )5-(1-x )6的展开式中,含x 3的项的系数是( ) A .-5B .5C .-10D .108.我国拥有包括民俗、医药、文学、音乐等国家级非物质文化遗产3000多项,下图为民俗非遗数进前10名省份排名,现从这10个省份中任取2个,则这2个省份民俗非遗数量相差不超过1个的概率为( )A .215B .15C .415 D .259.()()5131x x +-的展开式中3x 的系数为( ) A .0B .20C .10D .3010.某旅行社有A 、B 、C 、D 、E 共五条旅游线路可供旅客选择,其中A 线路只剩下一个名额,其余线路名额充足.现甲、乙、丙、丁四人前去报名,每人只选择其中一条线路,四人选完后,恰选择了三条不同的线路.则他们报名的情况总共有( ) A .720种B .360种C .320种D .288种11.我们把各位数字之和为6的四位数称为“六合数”(如2013是“六合数”),则“六合数”中首位为3的“六合数”共有( ) A .18个 B .15个 C .10个D .9个12.设100210001210032)x a a x a x a x -=++++(, 若02410012a a a a m k +++++=()k ∈Z ,则实数m 可能是( ) A .3B .9C .10D .11二、填空题13.若2110n P =,则n =______.14.6432⎭的展开式中系数为有理数的各项系数之和为________. 15.412x x ⎛⎫++ ⎪⎝⎭的展开式的常数项是___________.16.学校拟安排6位老师在今年6月12日至14日端午值班,每天安排2人,每人值班1天;若6位老师中的甲不值12日,乙不值14日且甲、乙不在同一天值班,则不同的安排方法共有__________种.三、解答题17.(1)求9212x x ⎛⎫- ⎪⎝⎭的展开式中的常数项;(2)9a x ⎛ ⎝的展开式中3x 的系数为94.求常数a 的值.18.在下列三个条件中任选一个条件,补充在问题中的横线上,并解答.条件①:展开式中前三项的二项式系数之和为22;条件②:展开式中所有项的二项式系数之和减去展开式中所有项的系数之和等于64;条件③:展开式中常数项为第三项.问题:已知二项式1nx ⎫⎪⎭,若______,求:(1)展开式中二项式系数最大的项; (2)展开式中所有的有理项.19.已知()2nn N x *⎫∈⎪⎭的展开式中前三项的二项式系数之和为46,(1)求n ;(2)求展开式中系数最大的项.20.已知在n的展开式中,前3项的系数成等差数列,求:(1)展开式中二项式系数最大项的项; (2)展开式中系数最大的项;(3)展开式中所有有理项.21.在二项式12nx ⎫⎪⎭的展开式中,恰好第五项的二项式系数最大.(1)求展开式中各项的系数和; (2)求展开式中的有理项.22.求()2123x -的展开式中: (1)各项系数之和; (2)各项系数的绝对值之和; (3)系数最小的项.23.已知二项式()23nx x +.(1)若它的二项式系数之和为512.求展开式中系数最大的项; (2)若3,2020x n ==,求二项式的值被7除的余数.24.已知函数()()20121nn n n f x x a a x a x a x λ=+=++++,其中R λ∈.(1)若2,2020n λ=-=,求0242020a a a a ++++的值;(2)若78,1024n a ==,求()0,1,2,3,,8i a i =的最大值;(3)若1λ=-,求证:()0nkknn k k k Cx f x x n -==∑参考答案1.B2.A3.D4.D5.C6.C7.D8.A9.B10.D11.C12.D 13.11 14.117 15.70 16.3617.(1)由题意,二项式9212x x ⎛⎫- ⎪⎝⎭展开式的通项为()9218319911C C 22r rrrr r r T x xx --+⎛⎫⎛⎫=⋅-=- ⎪ ⎪⎝⎭⎝⎭,令1830r -=,可得6r =, 6679121C 216T ⎛⎫=-= ⎪⎝⎭,所以展开式的常数项为2116. (2)由二项式9a x ⎛ ⎝展开式为93992199C C rrrr r r r r a T a x x ---+⎛⎛⎛⎫==⋅ ⎪ ⎝⎭⎝⎝, 令3932r -=,解得8r =,因为9a x ⎛ ⎝的展开式中3x 的系数为94,可得88994(C a ⋅=⋅,解得4a =. 18.(1)解:选①,由012C C C 22n n n ++=,得6n =(负值舍去).选②,令1x =,可得展开式中所有项的系数之和为0.由010264n n n n n C C C +++-==,得6n =.选③,设第1r +项为常数项,()321C 1n r r r r nT x-+=-,由2302r n r =⎧⎪⎨-=⎪⎩,得6n =.由6n =得展开式的二项式系数最大为36C ,则展开式中二项式系数最大的项为()33332246C 120T xx --=-=-.(2)解:设第1r +项为有理项,()63216C 1r rr r T x-+=-,因为06r ≤≤,r ∈N ,632rZ -∈,所以0,2,4,6r =,则有理项为03316C T x x ==,2036C 15T x ==,43356C 15T x x --==,66676C T x x --==.19.(1)由题意得:()01211462n n n n n C C C n -++=++=,解得:9n =或10-,因为n N *∈,所以10n =-(舍去),从而9n = (2)二项式的展开式通项为:()9192rrr r T C x x -+⎛⎫==⎪⎝⎭,则系数为92r rC ⋅,要求其最大值,则只要满足119911992222r r r r r r r r C C C C --++⎧⋅≥⋅⎨⋅≥⋅⎩,即,解得:172033r ≤≤,因为r N ∈,所以6r =,所以系数最大项为693627925376T C x x x -⎛⎫== ⎪⎝⎭ 20.(1)32nx x 展开式的通项公式为13C 2kn kkk n T x x -+=⋅3561C 2n kk n k x -=, 依题意得122112C 1C 22n n ⋅⋅=+⋅,即2C 4(1)n n =-,得8n =,所以832x x 的展开式有9项,二项式系数最大的项为5项,所以22433584135C 28T x x ==. (2)由(1)知,2456181C 2kk k k T x -+=,设展开式中系数最大的项为第1k +项,则1881188111C C 2211C C 22k k k k k k k k --++⎧≥⎪⎪⎨⎪≥⎪⎩,即()()()()()()8!8!2!8!1!9!8!8!2!8!1!7!k k k k k k k k ⎧≥⋅⎪⋅--⋅-⎪⎨⎪⋅≥⎪⋅-+⋅-⎩,即92228k k k k -≥⎧⎨+≥-⎩,解得23k ≤≤,所以2k =或3k =, 所以展开式中系数最大的项为737x 和327x .(3)由2456181C 2kk k k T x -+=(0,1,2,3,4,5,6,7,8)k =为有理项知,2456k -为整数,得0k =,6.所以展开式中所有有理项为4x 和716x. 21.(1)恰好第五项的二项式系数最大,则展开式有9项,∴ 8n =,∴ 二项式812x ⎫⎪⎭中,令1x = ,展开式中各项的系数和为81112256⎛⎫-= ⎪⎝⎭.(2)通项为 848318811()()22r r rr r r r T C C x x --+=-=- ,r=0,1,2,…,8. 当843r-为整数,即2,5,8r =时,展开式是有理项,有理项为第3、6、9项,即22038172T C x ⎛⎫=-⋅⋅= ⎪⎝⎭;5544681724T C x x --⎛⎫=-⋅⋅=- ⎪⎝⎭;888898112256T C x x --⎛⎫=-⋅⋅= ⎪⎝⎭.22.(1)解:设()21201901212122...3a x a x a x a x =++++-, 令1x =,得()2122110.213..1a a a a ++++⨯-==-; 所以()2123x -的展开式各项系数之和为-1; (2)令=1x -,得()210122211...5213a a a a --+-++==-⨯-, 两式相减得:()0220211 (152)a a a +++=-+, 两式相加得:()1321211 (152)a a a +++=--, 所以()2123x -的展开式各项系数的绝对值之和为()()012102201321.........a a a a a a a a a +++=+++-+++,()()221112111515522=-+---=; (3)()2123x -的展开式的通项公式为:()()()212121212112233rrrr rr r r x T x C C ---+=-=-,系数的绝对值为212123rr r C -,设第r +1项的系数绝对值最大,则2112012121211221212123232323r r r r r r r r r r r r C C C C -+-+----⎧≥⎨≥⎩,解得616655r ≤≤, 则13r =,即系数的绝对值的最大值为131321823C , 因为13为奇数,所以()131313132181822323C C -=-,即第14项的系数最小, 所以系数最小的项为1313821823x C -23.(1)二项式2(3)n x x +的二项式系数之和为512,2512n ∴=,9n ∴=.由1999119133,1,2,,933r r r r r r r r C C r C C --++⎧⋅⋅=⎨⋅⋅⎩,解得:7r =,展开式中系数最大的项为第8项,为6777789922161(3)787323T C x x C x x ⋅===.(2)若3x =,2020n =, 220202020(3)30(282)n x x +==+202012019201920192020202020202020282822822282C C K =+⋅++⋅+⋅+⋅=问题转化为20202被7除的余数,202067367306731672267167267367367367367236732282(71)2[77771]C C C C C ⋅⋅⋅=⋅=+=⋅++⋯++⋅⋅+272k =⨯+,即余数为2.24.(1)2λ=-,2020n =时,()()2020220202020012202012f x x a a x a x a x =-=+++⋅⋅⋅+, 令1x =,得()2020012320192020121a a a a a a -=++++⋅⋅⋅++=,令=1x -,得()20202020012320192020123a a a a a a +=-+-+⋅⋅⋅-+=,两式相加可得202002420182020312a a a a a ++++⋅⋅⋅++=. (2)()()828801281f x x a a x a x a x λ=+=+++⋅⋅⋅+,777810242a C λλ==⇒=,不妨设t a 为i a (0,1,2,3,,8)i =⋅⋅⋅中的最大值,则11t t t t a a a a -+≥⎧⎨≥⎩,118811882222t t t t t t t t C C C C --++⎧≥∴⎨≥⎩,解得:65t t ≤⎧⎨≥⎩,5t ∴=或6, i a 中最大值为55665688221792a a C C ====.(3)若1λ=-,()()1nn f x x =-,()()()()()12000112200121111nn n n kk n n nn k n n n n k k n Cx f x C x x C x x C x x C x x n n n n n---==-+-+-+⋅⋅⋅+-∑, 因为()()()()()()()()111!1!!!!1!!1!11!kk nn n n k n k C C n k n k n k n k k n k ----=⋅===--⋅-----⎡⎤⎣⎦所以()()()()1200122111100111nn n kk n nnn k n n n k k C x f x C x x C x x C x x n-------==+-+-+⋅⋅⋅+-∑. ()()()120001111111111n n n n n n n x C x x C x x C x x -------⎡⎤=-+-+⋅⋅⋅+-⎣⎦()11n x x x x -=+-=⎡⎤⎣⎦.。

高考数学复习题型及答案

高考数学复习题型及答案一、选择题1. 函数f(x)=x^2+2x+1的图像是:A. 一条直线B. 一个开口向上的抛物线C. 一个开口向下的抛物线D. 一个圆答案:B2. 已知等差数列{an}的首项a1=2,公差d=3,则其第10项a10的值为:A. 29B. 32C. 35D. 41答案:A二、填空题3. 若复数z=1+i,则|z|=________。

答案:√24. 已知函数f(x)=x^3-3x^2+2,求f'(x)=________。

答案:3x^2-6x三、解答题5. 求证:对于任意实数x,不等式x^2+x+1>0恒成立。

证明:要证明x^2+x+1>0恒成立,只需证明其判别式Δ<0。

计算判别式Δ=1^2-4×1×1=-3<0,因此原不等式恒成立。

6. 已知数列{an}满足a1=1,an+1=2an+1,求数列{an}的通项公式。

解:由递推关系an+1=2an+1,可得an+1+1=2(an+1),即数列{an+1}是首项为2,公比为2的等比数列。

因此,an+1=2^n,进而得到an=2^(n-1)-1。

四、计算题7. 计算定积分∫₀^₁x^2dx。

解:∫₀^₁x^2dx=(1/3)x^3|₀^₁=1/3。

8. 计算二重积分∬D(x^2+y^2)dσ,其中D是由x^2+y^2≤1所围成的圆盘。

解:∬D(x^2+y^2)dσ=∫₀^π∫₀^1(r^2cos^2θ+r^2sin^2θ)rdrdθ=∫₀^π∫₀^1r^3 dθ dr=(π/2)∫₀^1r^3dr=(π/2)(1/4)=π/8。

以上题型涵盖了高考数学中常见的选择题、填空题、解答题和计算题,通过这些题型的练习,可以有效地复习和巩固数学知识,为高考做好充分的准备。

高三综合数学试卷及答案

一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x,若存在实数a,使得f(a) = 0,则a的取值范围是()A. a > 0B. a < 0C. a = 0D. a ≠ 02. 若复数z满足|z-1| = |z+1|,则复数z的几何意义是()A. z在复平面上的实部为0B. z在复平面上的虚部为0C. z在复平面上的轨迹为y轴D. z在复平面上的轨迹为直线x=03. 在等差数列{an}中,若a1 + a3 = 10,a2 + a4 = 18,则该数列的公差d是()A. 2B. 3C. 4D. 54. 已知函数f(x) = x^2 - 4x + 4,若函数g(x) = |x| - 2,则f(x)与g(x)的图象交点的个数是()A. 2B. 3C. 4D. 55. 若等比数列{bn}的首项b1 = 2,公比q = 3,则该数列的前5项和S5是()A. 62B. 72C. 82D. 926. 在△ABC中,∠A = 60°,∠B = 45°,则sinC的值是()A. √3/2B. 1/2C. √2/2D. 1/√27. 若函数y = ax^2 + bx + c的图象开口向上,且a > 0,b < 0,则该函数的对称轴是()A. x = -b/2aB. x = b/2aC. x = -b/aD. x = b/a8. 在直角坐标系中,点P(2,3)关于直线y=x的对称点P'的坐标是()A. (3,2)B. (2,3)C. (3,3)D. (2,2)9. 若等差数列{cn}的前n项和为Sn,公差为d,则Sn^2 - (n^2 - 1)Sn + 2(n^2 - 1) = 0的解为()A. n = 1B. n = 2C. n = 3D. n = 410. 已知函数f(x) = |x-1| + |x+1|,若x∈[-1,1],则f(x)的最大值是()A. 0B. 2C. 4D. 6二、填空题(本大题共5小题,每小题10分,共50分)11. 已知等差数列{an}的首项a1 = 3,公差d = 2,则第10项a10 = ________。

2024届高考数学复习:专项(利用导数解决双变量问题)练习(附答案)

2024届高考数学复习:专项(利用导数解决双变量问题)练习一、单选题 1.设函数()311433f x x x =-+,函数()221g x x bx =-+,若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,则实数b 的取值范围是( )A .7,2⎡⎫+∞⎪⎢⎣⎭B .5,8⎡⎫+∞⎪⎢⎣⎭C .7,2⎛⎤-∞ ⎥⎝⎦D .5,8⎛⎤-∞ ⎥⎝⎦2.已知函数1()ln f x x a x x=-+,且()f x 有两个极值点12,x x ,其中(]11,2x ∈,则()()12f x f x -的最小值为( ) A .35ln 2-B .34ln 2-C .53ln 2-D .55ln 2-3.已知函数()e ,()ln xf x xg x x x ==,若()()12f x g x t ==,其中0t >,则12ln tx x 的最大值为( )A .1eB .2eC .21e D .24e 4.设函数()12ln 133f x x x x=-+-,函数()25212g x x bx =--,若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,则实数b 的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .5,8⎡⎫+∞⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .5,8⎛⎤-∞ ⎥⎝⎦5.已知函数()224x x f x x ++=-,()111323x xxx g x -⋅-=,实数a ,b 满足0a b <<.若[]1,x a b ∀∈,[]21,1x ∃∈-,使得()()12f x g x =成立,则b a -的最大值为( )A .3B .4C .5D.二、解答题 6.已知函数()2x f x x e =-.(Ⅰ)求函数()f x 的图象在点()()0,0f 处的切线方程;(Ⅱ)若存在两个不相等的数1x ,2x ,满足()()12f x f x =,求证:122ln 2x x +<. 7.已知函数()()3ln f x x k x k R =+∈,()f x '为()f x 的导函数.(1)当6k =时,(i )求曲线()y f x =在点()()1,1f 处的切线方程; (ii )求函数()()()9g x f x f x x'=-+的单调区间和极值; (2)当3k ≥-时,求证:对任意的[)12,1,x x ∈+∞且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 8.已知函数21()ln 2f x x a x =-.其中a 为常数. (1)若函数()f x 在定义域内有且只有一个极值点,求实数a 的取值范围;(2)已知1x ,2x 是函数()f x 的两个不同的零点,求证:12x x +>. 9.已知函数ln ()xf x x=,()g x ax b =+,设()()()F x f x g x =-. (1)若1a =,求()F x 的最大值;(2)若()F x 有两个不同的零点1x ,2x ,求证:()()12122x x g x x ++>.10.已知函数1()ln f x a x x x=-+,其中0a >. (1)若()f x 在(2,)+∞上存在极值点,求a 的取值范围;(2)设()10,1x ∈,2(1,)x ∈+∞,若()()21f x f x -存在最大值,记为()M a ,则当1a e e≤+时,()M a 是否存在最大值?若存在,求出其最大值;若不存在,请说明理由11.已知函数()ln(1)ax f x e x =+,2()ln g x x a x=+-,其中a R ∈. (1)若函数()y f x =的图象与直线y x =在第一象限有交点,求a 的取值范围. (2)当2a <时,若()y g x =有两个零点1x ,2x ,求证:12432x x e <+<-.12.已知函数()2211ln 24f x x ax x x ax ⎛⎫=--+ ⎪⎝⎭.(1)若()f x 在()0,+?单调递增,求a 的值;(2)当1344a e <<时,设函数()()f x g x x=的最小值为()h a ,求函数()h a 的值域.13.已知函数2()22ln ()f x x ax x a R =-+∈.(1)讨论函数()f x 的单调性;(2)若()f x 存在两个极值点()1221,x x x x >,求证:()()()2121(2)f x f x a x x -<--.14.已知函数2()(2)()x f x xe a x x a R =-+∈. (1)当1a =时,求函数()f x 的单调区间; (2)当1a e>时,函数()f x 有三个不同的零点1x ,2x ,3x ,求证:1232x x x lna ++<. 15.已知函数()223x xe f x e -+=,其中e 为自然对数的底数.(1)证明:()f x 在(),0-∞上单调递减,()0,∞+上单调递增; (2)设0a >,函数()212cos cos 3g x x a x a =+--,如果总存在[]1,x a a ∈-,对任意2x R ∈,()()12f x g x …都成立,求实数a 的取值范围.16.已知函数()()21ln 212h x x b x =+-,()21ln 2f x x a x =-.其中a ,b 为常数. (1)若函数()h x 在定义域内有且只有一个极值点,求实数b 的取值范围; (2)已知1x ,2x 是函数()f x的两个不同的零点,求证:12x x +>. 17.已知函数()()()1xxf x ae ea x a R -=--+∈,()f x 既存在极大值,又存在极小值.(1)求实数a 的取值范围;(2)当01a <<时,1x ,2x 分别为()f x 的极大值点和极小值点.且()()120f x kf x +>,求实数k 的取值范围.18.已知函数()()22ln xg x x t t R e=-+∈有两个零点1x ,2x . (1)求实数t 的取值范围; (2)求证:212114x x e+>. 19.已知函数()1ln f x x x=-,()g x ax b =+. (1)若函数()()()h x f x g x =-在()0,+?上单调递增,求实数a 的取值范围;(2)当0b =时,若()f x 与()g x 的图象有两个交点()11,A x y ,()22,B x y ,试比较12x x 与22e 的大小.(取e 为2.8,取ln 2为0.7为1.4)20.已知函数2()(2)ln ()f x a x ax x a R =++-∈. (Ⅰ)当0a =时,求证:2()22x f x x >-. (Ⅱ)设232()3g x x x =-,若1(0,1]x ∀∈,2[0,1]x ∃∈,使得()()12f x g x …成立,求实数a 的取值范围. 21.设函数22()ln ()f x a x x ax a R =-+-∈. (1)当1a =时,试讨论函数()f x 的单调性;(2)设2()2()ln x x a a x ϕ=+-,记()()()h x f x x ϕ=+,当0a >时,若函数()y h x =与函数y m =有两个不同交点1(C x ,)m ,2(D x ,)m ,设线段的中点为(,)E s m ,试问s 是否为()0h s '=的根?说明理由.22.已知函数()()2ln 1f x x a x =++.(1)若函数()y f x =在区间[)1,+∞内是单调递增函数,求实数a 的取值范围; (2)若函数()y f x =有两个极值点1x ,2x ,且12x x <,求证:()210ln f x x <<(注:e 为自然对数的底数)23.已知函数()ln x f x e x λλ=-(1)当1λ=-时,求函数()f x 的单调区间;(2)若0e λ<<,函数()f x 的最小值为()h λ,求()h λ的值域.24.已知函数21()ln ()2f x x ax x a =-+∈R . (1)若()f x 在定义域单调递增,求a 的取值范围;(2)设1e ea <+,m ,n 分别是()f x 的极大值和极小值,且S m n =-,求S 的取值范围. 25.已知函数21()(1)ln 2f x x a x a x =-++.(1)求函数()f x 的单调递增区间;(2)任取[3,5]a ∈,函数()f x 对任意1212,[1,3]()x x x x ∈≠,恒有1212|()()|||f x f x x x λ-<-成立,求实数λ的取值范围.参考答案一、单选题 1.设函数()311433f x x x =-+,函数()221g x x bx =-+,若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,则实数b 的取值范围是( )A .7,2⎡⎫+∞⎪⎢⎣⎭B .5,8⎡⎫+∞⎪⎢⎣⎭C .7,2⎛⎤-∞ ⎥⎝⎦D .5,8⎛⎤-∞ ⎥⎝⎦【答案】A 【要点分析】由题意只需()()min min f x g x ≥,对函数()f x 求导,判断单调性求出最小值,对函数()g x 讨论对称轴和区间[]0,1的关系,得到函数最小值,利用()()min min f x g x ≥即可得到实数b 的取值范围. 【答案详解】若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,只需()()min min f x g x ≥, 因为()311433f x x x =-+,所以()24f x x '=-,当[]1,2x ∈时,()0f x '≤,所以()f x 在[]1,2上是减函数,所以函数()f x 取得最小值()25f =-. 因为()()222211g x x bx x b b =-+=-+-,当0b ≤时,()g x 在[]0,1上单调递增,函数取得最小值()01g =,需51-≥,不成立; 当1b ≥时,()g x 在[]0,1上单调递减,函数取得最小值()122g b =-,需522b -≥-,解得72b ≥,此时72b ≥; 当01b <<时,()g x 在[]0,b 上单调递减,在(],1b 上单调递增,函数取得最小值()21g b b =-,需251b -≥-,解得b ≤或b ≥综上,实数b 的取值范围是7,2⎡⎫+∞⎪⎢⎣⎭, 故选:A . 【名师点睛】本题考查利用导数研究函数的最值,考查二次函数在区间的最值的求法,考查分类讨论思想和转化思想,属于中档题.2.已知函数1()ln f x x a x x=-+,且()f x 有两个极值点12,x x ,其中(]11,2x ∈,则()()12f x f x -的最小值为( ) A .35ln 2- B .34ln 2-C .53ln 2-D .55ln 2-【答案】A 【要点分析】()f x 的两个极值点12,x x 是()0f x '=的两个根,根据韦达定理,确定12,x x 的关系,用1x 表示出2x ,()()12f x f x -用1x 表示出,求该函数的最小值即可.【答案详解】解:()f x 的定义域()0,∞+,22211()1a x ax f x x x x'++=++=,令()0f x '=,则210x ax ++=必有两根12,x x , 2121240010a x x a x x ⎧->⎪+=->⎨⎪=>⎩,所以2111112,,a x a x x x ⎛⎫<-==-+ ⎪⎝⎭, ()()()11211111111111ln ln f x f x f x f x a x x a x x x x ⎛⎫⎛⎫∴-=-=-+--+ ⎪ ⎪⎝⎭⎝⎭,1111111111122ln 22ln x a x x x x x x x ⎛⎫⎛⎫⎛⎫=-+=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(]11()22ln ,1,2h x x x x x x x ⎛⎫⎛⎫=--+∈ ⎪ ⎪⎝⎭⎝⎭,22211112(1)(1)ln ()2121ln x x x h x x x x x x x x ⎡⎤+-⎛⎫⎛⎫⎛⎫'∴=+--++⋅= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 当(]1,2x ∈时,()0h x '<,()h x 递减, 所以()()min 235ln 2h x h ==-()()12f x f x -的最小值为35ln 2-故选:A. 【名师点睛】求二元函数的最小值通过二元之间的关系,转化为求一元函数的最小值,同时考查运算求解能力和转化化归的思想方法,中档题.3.已知函数()e ,()ln x f x x g x x x ==,若()()12f x g x t ==,其中0t >,则12ln tx x 的最大值为( ) A .1eB .2eC .21eD .24e 【答案】A 【要点分析】 由题意转化条件2ln 2ln x ex t ⋅=,通过导数判断函数()f x 的单调性,以及画出函数的图象,数形结合可知12ln x x =,进而可得12ln ln t t x x t =,最后通过设函数()()ln 0th t t t=>,利用导数求函数的最大值. 【答案详解】由题意,11e x x t ⋅=, 22ln x x t ⋅=,则2ln 2e ln xx t ⋅=,()()1x x x f x e xe x e '=+=+,当(),1x ∈-∞-时,()0f x '<,()f x 单调递减, 当()1,x ∈-+∞时,()0f x '>,()f x 单调递增,又(),0x ∈-∞时,()0f x <,()0,x ∈+∞时,()0f x >, 作函数()e xf x x =⋅的图象如下:由图可知,当0t >时,()f x t =有唯一解,故12ln x x =,且1>0x ,∴1222ln ln ln ln t t tx x x x t==⋅⋅, 设ln ()t h t t =,0t >,则21ln ()th t t-'=,令()0h t '=,解得e t =, 易得当()0,e t ∈时,()0h t '>,函数()h t 单调递增, 当()e,t ∈+∞时,()0h t '<,函数()h t 单调递减, 故()()1e eh t h ≤=,即12ln t x x ⋅的最大值为1e .故选:A . 【名师点睛】本题考查利用导数求函数的最值,重点考查转化与化归的思想,变形计算能力,数形结合思想,属于中档题,本题可得关键是判断12ln x x =. 4.设函数()12ln 133f x x x x=-+-,函数()25212g x x bx =--,若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,则实数b 的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .5,8⎡⎫+∞⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .5,8⎛⎤-∞ ⎥⎝⎦【答案】A 【要点分析】根据对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,用导数法求得()f x 的最小值,用二次函数的性质求得()g x 的最小值,再解不等式即可. 【答案详解】因为()12ln 133f x x x x =-+-, 所以()211233'=--f x x x,211233=--x x, 22323-+=-x x x,()()2123--=-x x x , 当12x <<时,()0f x '>,所以()f x 在[]1,2上是增函数, 所以函数()f x 取得最小值()213f =-. 因为()()2225521212=--=---g x x bx x b b , 当0b ≤时,()g x 取得最小值()0251=-g ,因为对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立, 所以()()10≥f g ,不成立; 当1b ≥时,()g x 取得最小值()71212=-g b , 因为对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立, 所以722123-≤-b ,解得58≥b ,此时1b ≥; 当01b <<时,()g x 取得最小值()2512=--g b b , 因为对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立, 所以221352--≤-b ,解得12b ≥,此时112b ≤<; 综上:实数b 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 故选:A 【名师点睛】本题主要考查双变量问题以及导数与函数的最值,二次函数的性质,还考查了分类讨论的思想和运算求解的能力,属于中档题.5.已知函数()224x x f x x ++=-,()111323x xxx g x -⋅-=,实数a ,b 满足0a b <<.若[]1,x a b ∀∈,[]21,1x ∃∈-,使得()()12f x g x =成立,则b a -的最大值为( )A .3B .4C .5D .【答案】A 【要点分析】首先化简函数()42,0f x x x x ⎛⎫=--+< ⎪⎝⎭,和()11233xx g x ⎛⎫=- ⎪⎝⎭,[]1,1x ∈-,并判断函数的单调性,由条件转化为子集关系,从而确定,a b 值. 【答案详解】()42f x x x ⎛⎫=--+ ⎪⎝⎭,0x <()241f x x '=-+,0x <, 当()0f x '>时,解得:20x -<<,当()0f x '<时,解得:2x <-,所以()f x 在(),0-∞的单调递增区间是()2,0-,单调递减区间是(),2-∞-,当2x =-时取得最小值,()22f -=()11233xx g x ⎛⎫=- ⎪⎝⎭,函数在[]1,1-单调递增,()3116g -=-,()13g =,所以,()3136g x -≤≤, 令()3f x =,解得:1x =-或4x =-,由条件可知()[],,,0f x x a b a b ∈<<的值域是()[],1,1g x x ∈-值域的子集, 所以b 的最大值是1-,a 的最小值是4-, 故b a -的最大值是3. 故选:A 【名师点睛】本题考查函数的性质的综合应用,以及双变量问题转化为子集问题求参数的取值范围,重点考查转化与化归的思想,计算能力,属于中档题型. 二、解答题 6.已知函数()2x f x x e =-.(Ⅰ)求函数()f x 的图象在点()()0,0f 处的切线方程;(Ⅱ)若存在两个不相等的数1x ,2x ,满足()()12f x f x =,求证:122ln 2x x +<. 【答案】(Ⅰ)1y x =-;(Ⅱ)证明见解析. 【要点分析】(Ⅰ)首先求函数的导数,利用导数的几何意义,求函数的图象在点()()0,0f 处的切线方程;(Ⅱ)首先确定函数零点的区间,构造函数()()()ln 2ln 2F x f x f x =+--,利用导数判断函数()F x 的单调性,并得到()()ln 2ln 2f x f x +<-在()0,∞+上恒成立,并利用单调性,变形得到122ln 2x x +<. 【答案详解】(Ⅰ)()2e xf x '=-,所以()f x 的图象在点()()0,0f 处的切线方程为1y x =-.(Ⅱ)令()2e 0xf x '=-=,解得ln 2x =,当ln 2x =时()0f x '>,()f x 在(),ln 2-∞.上单调递增;当ln 2x >时,()0f x '< , ()f x 在()ln 2,+∞上单调递减.所以ln 2x =为()f x 的极大值点,不妨设12x x <,由题可知12ln 2x x <<. 令()()()ln 2ln 242e 2e xxF x f x f x x -=+--=-+,()42e 2e x x F x -'=--,因为e e 2x x -+…,所以()0F x '…,所以()F x 单调递减.又()00F =,所以()0F x <在()0,∞+上恒成立, 即()()ln 2ln 2f x f x +<-在()0,∞+上恒成立.所以()()()()()()()12222ln 2ln 2ln 2ln 22ln 2f x f x f x f x f x ==+-<--=-, 因为1ln 2x <,22ln 2ln 2x -<,又()f x 在(),ln 2-∞上单调递增,所以122ln 2x x <-, 所以122ln 2x x +<. 【名师点睛】思路名师点睛:本题是典型的极值点偏移问题,需先要点分析出原函数的极值点,找到两个根的大致取值范围,再将其中一个根进行对称的转化变形,使得x 与ln 2x -在同一个单调区间内,进而利用函数的单调性要点分析.7.已知函数()()3ln f x x k x k R =+∈,()f x '为()f x 的导函数.(1)当6k =时,(i )求曲线()y f x =在点()()1,1f 处的切线方程; (ii )求函数()()()9g x f x f x x'=-+的单调区间和极值; (2)当3k ≥-时,求证:对任意的[)12,1,x x ∈+∞且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 【答案】(1)(i )98y x =-;(ii )递减区间为()0,1,递增区间为()1,+∞;极小值为()11g =,无极大值;(2)证明见解析. 【要点分析】(1)(i )确定函数()f x ,求出()f x ',然后利用导数的几何意义求出切线方程即可; (ii )确定函数()g x ,求出()g x ',利用导数研究函数()g x 的单调性与极值即可;(2)求出()f x ',对要证得不等式进行等价转换后,构造新函数,利用导数研究新函数的单调性,结合等价转换后的结果即可证明结论成立. 【答案详解】(1)(i )当6k =时,()36ln f x x x =+,故()263f x x x'=+. 可得()11f =,()19f '=,所以曲线()y f x =在点()()1,1f 处的切线方程为()191y x -=-,即98y x =-. (ii )依题意,323()36ln g x x x x x =-++,()0,x ∈+∞,从而求导可得2263()36g x x x x x'=-+-,整理可得323(1)(1)()x x g x x'-+=. 令()0g x '=,解得1x =.当x 变化时,()g x ',()g x 的变化情况如下表:x ()0,11()1,+∞()g x ' -+()g x极小值所以,函数()g x 的单调递减区间为()0,1,单调递增区间为()1,+∞;()g x 的极小值为()11g =,无极大值.(2)证明:由()3ln f x x k x =+,得()23k f x x x'=+. 对任意的[)12,1,x x ∈+∞,且12x x >,令12(1)x t t x =>,则 ()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x x x x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+-- ⎪⎝⎭. ①令1()2ln h x x x x=--,[)1,x ∈+∞. 当1x >时,22121()110h x x x x '⎛⎫=+-=-> ⎪⎝⎭,由此可得()h x 在[)1,+∞单调递增,所以当1t >时,()()1h t h >,即12ln 0t t t-->, 因为21x ≥,323331(1)0t t t t -+-=->,3k ≥-,所以()()332322113312ln 33132ln x t t t k t t t t t t t tt⎛⎫⎛⎫-+-+-->-+---- ⎪ ⎪⎝⎭⎝⎭32336ln 1t t t t=-++-. ②由(1)(ii )可知,当1t >时,()()1g t g >,即32336ln 1t t t t-++>, 故32336ln 10t t t t-++->. ③由①②③可得()()()()()()()12121220x x fx f x f x f x ''-+-->.所以,当3k ≥-时,对任意的[)12,1,x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 【名师点睛】结论名师点睛:本题考查不等式的恒成立问题,可按如下规则转化: 一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集. 8.已知函数21()ln 2f x x a x =-.其中a 为常数. (1)若函数()f x 在定义域内有且只有一个极值点,求实数a 的取值范围;(2)已知1x ,2x 是函数()f x 的两个不同的零点,求证:12x x +>. 【答案】(1)0a >;(2)证明见解析. 【要点分析】(1)求出导函数()'f x ,分类讨论确定()'f x 的正负,得()f x 的单调性,从而得极值点个数,由此可得结论;(2)结合(1)求得函数有两个零点时a 的范围,设12x x <,则(1x ∈,)2x ∈+∞,引入函数()))(0g x fx fx x =-≤≤,由导数确定它是减函数,得))f x f x <-,然后利用()()))()21111f x f x f x f x f x ⎤⎤==->=-⎦⎦,再结合()f x 的单调性得出证明. 【答案详解】(1)()2(0)a x ax x x xf x --'==>,当0a ≤时,()0f x '>,()f x 在()0,∞+上单调递增,不符合题意,当0a >时,令()0f x '=,得x =,当(x ∈时,()0f x '<,()f x 单调递减,当)x ∈+∞时,()0f x '>,()f x 单调递增,所以此时()f x 只有一个极值点.0a ∴>(2)由(1)知当0a ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,函数()f x 至多有一个零点,不符合题意,当0a >时,令()0f x '=,得x =当x ∈时,()0f x '<,()f x 单调递减,当)x ∈+∞时,()0f x '>,()f x 单调递增,故当x =()f x 取得最小值()1ln 2a fa =-,当0a e <<时,1ln 0a ->,0f>,函数()f x 无零点,不合题意,当a e =时,1ln 0a -=,0f =,函数()f x 仅有一个零点,不合题意,当a e >时,1ln 0a -<,0f <,又()1102f =>,所以()f x 在(x ∈上只有一个零点, 令()ln 1p x x x =-+,则()11p x x'=-,故当01x <<时,()0p x '>,()p x 单调递增,当1x >时,()0p x '<,()p x 单调递减,所以()()10p x p ≤=,即ln 1≤-x x ,所以ln 221a a ≤-, 所以22(2)2ln 22(21)0f a a a a a a a a =-≥--=>,又2a >,所以()f x 在)x ∈+∞上只有一个零点.所以a e >满足题意.不妨设12x x <,则(1x ∈,)2x ∈+∞,令()))(0g x f x fx x =--≤≤,则()))ln ln g x a x a x =-+-,()22x ag x ='+=-,当0x <<时,()0g x '<,所以()g x在(上单调递减,所以当(x ∈时,()()00g x g <=,即))f x fx +<-,因为(1x ∈(1x ∈,所以()()))()21111f x f x f x f x f x ⎤⎤==-->+-=-⎦⎦,又)2x ∈+∞,)1x ∈+∞,且()f x在)+∞上单调递增,所以21x x >-,故12x x +>>. 【名师点睛】关键点名师点睛:本题考查用导数研究函数的极值点、零点,证明不等式.难点是不等式的证明,首先由零点个数得出参数范围,在不妨设12x x <,则(1x ∈,)2x ∈+∞后关键是引入函数()))(0g x fx f x x =-≤≤,同样用导数得出它的单调性,目的是证得))f x f x +<-,然后利用这个不等关系变形()f x 的单调性得结论.9.已知函数ln ()xf x x=,()g x ax b =+,设()()()F x f x g x =-. (1)若1a =,求()F x 的最大值;(2)若()F x 有两个不同的零点1x ,2x ,求证:()()12122x x g x x ++>. 【答案】(1)最大值为1b --;(2)证明见解析. 【要点分析】(1)首先求出函数的导函数,再判断()F x '的符号,即可得到函数的单调区间,从而求出函数的最大值; (2)由题知,121212ln ln x x ax b ax b x x =+=+,,即2111ln x ax bx =+,2222ln x ax bx =+,要证()()12122x x g x x ++>,即可212112ln ln 2x x x x x x ->-+,令21x t x =,则只需证2(1)ln (1)1t t t t ->>+.构造函数2(1)()ln (1)1t t t t t ϕ-=->+,利用导数说明其单调性即可得证; 【答案详解】解:ln ()()()xF x f x g x ax b x =-=-- (1)解:当1a =时,ln ()xF x x b x=-- 所以21ln ()1xF x x -'=-. 注意(1)0F '=,且当01x <<时,()0F x '>,()F x 单调递增; 当1x >时,()0F x '<,()F x 单调递增减. 所以()F x 的最大值为(1)1F b =--. (2)证明:由题知,121212ln ln x xax b ax b x x =+=+,, 即2111ln x ax bx =+,2222ln x ax bx =+, 可得212121ln ln ()[()]x x x x a x x b -=-++. 121212122()()2()x x g x x a x x b x x ++>⇔++>+212112ln ln 2x x x x x x -⇔>-+. 不妨120x x <<,则上式进一步等价于2211212()ln x x x x x x ->+. 令21x t x =,则只需证2(1)ln (1)1t t t t ->>+. 设2(1)()ln (1)1t t t t t ϕ-=->+,22(1)()0(1)t t t t ϕ-'=>+, 所以()t ϕ在(1+)∞,上单调递增, 从而()(1)0t ϕϕ>=,即2(1)ln (1)1t t t t ->>+, 故原不等式得证. 【名师点睛】本题考查导数在最大值、最小值问题中的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,属于难题.10.已知函数1()ln f x a x x x=-+,其中0a >.(1)若()f x 在(2,)+∞上存在极值点,求a 的取值范围;(2)设()10,1x ∈,2(1,)x ∈+∞,若()()21f x f x -存在最大值,记为()M a ,则当1a e e≤+时,()M a 是否存在最大值?若存在,求出其最大值;若不存在,请说明理由 【答案】(1)5(2a ∈,)+∞;(2)M (a )存在最大值,且最大值为4e. 【要点分析】(1)求出函数()f x 的导数,将题意转换为1a x x=+在(2,)x ∈+∞上有解,由1y x x =+在(2,)x ∈+∞上递增,得15(2x x +∈,)+∞,求出a 的范围即可; (2)求出函数()f x 的导数,得到21[()()]()()max f x f x f n f m -=-,求出M (a )11()()()()n f n f m alnm n m n m=-=+-+-,根据函数的单调性求出M (a )的最大值即可. 【答案详解】解:(1)2221(1)()1a x ax f x x x x --+'=--=,(0,)x ∈+∞, 由题意得,210x ax -+=在(2,)x ∈+∞上有根(不为重根),即1a x x =+在(2,)x ∈+∞上有解, 由1y x x=+在(2,)x ∈+∞上递增,得15(2x x +∈,)+∞,检验,52a >时,()f x 在(2,)x ∈+∞上存在极值点,5(2a ∴∈,)+∞;(2)210x ax -+=中2=a 4∆-,若02a <…,即2=a 40∆-≤22(1)()x ax f x x --+∴'=在(0,)+∞上满足()0f x '…,()f x ∴在(0,)+∞上递减,12x x < ()()12f x f x ∴> 21()()0f x f x ∴-<,21()()f x f x ∴-不存在最大值,则2a >;∴方程210x ax -+=有2个不相等的正实数根,令其为m ,n ,且不妨设01m n <<<,则01m n a mn +=>⎧⎨=⎩,()f x 在(0,)m 递减,在(,)m n 递增,在(,)n +∞递减,对任意1(0,1)x ∈,有1()()f x f m …, 对任意2(1,)x ∈+∞,有2()()f x f n …, 21[()()]()()max f x f x f n f m ∴-=-,M ∴(a )11()()()()n f n f m aln m n m n m=-=+-+-, 将1a m n n n =+=+,1m n=代入上式,消去a ,m 得: M (a )112[()()]n lnn n n n =++-,12a e e <+…,∴11n e n e++…,1n >, 由1y x x=+在(1,)x ∈+∞递增,得(1n ∈,]e , 设11()2()2()h x x lnx x x x =++-,(1x ∈,]e ,21()2(1h x lnx x'=-,(1x ∈,]e , ()0h x ∴'>,即()h x 在(1,]e 递增,[()]max h x h ∴=(e )4e =, M ∴(a )存在最大值为4e.【名师点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题.11.已知函数()ln(1)ax f x e x =+,2()ln g x x a x=+-,其中a R ∈. (1)若函数()y f x =的图象与直线y x =在第一象限有交点,求a 的取值范围. (2)当2a <时,若()y g x =有两个零点1x ,2x ,求证:12432x x e <+<-. 【答案】(1)1(0,)2;(2)证明见解析. 【要点分析】(1)根据题意设()()(1)ln ax g x f x x e x x =-=+-,问题转化为方程()0g x =,在(0,)+∞有解,求导,分类讨论①若0a …,②若102a <<,③若12a …时,要点分析单调性,进而得出结论. (2)运用要点分析法和构造函数法,结合函数的单调性,不等式的性质,即可得证. 【答案详解】解:(1)设()()(1)ln ax g x f x x e x x =-=+-, 则由题设知,方程()0g x =,在(0,)+∞有解,而1()()1[ln(1)1()11axax g x f x e a x e F x x '='-=++-=-+. 设()()1ax h x e F x =-,则22221()[()()][(1)](n 1)l ax ax ax a h x e aF x F x e a x x +-'=+'=+++.①若0a …,由0x >可知01ax e <…,且11()ln(1)111F x a x x x =++<++…, 从而()()10ax g x e F x '=-<,即()g x 在(0,)+∞上单调递减,从而()(0)0g x g <=恒成立, 因而方程()0g x =在(0,)+∞上无解.②若102a <<,则221(0)0(1)a h x -'=<+,又x →+∞时,()h x '→+∞, 因此()0h x '=,在(0,)+∞上必存在实根,设最小的正实根为0x , 由函数的连续性可知,0(0,)x x ∈上恒有()0h x '<, 即()h x 在0(0,)x 上单调递减,也即()0g x '<,在0(0,)x 上单调递减,从而在0(0,)x 上恒有()(0)0g x g '<'=, 因而()g x 在0(0,)x 上单调递减,故在0(0,)x 上恒有()(0)0g x g <=,即0()0g x <, 注意到ax e ax >,因此()(1)ln(1)ln [ln(1)1]ax g x e x x ax x x x a x =+->+-=+-, 令1ax e=时,则有()0>g x ,由零点的存在性定理可知函数()y g x =在0(x ,1)a e 上有零点,符合题意.③若12a …时,则由0x >可知,()0h x '>恒成立,从而()h x 在(0,)+∞上单调递增,也即()g x '在(0,)+∞上单调递增,从而()(0)0g x g >=恒成立,故方程()0g x =在(0,)+∞上无解. 综上可知,a 的取值范围是1(0,2.(2)因为()f x 有两个零点,所以f (2)0<, 即21012ln a a ln +-<⇒>+,设1202x x <<<,则要证121244x x x x +>⇔-<, 因为1244x <-<,22x >, 又因为()f x 在(2,)+∞上单调递增,所以只要证明121(4)()()0f x f x f x -<==, 设()()(4)g x f x f x =--(02)x <<,则222222428(2)()()(4)0(4)(4)x x x g x f x f x x x x x ----'='-'-=+=-<--, 所以()g x 在(0,2)上单调递减,()g x g >(2)0=,所以124x x +>, 因为()f x 有两个零点,1x ,2x ,所以12()()0f x f x ==, 方程()0f x =即2ln 0ax x x --=构造函数()2ln h x ax x x =--, 则12()()0h x h x ==,()1ln h x a x '=--,1()0a h x x e -'=⇒=, 记12(1ln 2)a p e a -=>>+,则()h x 在(0,)p 上单调递增,在(,)p +∞上单调递减, 所以()0h p >,且12x p x <<, 设2()()ln ln x p R x x p x p-=--+,22214()()0()()p x p R x x x p x x p -'=-=>++, 所以()R x 递增,当x p >时,()()0R x R p >=, 当0x p <<时,()()0R x R p <=, 所以11111112(2ln )x x p ax x lnx x p x p--=<++,即22111111(2)()22l l n n ax x p x px x p x p p -+<-++,211(2ln )(22ln )20p a x ap p p p x p +-+--++>,1(a p e -=,1)lnp a =-,所以21111(23)20a a x e x e --+-+>, 同理21122(23)20a a x ex e --+-+<,所以2112111111(23)2(23)2a a a a x e x e x e x e ----+-+<+-+, 所以12121()[(23)]0a x x x x e --++-<, 所以12123a x x e -+<-+,由2a <得:1122332a x x e e -+<-+<-,综上:12432x x e <+<-. 【名师点睛】本题考查导数的综合应用,不等式的证明,关键是运用分类讨论,构造函数的思想去解决问题,属于难题.12.已知函数()2211ln 24f x x ax x x ax ⎛⎫=--+ ⎪⎝⎭.(1)若()f x 在()0,+?单调递增,求a 的值;(2)当1344a e <<时,设函数()()f x g x x=的最小值为()h a ,求函数()h a 的值域.【答案】(1)1;(2)0,4e ⎛⎫ ⎪⎝⎭. 【要点分析】 (1)由()f x 在()0,+?单调递增,利用导数知()0f x ¢³在()0,+?上恒成立即可求参数a 的值;(2)由()()f x g x x =有()11ln 24g x x a x x a ⎛⎫=--+ ⎪⎝⎭,利用二阶导数可知()g x '在()0,+?上单调递增,进而可知()01,x e ∃∈,使得()00g x '=,则有()g x 的单调性得最小值()()000011ln 24g x x a x x a h a ⎛⎫=--+= ⎪⎝⎭,结合1344a e <<并构造函数可求0x 取值范围,进而利用导数研究()000031ln ln 42h a x x x x ⎛⎫=-⎪⎝⎭的单调性即可求范围;【答案详解】(1)()()ln f x x a x '=-,又()f x 在()0,+?单调递增,∴()0f x ¢³,即()ln 0x a x -≥在()0,+?上恒成立,(i )当1x >时,ln 0x >,则需0x a -≥,故min a x ≤,即1a ≤; (ii )当1x =时,ln 0x =,则a R ∈;(iii )当01x <<时,ln 0x <,则需0x a -≤,故max a x ≥,即1a ≥; 综上所述:1a =; (2)()()11ln 24f x g x x a x x a x ⎛⎫==--+ ⎪⎝⎭,()11ln 24a g x x x '=-+,()212a g x x x ''=+,∵1344a e <<,有()0g x ''>, ∴()g x '在()0,+?上单调递增,又()1104g a '=-+<,()304a g e e '=-+>, ∴()01,x e ∃∈,使得()00g x '=,当()00,x x ∈时,()0g x ¢<,函数()g x 单调递减,当()0,x x ∈+∞时,()0g x ¢>,函数()g x 单调递增,故()g x 的最小值为()()000011ln 24g x x a x x a h a ⎛⎫=--+=⎪⎝⎭,由()00g x '=得00011ln 24a x x x =+,因此()000031ln ln 42h a x x x x ⎛⎫=- ⎪⎝⎭,令()11ln 24t x x x x =+,()1,x e ∈,则()13ln 024t x x '=+>, ∴()t x 在()1,e 上单调递增,又1344a e <<,()114t =,()34t e e =,∴0x 取值范围为()1,e ,令()31ln ln 42x x x x x ϕ⎛⎫=-⎪⎝⎭(1x e <<),则()()()21131ln ln 2ln 3ln 102444x x x x x ϕ'=--+=-+->,∴函数()ϕx 在()1,e 上单调递增,又()10ϕ=,()4ee ϕ=, ∴()04e x ϕ<<,即函数()h a 的值域为0,4e ⎛⎫⎪⎝⎭.【名师点睛】本题考查了利用导数研究函数的单调性求参数,由原函数得到最值,构造中间函数并根据其导数讨论单调性,求最值的取值范围;中间函数需要根据步骤中的研究对象及目的确定;13.已知函数2()22ln ()f x x ax x a R =-+∈. (1)讨论函数()f x 的单调性;(2)若()f x 存在两个极值点()1221,x x x x >,求证:()()()2121(2)f x f x a x x -<--. 【答案】(1)答案不唯一,具体见解析;(2)证明见解析. 【要点分析】(1)求出导函数,根据二次函数的∆与0的关系来分类讨论函数的单调性,并注意一元二次方程根的正负与定义域的关系;(2)由()1212,x x x x <是两个极值点得到对应的韦达定理形式,然后利用条件将()()21f x f x -转变为关于12x x ,函数,再运用12x x ,的关系将不等式转化为证22212ln 0x x x -->,构造函数1()2ln (1)g x x x x x=-->,要点分析函数()g x 的单调性,得出最值,不等式可得证. 【答案详解】(1)解:函数()f x 的定义域为(0,)+∞,()2'212()22x ax f x x a x x-+=-+=,则24a ∆=-.①当0a ≤时,对(0,),()0x f x '∀∈+∞>,所以函数()f x 在(0,)+∞上单调递增;②当02a <≤时,0∆≤,所以对(0,),()0x f x '∀∈+∞≥,所以函数()f x 在(0,)+∞上单调递增;③当2a >时,令()0f x '>,得02a x -<<或2a x >,所以函数()f x在⎛ ⎝⎭,2a ⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增; 令'()0f x <,得22a a x <<,所以()f x在22a a ⎛⎫+ ⎪ ⎪⎝⎭上单调递减. (2)证明:由(1)知2a >且1212,1,x x a x x +=⎧⎨=⎩,所以1201x x <<<.又由()()()()222122211122ln 22ln f x f x x ax x x ax x -=-+--+()()()()()()22222222221212121212111122ln22ln 2ln x x x x x a x x x x x x x x x x x x x =---+=--+-+=--+. 又因为()()()()()()()()222121212121212121(2)222a x x x x a x x x x x x x x x x x x --=---=--+-=---.所以要证()()()2121(2)f x f x a x x -<--,只需证()22112ln2x x x x <-. 因为121=x x ,所以只需证22221ln x x x <-,即证22212ln 0x x x -->. 令1()2ln (1)g x x x x x =-->,则2'2121()110g x x x x ⎛⎫=+-=-> ⎪⎝⎭,所以函数()g x 在(1,)+∞上单调递增,所以对1,()(1)0x g x g ∀>>=.所以22212ln 0x x x -->. 所以若()f x 存在两个极值点()1221,x x x x >,则()()()2121(2)f x f x a x x -<--. 【名师点睛】本题考查函数与导数的综合应用,属于较难题.导数中通过双极值点求解最值或证明不等式时,可通过双极值点对应的等式将待求的式子或待证明的式子转变为关于同一变量(注意变量的范围)的式子,然后通过构造新函数,要点分析新函数的单调性后从而达到求解最值或证明不等式的目的. 14.已知函数2()(2)()x f x xe a x x a R =-+∈.(1)当1a =时,求函数()f x 的单调区间; (2)当1a e >时,函数()f x 有三个不同的零点1x ,2x ,3x ,求证:1232x x x lna ++<. 【答案】(1)增区间为(,1)-∞-,(2,)ln +∞;减区间为(1,2)ln -;(2)证明见解析. 【要点分析】(1)求出原函数的导函数,得到函数零点,由导函数零点对定义域分段,再由导函数在不同区间段内的符号得到原函数的单调区间;(2)由(0)0f =,可得0x =是函数的一个零点,不妨设30x =,把问题转化为证122x x lna +<,即证122x x a e+>.由()0f x =,得(2)0x e a x -+=,结合1x ,2x 是方程(2)0x e a x -+=的两个实根,得到1212x x e e a x x -=-,代入122x x a e +>,只需证1212212x x x x e e e x x +->-,不妨设12x x >.转化为证1212212()10x x x x ex x e----->.设122x x t -=,则等价于2210(0)t t e te t -->>.设2()21(0)t t g t e te t =-->,利用导数证明()0g t >即可. 【答案详解】(1)解:()(22)(1)(2)x x x f x e xe x x e '=+-+=+-, 令()0f x '=,得11x =-,22x ln =.当1x <-或n 2>x l 时,()0f x '>;当12x ln -<<时,()0f x '<.()f x ∴增区间为(,1)-∞-,(2,)ln +∞;减区间为(1,2)ln -;(2)证明:(0)0f = ,0x ∴=是函数的一个零点,不妨设30x =, 则要证122x x lna +<,只需证122x x a e +>. 由()0f x =,得(2)0x e a x -+=,1x ,2x 是方程(2)0x e a x -+=的两个实根, ∴11(2)x e a x =+,①22(2)x e a x =+,②,①-②得:1212x x e e a x x -=-,代入122x x a e+>,只需证1212212x xx x e e e x x +->-,不妨设12x x >.120x x -> ,∴只需证1212212()x x x x e e x x e+->-.20x e >,∴只需证1212212()10x x x x e x x e ----->.设122x x t -=,则等价于2210(0)t t e te t -->>. 设2()21(0)t t g t e te t =-->,只需证()0g t >, 又()2(1)t t g t e e t =--',设()1(0)t t e t t ϕ=-->,则()10t t e ϕ'=->,()t ϕ∴在(0,)+∞上单调递增,则()(0)0t ϕϕ>=.()0g t ∴'>,从而()g t 在(0,)+∞上是增函数, ()(0)0g t g ∴>=.综上所述,1232x x x lna ++<.【名师点睛】本题考查利用导数研究函数的单调性,考查利用导数求函数的极值,考查数学转化思想方法,属难题.15.已知函数()223x xe f x e -+=,其中e 为自然对数的底数.(1)证明:()f x 在(),0-∞上单调递减,()0,∞+上单调递增; (2)设0a >,函数()212cos cos 3g x x a x a =+--,如果总存在[]1,x a a ∈-,对任意2x R ∈,()()12f x g x …都成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)ln 2a ≥. 【要点分析】(1)直接对函数求导,判断导函数在对应区间上的符号即可证明;(2)总存在1[x a ∈-,](0)a a >,对任意2x R ∈都有12()()f x g x …,即函数()y f x =在[a -,]a 上的最大值不小于()y g x =,x ∈R 的最大值;借助单调性换元法,结合二次函数的性质分别求最值列不等式求解即可【答案详解】 (1)证明:()()23x xe ef x -='- 令()0f x '>,解得0x >,∴()f x 在()0,∞+上单调递增 令()0f x '<,解得0x <,∴()f x 在(),0-∞上单调递减 (2)总存在1[x a ∈-,](0)a a >,对任意2x R ∈都有12()()f x g x …, 即函数()y f x =在[a -,]a 上的最大值不小于()y g x =,x ∈R 的最大值()()()()max 23a af x f a f a e e -=-==+ 令[]()cos 1,1t x t =∈-,∴()2123g t t at a =+--,对称轴02a t =-< ∴()()max 513g t g ==∴()2533a a e e -+≥,52a a e e -+≥,令(),0ae m m =>,∴152m m +≥,∴2m ≥ ∴2a e ≥,∴ln 2a ≥【名师点睛】本题考查利用导数研究函数的单调性,考查三角函数的有界性,二次函数的最值以及恒成立问题的转化,考查转化思想以及计算能力,属于中档题.16.已知函数()()21ln 212h x x b x =+-,()21ln 2f x x a x =-.其中a ,b 为常数. (1)若函数()h x 在定义域内有且只有一个极值点,求实数b 的取值范围;(2)已知1x ,2x 是函数()f x 的两个不同的零点,求证:12x x +>. 【答案】(1)(),0-∞;(2)证明见解析. 【要点分析】(1)首先求函数的导数,根据题意转化为222y x x b =-+在1,2⎛⎫+∞⎪⎝⎭内有且仅有一个变号零点,根据二次函数的单调性,列式求解b 的取值范围;(2)求出当函数()f x 有两个零点时,求出a e >,再构造函数()))(0g x fx f x x =-≤≤,利用导数判断函数的单调性,得到))f x f x +<-,再通过构造得到()()21f x f x >-,利用函数的单调性证明结论.【答案详解】(1)()2222121212'b x x b x x x x h x -+⎛⎫=+=> ⎪--⎝⎭,因为函数()h x 在定义域有且仅有一个极值点, 所以222y x x b =-+在1,2⎛⎫+∞⎪⎝⎭内有且仅有一个变号零点, 由二次函数的图象和性质知21122022b ⎛⎫⨯-+< ⎪⎝⎭,解得0b <,即实数b 的取值范围为(),0-∞.(2)()2'(0)a x ax x x xf x -=-=>,当0a ≤时,()'0f x >,()f x 在()0,∞+上单调递增,函数()f x 至多有一个零点,不符合题意,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建省莆田四中2010届高三下学期理科数学综合练习一、选择题1. 若{2,3,4},{|,,,}A B x x n m m n A m n ===⋅∈≠,则集合B 的元素个数为 ( ) A .2 B .3 C .4 D .52. 若复数z 满足i z i 6)33(=-(i 是虚数单位),则z= ( )A. i 2323+-B. 322-C. 322+ D.322-- 3. 等比数列{}n a 的前n 项和为n S ,若362,18S S ==,则105S S 等于( ) A .3- B .5 C .31- D .334. 定义在R 上的函数()x f 是奇函数又是以2为周期的周期函数,则()()()741f f f ++等于( )A .-1B .0C .1D .4 5.函数sin 2y x =的图象经过适当变换可以得到cos2y x =的图象,则这种变换可以是( )A .沿x 轴向右平移4π个单位 B .沿x 轴向左平移4π个单位 C .沿x 轴向左平移2π个单位D .沿x 轴向右平移2π个单位6. 在区间[-1,1]上随机取一个数x ,cos 2x π的值介于0到21之间的概率为 ( )A .31 B .π2C .21D .32 7.函数()cos lg f x x x=-的零点个数是( )A .6B .8C .4D .28. 已知y = f (x )是定义在(–2,2)上的偶函数,且f (x )在[0,2)上是增函数,若f (m –2) – f (m + 1)<0,则实数m 的取值范围是( )A .(0,1)B .(12,1) C .(0,12) D .(12,2)9. 若()2cos()f x x m ωϕ=++,对任意实数t 都有()()4f t f t π+=-,且()18f π=-,则实数m 的值等于( )A .±1B .±3C .-3或1D .-1或310. 如果直线04122=-++++=my kx y x kx y 与圆交于M 、N 两点,且M 、N 关于直线0=+y x 对称,则不等式组⎪⎩⎪⎨⎧≥≤-≥+-0001y my kx y kx ,表示的平面区域的面积是( ) A .41B .21C .1D .2 二、填空题11. 二项式251()x x-的展开式中,含4x 的项的系数是 12.220(42)(43)x x dx --=⎰.13. 已知正方形ABCD ,则以B A ,为焦点,且过D C ,两点的椭圆的离心率为 14. 已知b a bx ax x f +++=3)(2是偶函数,定义域为]2,1[a a -,则b a += 。

15. 15.观察下列等式:1535522C C +=-, 1597399922C C C ++=+, 159131151313131322C C C C +++=-,1591317157171717171722C C C C C ++++=+,………由以上等式推测到一个一般的结论:对于*n N ∈,1594141414141n n n n n C C C C +++++++++=L三、解答题16. 已知x R ∈,向量2(cos ,1),(2,3sin 2)OA a x OB a x a ==-u u u r u u u r ,()f x OA OB =⋅uu u r uuu r ,0a ≠.(Ⅰ)求函数)(x f 解析式,并求当a >0时,)(x f 的单调递增区间; (Ⅱ)当]2,0[π∈x 时,)(x f 的最大值为5,求a 的值.17. 如图所示,四棱锥P ABCD -的底面为直角梯形,90ADC DCB ∠=∠=o,1AD =,3BC =,2PC CD ==,PC ⊥底面ABCD ,E 为AB 的中点.(Ⅰ)求证:平面PDE ⊥平面PAC ;(Ⅱ)求直线PC 与平面PDE 所成的角正弦值; (Ⅲ)求点B 到平面PDE 的距离.18.甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局。

(I )求甲获得这次比赛胜利的概率;(II )设ξ表示从第3局开始到比赛结束所进行的局数,求ξ得分布列及数学期望。

19. 如图,直角梯形ABCD 中,∠︒=90DAB ,AD ∥BC ,AB=2,AD=23,BC=21, 椭圆F 以A 、B 为焦点且过点D 。

(Ⅰ)建立适当的直角坐标系,求椭圆的方程; (Ⅱ)若点E 满足21=,是否存在斜率与的直线l k 0≠M 、F 交于椭圆N 两点, DPEBC且||||NE ME =,若存在,求K 的取值范围;若不存在,说明理由。

20. 设函数2()ln f x x x ax =++.(Ⅰ)若x =12时,()f x 取得极值,求a 的值;(Ⅱ)若()f x 在其定义域内为增函数,求a 的取值范围;(Ⅲ)设2()()1g x f x x =-+,当a =-1时,证明0)(≤x g 在其定义域内恒成立,并证明)1(212lnlnln23322222222---<+++n n n n n Λ )(2,≥∈n N n21.①设⎪⎪⎭⎫⎝⎛=4251A ,求A 的特征值以及属于每个特征值的一个特征向量。

②已知⊙O 1和⊙O 2的极坐标方程分别是θρθρsin 2cos 2a ==和 (a 是非零常数)。

(1)将两圆的极坐标方程化为直角坐标方程; (2)若两圆的圆心距为5,求a 的值。

C BD Ay数学(理科)试题参考答案一、选择题 1-5 BADBB AABCA二、填空题 11.10 12.8 13. 12- 14. 31 15. ()4121212nn n --+-三、解答题16、解:(Ⅰ)2()2cos sin 2f x a xx a =+-sin 2cos 2x a x =+2sin(2)6a x π=+.222(),()26236k x k k k x k k 当时即时pppp pp p p p -???#+?Z Z . ()(),()6f x f x k k k 为增函数,即的增区间为-3p pp p 轾犏+?犏臌Z ………9分(Ⅱ)()2sin(2)6f x a x π=+,当]2,0[π∈x 时,72[,]666x πππ+∈.若0,262a x p p >+=当时,()f x 最大值为25a =,则52a =.………11分 若)(,6762,0x f x a 时当ππ=+<的最大值为5a -=,则5a =-. …12分[来17.如图所示,建立空间直角坐标系C xyz -,则(0,0,0),(2,1,0)C A ,(0,3,0)B ,(0,0,2)P ,(2,0,0)D ,(1,2,0)E .(Ⅰ)由于(1,2,0)DE =-u u u r ,(2,1,0)CA =u u u r ,(0,0,2)CP =u u u r, 所以(1,2,0)(2,1,0)0DE CA ⋅=-⋅=u u u r u u u r,(1,2,0)(0,0,2)0DE CP ⋅=-⋅=u u u r u u u r,所以,DE CA DE CP ⊥⊥,而CP CA C =I ,所以DE ⊥平面PAC ,∵DE ⊂平面PDE (Ⅱ)设(,,)n x y z =r是平面PDE 的一个法向量,则n ⋅r 由于(1,2,0)DE =-u u u r ,(1,2,2)PE =-u u u r,所以有(,,)(1,2,0)20(,,)(1,2,2)220n DE x y z x y n PE x y z x y z ⎧⋅=⋅-=-+=⎪⎨⋅=⋅-=+-=⎪⎩r u u u r r u u ur , 令2x =,则1,2y z ==,即(2,1,2)n =r,再设直线PC 与平面PDE 所成的角为α,而(0,0,2)PC =-u u u r ,所以|(2,1,2)(0,0,2)|2sin |cos ,||(2,1,2)||(0,0,2)|3||||n PC n PC n PC α⋅⋅-=<>===⋅-⋅r u u u rr u u u r r u u u r , 因此直线PC 与平面PDE 所成的角为正弦值为2sin 3α=…………8分 (Ⅲ)由(Ⅱ)知(2,1,2)n =r 是平面PDE 的一个法向量,而(1,1,0)BE =-u u u r,所以点B 到平面PDE 的距离为|||(2,1,2)(1,1,0)|1|(2,1,2)|3n BE d n⋅⋅-===r u u u rr………12分 18、【解析】 解:记“第i 局甲获胜”为事件)5,4,3(=i A i ,“第j 局甲获胜”为事件)5,4,3(=j B i 。

(Ⅰ)设“再赛2局结束这次比赛”为事件A ,则4343B B A A A ⋅+⋅=,由于各局比赛结果相互独立,故)()()()()()()()(434343434343B P B P A P A P B B P A A P B B A A P A P +=⋅+⋅=⋅+⋅=52.04.04.06.06.0=⨯+⨯=。

(Ⅱ)记“甲获得这次比赛胜利”为事件B ,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而54354343A B A A A B A A B ⋅⋅+⋅⋅+⋅=,由于各局比赛结果相互独立,故 )()(54354343A B A A A B A A P B P ⋅⋅+⋅⋅+⋅=648.06.04.06.06.06.04.06.06.0)()()()()()()()()()()(5435434354354343=⨯⨯+⨯⨯+⨯=++=⋅⋅+⋅⋅+⋅=A P B P A P A P A P B P A P A P A B A P A A B P A A P 19、解 :(Ⅰ)以AB 中点为原点O ,AB 所在直线为x 轴,建立直角坐标系,如图则A (-1,0),B(1,0), D(-1,23),设椭圆F 的方程为)0(12222>>=+b a b y a x ……………2分 得⎪⎪⎩⎪⎪⎨⎧+==⎪⎭⎫ ⎝⎛+-1123)1(222222b a b a…… 4分 得3410417422224==∴>=+-b a a a a Θ所求椭圆F 方程 13422=+y x … 6分(Ⅱ)由)21,0(21E 得=,显然)0(≠+=⊥k m kx y l AB l 方程设时不合条件代入01248)43(13422222=-+++=+m kmx x k y x 得 ……………7分l 与椭圆F 有两不同公共点的充要条件是0)124)(43(4)8(222>-+-=∆m k km …… 8分即03422>+-m k ,设、y x M ),(11),(),(0022y x P ,MN y x N 中点,MN PE NE ME ⊥=等价于|||| 2022104344382kkmx k kmx x x +-=∴+-=+=Θ 200436k mm kx y +=+= ,kx y MNPE 12100-=-⊥得… 10分得 k k km k m 14342143622-=+--+ 得 2432k m +-= 代入 0234340222>⎪⎪⎭⎫ ⎝⎛+-+>∆k k 得41434022<<+<k k 得Θ 又)21,0()0,21(0⋃-∈≠k k k 取值范围为故Θ …12分21.(1)⎪⎪⎭⎫ ⎝⎛-=251ξ是矩阵A 的属于特征值11-=λ的一个特征向量⎪⎪⎭⎫⎝⎛=112ξ是矩阵A 的属于特征值61=λ的一个特征向量。

相关文档
最新文档