直线、平面、简单几何体
数学高考复习名师精品教案:第74课时:第九章 直线、平面、简单几何体-直线与平面垂直(1)

数学高考复习名师精品教案第74课时:第九章 直线、平面、简单几何体——直线与平面垂直课题:直线与平面垂直 一.复习目标:1.掌握直线与平面垂直的定义、判定定理和性质定理,并能运用它们进行论证和解决有关的问题;2.会用三垂线定理及其逆定理证明线线垂直,并会规范地写出解题过程。
二.知识要点:1.直线与平面垂直的判定定理是 ;性质定理是 ; 2.三垂线定理是 ;三垂线定理的逆定理是 ; 3.证明直线和平面垂直的常用方法有:三.课前预习:1.若,,a b c 表示直线,α表示平面,下列条件中,能使a α⊥的是 ( D )()A ,,,a b a c b c αα⊥⊥⊂⊂ ()B ,//a b b α⊥ ()C ,,a b A b a b α=⊂⊥ ()D //,a b b α⊥2.已知l 与m 是两条不同的直线,若直线l ⊥平面α,①若直线m l ⊥,则//m α;②若mα⊥,则//m l ;③若m α⊂,则m l ⊥;④//m l ,则mα⊥。
上述判断正确的是 ( B )()A ①②③ ()B ②③④ ()C ①③④ ()D ②④3.在直四棱柱1111ABC D A B C D -中,当底面四边形A B C D 满足条件A CB D⊥时,有111A C B D ⊥(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况) 4.设三棱锥P A B C -的顶点P 在平面ABC 上的射影是H ,给出以下命题: ①若P A B C⊥,P B A C⊥,则H 是A B C ∆的垂心②若,,PA PB PC 两两互相垂直,则H 是A B C ∆的垂心 ③若90ABC∠=,H 是A C 的中点,则PA PB PC ==④若PA PB PC ==,则H 是A B C ∆的外心其中正确命题的命题是 ①②③④ 四.例题分析:例1.四面体A B C D 中,,,ACBD E F=分别为,AD BC 的中点,且2EFAC=,90BDC ∠=,求证:B D ⊥平面A C D证明:取C D 的中点G ,连结,EG FG ,∵,E F 分别为,AD BC 的中点, ∴E G12//A C=12//F G B D=,又,AC BD =∴12F G A C=,∴在E F G ∆中,222212E GF G A CE F+==∴E GF G⊥,∴B DA C⊥,又90BDC ∠=,即BDC D⊥,AC CD C =∴B D ⊥平面A C D例2.如图P 是A B C ∆所在平面外一点,,PA PB CB =⊥平面P A B ,M 是P C 的中点,NMPCBAM DA 1C 1B 1CBAN是AB 上的点,3A NN B=(1)求证:M N A B⊥;(2)当90APB ∠= ,24AB BC ==时,求M N 的长。
直线平面简单几何体球

一个球与底面边长为a的正四棱锥的底面
和侧面都相切.若平行于棱锥
底面且与球相切的平面截棱锥,
所得的截面是一个边长为b的正
方形,求这个球的表面积.
解:过正四棱锥相对两个侧面的斜高作截
面,如图设O为球心,O1、O2
分别为截面和底面正方形的中
心,球与侧面的一个切点为C.
*
添加标题
添加标题
添加标题
添加标题
添加标题
添加标题
添加标题
添加标题
*
点评:求球的表面积的关键是求球的半径.求半径时,一般是根据截面圆的圆心与球的圆心的连线段、截面圆的弦长、球的半径三者之间的关系,通过解三角形来求得.
*
如图,A、B、C是表面积为 48π的球面上三点,AB=2, BC=4,∠ABC =60°,O为 球心.求直线OA与截面ABC 所成的角的大小. 解:连结AC,设O在 截面ABC上的射影是O′, 则O′为截面三角 形ABC外接圆的圆心,
*
已知过球面上A、B、C三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面面积是( ) A. B. C. D. 解:因为AB=BC=CA=2, 所以△ABC的外接圆半径为r= .设球的半 径为R,则 所以 , 所以
*
第九章 直线、平面、简单几何体
第 讲
球
考点 搜索
●球面、球体的概念,球的截面性质 ●地球的经纬度,球面距离 ●球的表面积和体积高考
高考 猜想
1. 考查有关球的表面积、体积和球面距离等的计算. 2. 考查球的截面问题的分析与计算.
与定点的距离_______________的点的集合,叫做球体,简称球,定点叫做球心,定长叫做球的半径,与定点距离__________的点的集合叫做球面. 用一个平面截一个球,所得的截面是________,且球心与截面圆心的连线________截面. 设球心到截面的距离为d,球半径为R,截面圆半径为r,则三者的关系是____________.
数学高考复习名师精品教案:第78课时:第九章 直线、平面、简单几何体-直线与平面、直线与直线所成的角

数学高考复习名师精品教案第78课时:第九章 直线、平面、简单几何体——直线与平面、直线与直线所成的角课题;直线与平面、直线与直线所成的角 一.复习目标:1.掌握直线与直线、直线与平面所成的角的概念,能正确求出线与线、线与面所成的角. 二.知识要点:1.异面直线,a b 所成角的定义: . 2.直线与平面所成角θ:(1)直线与平面平行或直线在平面内,则θ= . (2)直线与平面垂直,则θ= .(3)直线是平面的斜线,则θ定义为 . 3.最小角定理: .1.正方体1111ABCD A B C D -中,O 为,AC BD 的交点, 则1C O 与1A D 所成的角 ( )D()A 60 ()B 90 ()C arccos3 ()D arccos 62.,,PA PB PC 是从P 点引出的三条射线,每两条的夹角都是60 ,则直线PC 与平面APB 所成的角的余弦是( )()A 12 ()B ()C ()D 3.如图,在底面边长为2的正三棱锥ABC V-中,E 是BC的中点,若VAE ∆的面积是41,则侧棱VA 与底面所成角的大小为 . (结果用反三角函数值表示)四.例题分析:例1.在060的二面角βα--l 中,βα∈∈B A ,,已知A 、B 到l 的距离分别是2和4,且10=AB ,A 、B 在l 的射影分别为C 、D ,求:(1)CD 的长度;(2)AB和棱l 所成的角.例2.在棱长为4的正方体1111ABCD A B C D -中,O 是正方形1111A B C D 的中心,点P 在棱1CC 上,且14CC CP =.(Ⅰ)求直线AP 与平面11BCC B 所成的角的大小(结果用反三角函数值表示);(Ⅱ)设O 点在平面1D AP 上的射影是H ,求证:1D H AP ⊥.ABC VE· B 1PA CDA 1C 1D 1BO H·例3.在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PA ⊥底面ABCD ,AE PD ⊥,//,EF DC AM EF =.(1)证明MF 是异面直线AB 与PC 的公垂线;(2)若3PA AB =,求直线AC 与平面EAM 所成角的正弦值.五.课后作业:AMBCDF EP1.在正三棱柱111ABC A B C -中,已知1AB =,D 在1BB 上,且1BD =,若AD 与平面11AAC C 所成的角为α,则α=( )()A 13 ()B 4π ()C ()D 2.一直线和直二面角的两个面所成的角分别是,αβ,则αβ+的范围是( )()A [,)2ππ ()B [0,2π ()C (0,2π ()D [0,2π3.已知AB 是两条异面直线,AC BD 的公垂线段,1AB =,10AC BD ==,CD =则,AC BD 所成的角为 .4.如图,在三棱锥P ABC -中,ABC ∆是正三角形90PCA ∠= ,D 是PA 中点,二面角P AC B --为120,2,PC AB ==,(1)求证:AC BD ⊥; (2)求BD 与平面ABC 所成角.5.如图,已知直三棱柱111ABC A B C -中,90ACB ∠= ,侧面1AB 与侧面1AC 所成的ABCPD二面角为60 ,M 为1AA 上的点,1130A MC ∠= ,190CMC ∠= ,AB a =. (1)求BM 与侧面1AC 所成角的正切值;(2)求顶点A 到面1BMC 的距离.6.如图直四棱柱 1111ABCD A BC D -中,底面ABCD 是直角梯形,设090=∠=∠ABC BAD ,2,8BC AD ==,异面直线1AC 与D A 1互相垂直,(1)求证:D A 1⊥平面B AC 1;(2)求侧棱1AA 的长;(3)已知4AB =,求D A 1与平面11B ADC 所成的角.D 1C 1B 1A 1DCB A。
2013白蒲中学高一数学教案:直线、平面、简单几何体:24(苏教版)

二面角练习课教学目标1.使学生进一步掌握好二面角及二面角的平面角的概念;2.使学生掌握求二面角平面角的基本方法,不断提高分析问题和解决问题的能力.教学重点和难点重点:使学生能够作出二面角的平面角;难点:根据题目的条件,作出二面角的平面角.教学设计过程重温二面角的平面角的定义.(本节课设计的出发点:空间图形的位置关系是立体几何的重要内容.解决立体几何问题的关键在于做好:定性分析,定位作图,定量计算,其中定性是定位、定量的基础,而定量则是定位,定性的深化.在面面关系中,二面角是其中的重要概念之一,它的度量归结为平面上角的度量,一般说来,对其平面角的定位是问题解决的关键一步.可是学生往往把握不住其定位的基本思路而导致思维混乱,甚至错误地定位,使问题的解决徒劳无益.这正是本节课要解决的问题.)教师:二面角是怎样定义的?学生:从空间一直线出发的两个半平面所组成的图形叫二面角.教师:二面角的平面角是怎样定义的?学生:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.教师:请同学们看下图.如图1:α,β是由l出发的两个半平面,O是l上任意一点,OC α,且OC⊥l;OD β,且OD⊥l.这就是二面角的平面角的环境背景,即∠COD是二面角α-l-β的平面角.从中我们可以得到下列特征:(1)过棱上任意一点,其平面角是唯一的;(2)其平面角所在平面与其两个半平面均垂直;另外,如果在OC上任取一点A,作AB⊥OD,垂足为B,那么由特征(2)可知AB⊥β.突出l,OC,OD,AB,这便是另一特征.(3)体现出一完整的三垂线定理(或逆定理)的环境背影.教师:请同学们对以上特征进行剖析.学生:由于二面角的平面角是由一点和两条射线构成,所以二面角的定位可化归为“定点”或“定线”的问题.教师:特征(1)表明,其平面角的定位可先在棱上取一“点”.耐人寻味的是这一点可以随便取,但又总是不随便取定的,它必须与问题背影互相沟通,给计算提供方便.(上面的引入力争符合练习课教学的特点.练习是形成技能的重要途径,练习课主要是训练学生良好的数学技能,同时伴随着巩固知识,发展智能和培育情感.特别要注意做到第一,知识的激活.激活知识有两个目的,一是突出了知识中的重要因素;二是强化知识中的基本要素.第二,思维的调理.练习课成功的关键在于对学生思维激发的程度.学生跃跃欲试正是思维准备较好的体现.因此,准备阶段安排一些调理思维的习题,确保学生思维的启动和运作.请看下面两道例题.)例1 已知:如图2,四面体V-ABC中,VA=VB=VC=a,AB=BC=CA=b,VH⊥面ABC,垂足为H,求侧面与底面所成的角的大小.分析:由已知条件可知,顶点V在底面ABC上的射影H是底面的中心,所以连结CH交AB于O,且OC⊥AB,由三垂线定理可知,VO⊥AB,则∠VOC为侧面与底面所成二面角的平面角.(图2)正因为此四面体的特性,解决此问题,可以取AB的中点O为其平面角的顶点,而且使得题设背影突出在面VOC上,给进一步定量创造了得天独厚的条件.特征(2)指出,如果二面角α-l-β的棱l垂直某一平面γ,那么l必垂直γ与α,β的交线,而交线所成的角就是α-l-β的平面角.(如图3)由此可见,二面角的平面角的定位可以考虑找“垂平面”.例2 矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起,使点A在平面BCD上的射影A′落在BC上,求二面角A-BD-C的大小的余弦值.这是一道由平面图形折叠成立体图形的问题,解决问题的关键在于搞清折叠前后的“变”与“不变”.如果在平面图形中过A作AE⊥BD交BD于O、交BC于E,则折叠后OA,OE 与BD的垂直关系不变.但OA与OE此时变成相交两线并确定一平面,此平面必与棱垂直.由特征(2)可知,面AOE与面ABD、面CBD的交线OA与OE所成的角,即为所求二面角的平面角.另外,A在面BCD上的射影必在OE所在的直线上,又题设射影落在BC上,所以E点就是A′,这样的定位给下面的定量提供了可能.在Rt△AA′O中,∠AA′O=90°,通过对例2的定性分析、定位作图和定量计算,特征(2)从另一角度告诉我们:要确定二面角的平面角,我们可以把构成二面角的两个半平面“摆平”,然后,在棱上选取一适当的垂线段,即可确定其平面角.“平面图形”与“立体图形”相映生辉,不仅便于定性、定位,更利于定量.特征(3)显示,如果二面角α-l-β的两个半平面之一,存在垂线段AB,那么过垂足B作l的垂线交l于O,连结AO,由三垂线定理可知OA⊥l;或者由A作l的垂线交l于O,连结OB,由三垂线定理的逆定理可知OB⊥l.此时,∠AOB就是二面角α-l-β的平面角.(如图6)由此可见,二面角的平面角的定位可以找“垂线段”.课堂练习1.在正方体ABCD-A1B1C1D1中,棱长为2,E为BC的中点,求面B1D1E与面BB1C1C 所成的二面角的大小的正切值.练习1的环境背景表明,面B1D1E与面BB1C1C构成两个二面角,由特征(2)可知,这两个二面角的大小必定互补.为创造一完整的三垂线定理的环境背景,线段C1D1会让我们眼睛一亮,我们只须由C1(或D1)作B1E的垂线交B1E于O,然后连结OD1(或OC1)即得面D1B1E 与面CC1B1E所成二面角的平面角∠C1OD1,2.将棱长为a的正四面体的一个面与棱长为a的正四棱锥的一个侧面吻合,则吻合后的几何体呈现几个面?分析:这道题,考生答“7个面”的占99.9%,少数应服从多数吗?从例题中三个特征提供的思路在解决问题时各具特色,它们的目标分别是找“点”、“垂面”、“垂线段”.事实上,我们只要找到其中一个,另两个就接踵而来.掌握这种关系对提高解题技能和培养空间想象能力非常重要.本题如果能融合三个特征对思维的监控,可有效地克服、抑制思维的消极作用,培养思维的广阔性和批判性.如图9,过两个几何体的高线VP,VQ的垂足P,Q分别作BC的垂线,则垂足重合于O,且O为BC的中点.OP延长过A,OQ延长交ED于R,考虑到三垂线定理的环境背影,∠AOR为二面角A-BC-R的平面角,结合特征(1),(2),可得VAOR为平行四边形,VA ∥BE,所以V,A,B,E共面.同理V,A,C,D共面.所以这道题的正确答案应该是5个面.(这一阶段的教学主要是通过教师精心设计的一组例题与练习题,或边练边评,或由学生一鼓作气练完后再逐题讲评,达到练习的目的.其间要以学生“练”为主,教师“评”为辅)为了提高“导练”质量,教师要力求解决好三个问题:1.设计好练习.设计好练习是成功练习的前提.如何设计好练习是一门很深的学问,要注意:围绕重点,精选习题;由易到难,呈现题组;形式灵活,题型多变.2.组织好练习.组织练习是“导练”的实质,“导练”就是有指导、有组织的练习过程.要通过一题多用、一题多变、一题多解等使学生举一反三,从而提高练习的效果.有组织的练习还包括习题的临时增删、节奏的随时控制、要求的适时调整等.3.讲评好练习.讲评一般安排在练习后进行,也可以在练习前或练习时.练习前的讲评,目的是唤起学生的注意,提醒学生避免出错起到前馈控制的作用;练习时的讲评,属于即时反馈,即学生练习,教师巡视,从中发现共性问题及时指出来,以引起学生的注意;更多的是练习后的讲评,如果采用题组练习,那么最常用的办法是一组练习完毕后教师讲评,再进行下一组练习,以此类推.教师:由例1、例2和课堂练习,我们已经看到二面角的平面角有三个特征,这三个特征互相联系,客观存在,但在许多问题中却表现得含糊而冷漠,三个特征均藏而不露,在这种形势下,需认真探索.学生:应探索体现出一完整的三垂线定理的环境背景,有了“垂线段”,便可以定位.教师:请大家研究下面的例题.例3 如图10,在正方体ABCD-A1B1C1D1中,E是BC的中点,F在AA1上,且A1F∶FA=1∶2,求平面B1EF与底面A1C1所成的二面角大小的正切值.分析:在给定的平面B1EF与底面A1C1所成的二面角中,没有出现二面角的棱,我们可以设法在二面角的两个面内找出两个面的共点,则这两个公共点的连线即为二面角的棱,最后借助这条棱作出二面角的平面角.略解:如图10.在面BB1CC1内,作EH⊥B1C1于H,连结HA1,显然直线EF在底面A1C1的射影为HA1.延长EF,HA1交于G,过G,B1的直线为所求二面角的棱.在平面A1B1C1D1内,作HK⊥GB1于K,连EK,则∠HKE为所求二面角的平面角.在平面A1B1C1D1内,作B1L⊥GH于L,利用Rt△GLB1∽Rt△GKH,可求得KH.又在Rt△EKH中,设EH=a,容易得到:所求二面角大小的正切值教师:有时我们也可以不直接作出二面角的平面角,而通过等价变换或具体的计算得出其平面角的大小.例如我们可以使用平移法.由两平面平行的性质可知,若两平行平面同时与第三个平面相交,那么这两个平行平面与第三个平面所成的二面角相等或互补.因而例3中的二面角不易直接作出其平面角时,可利用此结论平移二面角的某一个面到合适的位置,以便等价地作出该二面角的平面角.略解:过F作A′B′的平行线交BB′于G,过G作B′C′的平行线交B′E 于H,连FH.显见平面FGH∥平面A′B′C′D′.则二面角B′-FH-G的平面角度数等于所求二面角的度数.过G作GM⊥HF,垂足为M,连B′M,由三垂线定理知B′M⊥HF.所以∠B′MG为二面角B′-FH-G的平面角,其大小等于所求二面角平面角的大小.(练习课的一个重要特征是概括.解题重要的不是统计做了多少题目,而是是否掌握了一类题的实质,即有无形成基本的解题模式,只有真正掌握了一类问题的解题思路,才算掌握了解答这类题目的基本规律.当学生练习到一定程度就应不失时机地引导他们总结和概括出练习的基本经验和教训,获得有意义的练习成果)例4 已知:如图12,P是正方形ABCD所在平面外一点,PA=PB=PC=PD=a,AB=a.求:平面APB与平面CPD相交所成较大的二面角的余弦值.分析:为了找到二面角及其平面角,必须依据题目的条件,找出两个平面的交线.解:因为 AB∥CD,CD 平面CPD,AB 平面CPD.所以 AB∥平面CPD.又 P∈平面APB,且P∈平面CPD,因此平面APB∩平面CPD=l,且P∈l.所以二面角B-l-C就是平面APB和平面CPD相交所得到的一个二面角.因为 AB∥平面CPD,AB 平面APB,平面CPD∩平面APB=l,所以 AB∥l.过P作PE⊥AB,PE⊥CD.因为 l∥AB∥CD,因此 PE⊥l,PF⊥l,所以∠EPF是二面角B-l-C的平面角.因为 PE是正三角形APB的一条高线,且AB=a,因为 E,F分别是AB,CD的中点,所以 EF=BC=a.在△EFP中,小结:二面角及其平面角的正确而合理的定位,要在正确理解其定义的基础上,掌握其基本特征,并灵活运用它们考察问题的背景.我们已经看到,定位是为了定量,求角的大小往往要化归到一个三角形中去解,因此寻找“垂线段”,把问题化归是十分重要的.作业1.120°二面角α-l-β内有一点P,若P到两个面α,β的距离分别为3和1,求P到l的距离.2.正方体ABCD-A1B1C1D1中,求以BD1为棱,B1BD1与C1BD1为面的二面角的度数.。
数学-直线、平面、简单几何体

!!!!!!!!!!!!!!!!"
一、 !""# 年全国各省市高考对该部分内容的考查要点和命题趋势
$% 立体几何考查的立足点仍在空间图形上, 突出了对空间观念和空间想象能力的考查% 立体几 何的基础是对点、 线、 面的各种位置关系的讨论和研究, 进而讨论几何体, 而且采用了公理化体系的 方法% 高考命题中, 突出了空间图形的特点, 侧重于对直线与直线、 直线与平面、 平面与平面的各种 位置关系的考查, 审核考生立体几何的知识水平和能力% !% 多面体和旋转体考题多是在空间直线与平面的理论基础上, 研究以柱、 锥、 台、 球为代表的最 基本的几何体的概念、 性质、 各主要元素间的关系、 直观图画法、 侧面展开图以及表面和体积的求法 等问题% &% 在高考中不仅有直接求多面体、 旋转体的面积和体积问题, 也有已知面积或体积求某些系问题, 多以几何体为依托%
.# (’ $% ・湖北) ( 文) 已知 ,、 -、 . 是直线, " 是平 面, 给出下列命题: - $., 则 , %.; $若 , $- , - $., 则 , $.; %若 , %- ,
则!%" ! !, 其中真命题是 !! !和" !和$ %&’ ( ’ &( ・天津) 设 !、 "、 #、 $ 为直 "、 # 为平面, 线, 则"$"的一个充分条件是 !’ !$", "$$ !’" ) $ , "’ !’# ) ", !$# , " $# #’ !$#, "$! " $# , $’ #$!, # $" , "$! %% ! (’ &( ・重庆) ( 理) 对于不重合的两个平面 ! 与 ", 给定下列条件: 使得 !、 !存在平面 #, " 都垂直于 #; 使得 !、 "存在平面 #, " 都平行于 #; #! 内有不共线的三点到 " 的距离相等; ", 使得 $%!, $ %" , "%!, $存在异面直线 $、 "%" ! 其中, 可以判定 ! 与 " 平行的条件有 !* % 个 -个 %+ ! (’ &( ・北京) 在正四面体的 % —&’( 中, )、 *、 + 分别是 &’ 、 ’( 、 (& 的中点, 下面四个结 论中不成立的是 !* ’( %平面 %)+ #* 平面 %)+ $ 平面 &’( 面 &’( %,* (’ &( ・广东) 给出下列关于互不相同的直线 "、 $、 # 和平面 !、 " 的四个命题: $ ’! ) &, 点 &(", 则 $ 与 " 不共 !若 "&!, 面; "* )+ $平面 %&* $* 平面 %&* $ 平 "* + 个 #* , 个 $* "! ! 和 # #! # 和 $ $!
专题五 直线、平面、简单几何体综合应用——专题过关测试

C II 知 " O _ — 了 i S = …= . A = D — T
: :
・
I GI C.
() 2 作 日上 G于 H, 由三垂 线定 理知 G I H, H_A _
。
为二 面角 A—C G— l A 的平 面角.
设H 0 , , 硇 = 0b )C : a 1 一 , . (,0 则 6) (,0 , H , 一 1 一, 1 ) b o 由A A ,, j _ G卿 H C
线A , c c的距离 肋 和 p E都等于 3 /- 求 : i. 6
( ) 明 : 1 平 面 A 1 . 1证 C DJ _ 1 鲋 A
() 面 A 。。 2求 C B 与面 A A 。 。B 所成 的二面角 的大 小.
: () 3求点 A到平面 A C的距离. 。 D。
●
C1
l
I
;
9 图 三柱 cA1中 A 丢AL C 0 为 。中. . , 棱 —B。,: =A,A: 棱 的点 如直 I A C 。B D C
维普资讯
≮ 亳 综 应 三 册 三 鬟 譬 ≯ 攀 警 麓 擎 誊 合 用 第 分 兰 三 藩 ≤ 羹 黪 誊 ≤ 簿 囊 - 三 囊 黛 囊
: l l : . : : t - ‘- . _ . - , . - . 1 : ^ : : t; - _ _ i -  ̄ _ : T : _ - . : _ l
,
: . 图 , 三棱柱 A C— 中 , 1如 直 B AB1 G c=B C=A 1 , C A =2 /A B=9 。E为 B 的 中点 , D 在 A 0 B。 点
上 , _ E= . J D  ̄
Cl
() 1 求证 :D_面 AA B . C I _ I B () 2 求二面角 C— E— , D的大小・
直线、平面、简单几何体优质课件

2.地球表面上从A地(北纬45°,东经120°)到B地(北纬
45°,东经30°)的最短距离为(地球半径为R)
(A)R (B)
πR
3.在北纬45o的圈上有甲、乙、丙三地,甲乙、乙丙之间
πR (C) 3
( C )
(D) πR
2
的经度差都是90o,则甲丙两地的球面距离是甲乙两地球
3 面距离的 ______倍 2
1 VA-BCD= (SABC+SBCD+SCDA+SDAB)· r 3 1 = · =16r 由16r=6√7 得内切球的半径为 r 3 7 48r 3 8
能力·思维·方法
【解题回顾】正如三角形的内切圆经常与面积发生关 系一样,多面体的内切球的半径也常与体积发生联系.
能力·思维·方法
9.在球内有相距14cm 的两个平行截面,它们的面积分别是 64πcm2 和 36πcm2,求球的表面积。 解:设球半径为R, (1)当截面在球心同侧,如图(1)
基础题例题
4.球的表面积膨胀为原来的 2 倍,膨胀后的体积为原来的 ( C) A. √2倍 B.2倍 C.2√2倍 D.4倍 2 2 5.棱长为2的正四面体的体积为_____________ 3
6.设P、A、B、C是球O面上的四点,且PA、PB、PC两两 互相垂直,若PA=PB=PC=a, 则球心O到截面ABC的距离 3 a 是______________ 6
直线、平面、简单几何体
要点·疑点·考点
一、多面体 1. 概念
(1)若干个平面多边形围成的几何体,叫多面体.
(2)把多面体的任何一面伸展为平面,如果所有其他各 面都在这个平面的同侧,这样的多面体叫凸多面体. (3)每个面都是有相同边数的正多边形,且以每个顶点 为其一端都有相同数目的棱的凸多面体,叫正多面体.
直线平面简单几何体课标试题

卜人入州八九几市潮王学校直线平面简单几何体1、空间两直线m l 、在平面βα、上射影分别为1a 、1b 和2a 、2b ,假设1a ∥1b ,2a 与2b 交于一点,那么l 和m 的位置关系为〔A 〕一定异面〔B 〕一定平行〔C 〕异面或者相交〔D 〕平行或者异面2、在直二面角βα--MN 中,等腰直角三角形ABC 的斜边α⊂BC ,一直角边β⊂AC ,BC 与β所成角的正弦值为46,那么AB 与β所成的角是 〔A 〕6π〔B 〕3π〔C 〕4π〔D 〕2π 〔第2题图〕3、二面角βα--l 是直二面角,βα∈∈B A ,,设直线AB 与βα、所成的角分别为∠1和∠2,那么〔A 〕∠1+∠2=900〔B 〕∠1+∠2≥900〔C 〕∠1+∠2≤900〔D 〕∠1+∠2<9004、边长为a 的菱形ABCD ,∠A =3π,将菱形ABCD 沿对角线折成二面角θ,θ∈[3π,32π],那么两对角线间隔的最大值是〔A 〕a 23〔B 〕a 43〔C 〕a 23〔D 〕a 43 5、〔A 方案〕二面角α―AB ―β的平面角是锐角,C 是面α内的一点〔它不在棱AB 上〕,点D 是点C 在面β上的射影,点E 是棱AB 上满足∠CEB 为锐角的任意一点,那么 〔A 〕∠CEB =∠DEB 〔B 〕∠CEB >∠DEB〔C 〕∠CEB <∠DEB 〔D 〕∠CEB 与∠DEB 的大小关系不能确定〔B 方案〕假设点A 〔42+λ,4-μ,1+2γ〕关于y 轴的对称点是B 〔-4λ,9,7-γ〕,那么λ,μ,γ的值依次为〔A〕1,-4,9〔B〕2,-5,-8〔C〕-3,-5,8〔D〕2,5,86、用一个平面去截正方体,所得的截面不可能...是〔A〕六边形〔B〕菱形〔C〕梯形〔D〕直角三角形7、正方形ABCD,沿对角线AC将△ADC折起,设AD与平面ABC所成的角为β,当β取最大值时,二面角B―AC―D等于〔A〕1200〔B〕900〔C〕600〔D〕4508、以下各图是正方体或者正四面体,P,Q,R,S分别是所在棱的中点,这四个点中不一共面....的一个图是〔A〕〔B〕〔C〕〔D〕9、有三个平面α,β,γ〔A〕假设α,β,γ两两相交,那么有三条交线〔B〕假设α⊥β,α⊥γ,那么β∥γ〔C〕假设α⊥γ,β∩α=a,β∩γ=b,那么a⊥b〔D〕假设α∥β,β∩γ=∅,那么α∩γ=∅10、正方体ABCD-A1B1C1D1中,M为BC中点,N为D1C1的中点,那么NB1与A1M所成的角等于〔A〕300〔B〕450〔C〕600〔D〕90011、一个简单多面体的各个顶点处都有三条棱,那么顶点数V与面数F满足的关系式是〔A〕2F+V=4〔B〕2F-V=4〔C〕2F+V=2〔D〕2F-V=212、如图,面ABC⊥面BCD,AB⊥BC,BC⊥CD,且AB=BC=CD,设AD与面AB C所成角为α,AB与面ACD所成角为β,那么α与β的大小关系为〔A〕α<β〔B〕α=β〔C〕α>β〔D〕无法确定13、〔A方案〕如图,直三棱柱ABC-A1B1C1的体积为V,点P、Q分别在侧棱AA1和CC1上,AP=C1Q,那么四棱锥B -APQC 的体积为 〔A 〕2V 〔B 〕3V 〔C 〕4V 〔D 〕5V 〔13题方案A 图〕〔13题方案B 图〕〔B 方案〕侧棱长为2的正三棱锥,假设其底面周长为9,那么该正三棱锥的体积是 〔A 〕239〔B 〕433〔C 〕233〔D 〕439 14、〔A 方案〕如下列图,在正方体ABCD -A 1B 1C 1D 1的侧面AB 1内有一动点P 到直线AB 与直线B 1C 1的间隔相等,那么动点P 所在曲线的形状为 〔A 〕〔B 〕〔C 〕〔D 〕〔B 方案〕如下列图,正方体ABCD -A 1B 1C 1D 1的面A 1C 1,B 1C ,CD 1的中心分别为O 1,O 2,O 3,那么直线AO 1与直线O 2O 3所成的角为〔A 〕900〔B 〕600〔C 〕450〔D 〕300〔14题B 方案图〕〔15题A 方案图〕〔15题B 方案图〕15、〔A 方案〕在正方体ABCD -A 1B 1C 1D 1中与AD 1成600角的面对角线的条数是 〔A 〕4条〔B 〕6条〔C 〕8条〔D 〕10条〔B 方案〕正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AB ,BB 1的中点,A 1E 与C 1F 所成的角是θ,那么〔A 〕θ=600〔B 〕θ=450〔C 〕52cos =θ〔D 〕52sin =θ 16、如图,正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,平面B 1D 1E 与平面BB 1C 1C 所成角的正切值为 〔A 〕52〔B 〕25〔C 〕32〔D 〕23〔第16题图〕〔第17题B 方案图〕17、〔A 方案〕三棱锥D -ABC 的三个侧面与底面全等,且AB=AC=3,BC =2,那么以BC 为棱,以面BCD 与面BCA 为面的二面角的大小是 〔A 〕4π〔B 〕3π〔C 〕2π〔D 〕32π〔B 方案〕如图,正方体ABCD -A 1B 1C 1D 1中,M 是DD 1的中点,O 是底面正方形ABCD 的中心,P 为棱A 1B 1上任意一点,那么直线OP 与直线AM 所成的角为 〔A 〕4π〔B 〕3π〔C 〕2π〔D 〕与P 点的位置有关 18、〔A 方案〕斜棱柱底面和侧面中矩形的个数最多可有 〔A 〕2个〔B 〕3个〔C 〕4个〔D 〕6个〔B 方案〕设空间两个不同的单位向量a =〔x 1,y 1,0〕,b =〔x 2,y 2,0〕与向量c =〔1,1,1〕的夹角都等于4π,那么2211y x y x ++等于 〔A 〕21-〔B 〕-1〔C 〕21〔D 〕1 19、〔A 方案〕如下列图,在多面体ABCDEF 中,ABCD 是边长为3的正方形,EF ∥AB ,EF =23,EF 与面AC 的间隔为2,那么该多面体的体积为 〔A 〕29〔B 〕5〔C 〕6〔D 〕215 〔第19题A 方案图〕〔第19题B 方案图〕〔B 方案〕如下列图,四面体ABCD 中,AB ,BC ,CD 两两互相垂直,且AB=BC =2,E 是AC 的中点,异面直线AD 与BE 所成的角的大小是1010arccos,那么四面体ABCD 的体积是 〔A 〕8〔B 〕6〔C 〕2〔D 〕38 20、〔A 方案〕长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,那么这个球的面积为 〔A 〕π27〔B 〕π56〔C 〕π14〔D 〕π64 〔B 方案〕设A ,B ,C ,D 是空间不一共面的四点,且满足0=⋅AC AB ,0=⋅AD AC ,0=⋅AD AB ,那么△BCD 是〔A 〕钝角三角形〔B 〕直角三角形〔C 〕锐角三角形〔D 〕不确定21、球面的三个大圆所在平面两两垂直,那么以三个大圆的交点为顶点的八面体的体积与球体积之比是 〔A 〕2∶π〔B 〕1∶2π〔C 〕1∶π〔D 〕4∶3π22、如图,在斜三棱柱A 1B 1C 1-ABC 中,∠BAC =900,BC 1⊥AC ,那么C 1在底面ABC 上的射影H 必在 〔A 〕直线AB 上〔B 〕直线BC 上〔C 〕直线AC 上〔D 〕△ABC 内部 〔第22题图〕〔第23题图〕23、在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,P ,Q 是对角线A 1C 上的点,且PQ =2a,那么三棱锥P -BDQ 的体积为〔A 〕3363a 〔B 〕3183a 〔C 〕3243a 〔D 〕无法确定 24、球的内接三棱锥的三条侧棱两两垂直,长度分别为3cm ,2cm 和3cm ,那么此球的体积为〔A 〕33312cm π〔B 〕33316cm π〔C 〕3316cm π〔D 〕3332cm π25、如图,在一根长11cm ,外圆周长6cm 的圆柱形柱体外外表,用一根细铁丝缠绕,组成10个螺旋,如果铁丝的两端恰好落在圆柱的同一条母线上,那么铁丝长度的最小值为 〔A 〕61cm 〔B 〕157cm 〔C 〕1021cm 〔D 〕1037cm26、棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为〔A 〕33a 〔B 〕43a 〔C 〕63a 〔D 〕123a27、在空间四边形ABCD 各边上分别取E 、F 、G 、H 四点,假设EF 和GH 能相交于点P ,那么 〔A 〕点P 必在直线AC 上〔B 〕点P 必在直线BD 上 〔C 〕点P 必在平面ABC 内〔D 〕点P 必在平面上ABC 外28、设长方体的三条棱长分别为a ,b ,c ,假设长方体所有棱的长度之和为24,一条对角线长度为5,体积为2,那么=++cb a 111 〔A 〕411〔B 〕114〔C 〕211〔D 〕112 29、四棱锥P -ABCD 的底面为平行四边形,设x =2PA 2+2PC 2-AC 2,y =2PB 2+2PD 2-BD 2,那么x ,y 之间的关系为〔A 〕x >y 〔B 〕x =y 〔C 〕x <y 〔D 〕不能确定30、〔A 方案〕如图,三棱柱ABC -A 1B 1C 1的侧面A 1B ⊥BC ,且A 1C 与底面成600角,AB=BC =2,那么该棱柱体积的最小值为〔A 〕34〔B 〕33〔C 〕4〔D 〕3〔第30题A 方案图〕〔第30题B 方案图〕〔B 方案〕如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,假设=11B A a ,=11D A b ,=A A 1c ,那么以下向量中与M B 1相等的是 〔A 〕21-a +21b +c 〔B 〕21a +21b +c 〔C 〕21a 21-b +c 〔D 〕21-a 21-b +c31、〔A 方案〕a 、b 为异面直线,α⊂a ,β⊂b ,又A ∈α,B ∈β,AB =12cm ,AB 与β成600角,那么a 、b 间间隔为.〔B 方案〕向量a 、b 满足|a |=31,|b |=6,a 与b 的夹角为3π,那么3|a |-2〔a ·b 〕+4|b |=.32、假设一个正多面体各个面的内角总和为36000,那么它的棱数、面数、顶点数依次为. 33、正方体的两个面上的两条对角线所成的角为.34、在三棱柱ABC -A 1B 1C 1中,P ,Q 分别为AA 1,BB 1上的点,且A 1P=BQ ,那么〔V C -ABQ +V C -ABP 〕∶=-111C B A ABC V . 35、如图,在四棱锥P -ABCD 中,E 为CD 上的动点,四边形ABCD 为时,体积V P -AEB 恒为定值〔写上你认为正确的一个答案即可〕.〔第35题图〕〔第36题图〕36、如图,在四棱锥E -ABCD 中,底面ABCD 为梯形,AB ∥CD ,2AB =3DC ,M 为AE 的中点,设E -ABCD 的体积为V ,那么三棱锥M -EBC 的体积为.37、如图,四棱柱ABCD -A 1B 1C 1D 1中,给出三个结论:〔1〕四棱柱ABCD -A 1B 1C 1D 1为直四棱柱;〔2〕底面ABCD 为菱形;〔3〕AC 1⊥B 1D 1. .38、〔A 方案〕一块长方体木料,按图中所示的余弦线截去一块,那么剩余局部的体积是. 〔第38题A 方案图〕〔B 方案〕在正方体ABCD -A 1B 1C 1D 1①2112111113)()(B A B A D A A A =++;②01111=-⋅)(A AB AC A ; ③B A 1与1AD 的夹角为600;④此正方体的体积为:|AD AA AB ⋅⋅1|.39、〔A 方案〕一个四面体的所有棱长都是2,四个顶点在同一个球面上,那么此球的外表积为.〔B 方案〕点A 、B 、C 的坐标分别为〔0,1,0〕,〔-1,0,1〕,〔2,1,1〕,点P 的坐标为〔x ,0,z 〕,假设AB PA ⊥,AC PA ⊥,那么点P 的坐标为.40、〔A 方案〕以下五个正方体图形中,l 是正方体的一条对角线,点M ,N ,P 分别为其所在棱的中点,能得出l ⊥面MNP 的图形的序号是.〔写出所有符合要求的图形序号〕 ①②③④⑤〔B 方案〕在平行六面体ABCD -A 1B 1C 1D 1中,各面都是全等的菱形,菱形的锐角为600,且边长为1,那么点B 到平面AB 1C 的间隔BH =.[参考答案]31、〔A 方案〕36cm ;〔B 方案〕23 32、30,20,12 33、00或者600或者90034、1∶335、可有多种答案,如正方形 36、V 10337、138、〔A 方案〕a(b+c)πm 3;〔B 方案〕③,④ 39、〔A 方案〕3π;〔B 方案〕〔31,0,32 〕40、〔A 方案〕①,④,⑤;〔B 方案〕1122或者36。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线、平面、简单几何体【模拟试题】第I卷(选择题共60分)一. 选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. (青岛统测)已知直线与平面满足,,,那么必有()A. 且B. 且C. 且D. 且2. (知识原创题)若A、B、C、D四点满足AB⊥CD、AC⊥BD、AD⊥BC,则这四点的位置关系是()A. 一定共面B. 一定不共面C. 不一定共面D. 不存在3. (郑州二次质量预测)正四棱锥P—ABCD的所有棱长都相等,E为PC的中点,那么异面直线BE与PA所成角的余弦值等于()A. B. C. D.4. (知识交汇题)已知相交直线都在平面内,并且都不在平面内,若中至少有一条与相交;与相交,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件 D. 不充分也不必要条件5. (热点创新题)若正三棱锥的侧面都是直角三角形,那么侧面与底面所成的角的余弦值是()A. B. C. D.6. (北京西城抽测)球O的截面把垂直于截面的直径分成1:3两部分,若截面圆半径为,则球O的体积为()A. B. C. D.7. (济南统测)如图,正方体ABCD—中,E、F分别是AB、的中点,则异面直线与EF所成角的余弦值为()A. B. C. D.8. (南京模拟)四棱锥P—ABCD,AD⊥面PAB,BC⊥面PAB,底面ABCD 为梯形,AD=4,BC=8,AB=6,,满足上述条件的四棱锥的顶点P的轨迹是()A. 圆B. 不完整的圆C. 抛物线D. 抛物线的一部分9. (知识创新题)把一副三角板ABC与ABD摆成如下图所示的直二面角D —AB—C,则异面直线DC与AB所成的角为()A. B. C. D.10. (易错警醒题)已知正四棱锥的侧棱与底面成角,则此四棱锥的两个相邻侧面所成的二面角的余弦值是()A. B. C. D.11. (苏锡常镇调查一)设为两条直线,为两个平面,给出下列四个命题,其中,正确命题的个数是()①若,则②若,则③若,则④若,则A. 0个B. 1个C. 2个D. 3个12. (知识原创题)若,,如果与为共线向量,则()A. B.C. D.第II卷(非选择题共90分)二. 填空题(本大题共4小题,每小题4分,共16分。
把答案填在题中横线上。
)13. (基本概念题)设,,,且点B的坐标为,则点A的坐标为。
齿轮油泵kcb 5514. (知识创新题)是用“斜二测画法”画出的等腰直角三角形ABC 的直观图,设的面积为,的面积为S,则。
15. (条件开放题)以正方体的8个顶点中4个为顶点,且4个面均为直角三角形的四面体是(只要写出一个四面体即可)。
高压渣油泵16. (真题·辽宁卷)如图,正方体的棱长为1,C、D分别是两条棱的中点,A、B、M是顶点,那么点M到截面ABCD的距离是。
KCB齿轮油泵三. 解答题(本大题共6小题,共74分。
解答应写出文字说明、证明过程或演算步骤。
)2CY齿轮油泵17. (本小题满分12分)(湖北八校二次联考)如图,在多面体ABCDE中,AE⊥面ABC,BD//AE,且AC=AB=BC=BD=2,AE=1,F为CD中点。
(1)求证:EF⊥面BCD;螺杆油泵(2)求面CDE与面ABDE所成的二面角的余弦值。
螺杆油泵18. (本小题满分12分)(成都二诊)如图,已知四棱锥S—ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的一点。
(1)求证:平面EBD⊥平面SAC;渣油泵(2)设SA=4,AB=2,求点A到平面SBD的距离;(3)当的值为多少时,二面角B—SC—D的大小为。
YHB卧式齿轮润滑油泵19. (本小题满分12分)沥青保温泵(高考变式题)如下图,已知是直三棱柱,D是AC的中点,O是的中点,E在上,且,AC=BC=CE=2,,。
(1)证明:截面BDE//AO;(2)求三棱锥的体积。
zyb增压燃油泵20. (本小题满分12分)螺杆油泵(思维拓展题)图(1)是一个正方形的表面展开图,MN和PQ是两条面对角线。
请在图(2)的正方体中将MN、PQ画出来,并就这个正方体解答下列各题。
(1)求MN与PQ所成角的大小;煤焦油泵(2)求四面体M—NPQ的体积与正方体的体积之比;(3)求二面角M—NQ—P的大小。
煤焦油泵21. (本小题满分12分)(经典常考题)如下图,在正方体中,E、F分别是、的中点。
煤焦油泵(1)求异面直线与所成角的余弦值;(2)设P为的中点,问:在上是否存在一点Q使得,若存在指出Q点的位置,若不存在说明理由。
3GR螺杆泵22. (本小题满分14分)(知识原创题)已知直棱柱,底面四边形ABCD是直角梯形,上底边长AD=6,直角边所在的腰AB=2,BC=2,,G是CD的中点,E是的中点,F在AD上,且。
沥青齿轮泵(1)求异面直线EF与所成的角;(2)求直线EF和平面所成的角;(3)求二面角的大小。
沥青泵【试题答案】一.1. A KCB齿轮油泵解析:由已知,,可得,又,得,故得答案A。
2. C可调压渣油泵解析:点A可以是的垂心,也可以是平面外的一点,使得三棱锥A—BCD的三条侧棱两两垂直,即此四点的位置关系是不一定共面,应选C。
3. D高压渣油泵解析:设O为底面正方形的中心,连结EO,有EO//PA,则是异面直线BE与PA所成的角。
设正四棱锥P—ABCD的棱长为2,则在中,,,,故选D。
KCB-3004. C解析:本题将直线,平面知识与简易逻辑知识相结合,体现了在知识交汇处命题的高考趋势,从p出发能推到q,从q出发也能推出p,所以p是q的充分必要条件,故选C。
齿轮油泵kcb 555. D解析:如图,V—ABC是正三棱锥,所以顶点V在底面的射影O点为正三角形的中心,即O在AM上,M为BC的中点,连结VM,则为侧面与底面所成的角,设,,又为等腰直角三角形,高压渣油泵∴故选DKCB齿轮油泵6. C解析:设直径被分成的两部分分别为,易知,得,则球O的半径R=2,故。
7. B2CY齿轮油泵解析:建立如图坐标系,设正方体的边长为2,则,E(2,1,0),F(0,2,1),C(0,2,0),,,则螺杆油泵所以异面直线与EF所成角的余弦值为,故选B。
8. B螺杆油泵解析:由AD⊥面PAB及BC⊥面PAB,可得AD//BC,,又,及AD=4,BC=8,可得,即得,在平面PAB内以AB所在直线为x轴,AB中点O为坐标原点,建立直角坐标系,则,B(3,0),设点P的坐标为,则有,整理可得一个圆方程,渣油泵由于点P不在直线AB上,故此轨迹为一个不完整的圆,故应选B。
9. B解析:过点C作CE//AB,过点A作AF⊥CE于点F,连结DF,设AD=1,则,,在中,,,故选B。
10. D YHB卧式齿轮润滑油泵解析:如图,正四棱锥S—ABCD,作BH⊥SC于H,连结HD,则为所求二面角的平面角,设底面边长为1,则,,在中,由余弦定理得,故选择D。
沥青保温泵易错点是错误理解“此四棱锥的两个相邻侧面所成的二面角”而错选A。
11. B zyb增压燃油泵解析:①由,,,可得或或相交,相交时只需都与交线平行;②线线平行的判定;③必须;④由,要得到,必须有垂直于与的交线,故选B。
12. C螺杆油泵解析:若与共线,则有∴,故应选C。
煤焦油泵二.13. 煤焦油泵解析:∴点A的坐标为14. 煤焦油泵解析:设原等腰直角三角形的底边长为,高为,则利用斜二测画法画成的三角形底边长不变,高为∴15. 3GR螺杆泵解析:如图,侧棱与上下两个底面垂直,则与底面内的任一直线垂直,连结AC,则,同理。
16. 沥青齿轮泵解析:由等体积法求解,设点M到平面ABCD的距离为x,沥青泵∴KCB齿轮油泵三.17. (1)取BC中点G,连结FG、AG∵AE⊥面ABC,BD//AE ∴BD⊥面ABC又AG面ABC ∴BD⊥AG 可调压渣油泵又AC=AB,G是BC中点∴AG⊥BC∴AG⊥平面BCD∵F是CD的中点且BD=2 ∴FG//BD且FG=1∴FG//AE高压渣油泵又AE=1 ∴AE=FG,故四边形AEFG是平行四边形,从而EF//AG∴EF⊥面BCD KCB-300(2)取AB的中点H,则H为C在面ABDE上的射影,过C作CK⊥DE 于K,连结KH,由三垂线定理的逆定理得KH⊥DE∴为二面角C—DE—B的平面角易知,,,齿轮油泵kcb 55由可得,中,,故∴面CDE与面ABDE所成的二面角的余弦值为高压渣油泵18. (1)∵SA⊥底面ABCD,底面ABCD ∴SA⊥BD∵ABCD是正方形∴AC⊥BD KCB齿轮油泵∴BD⊥平面SAC 又BD平面EBD∴平面EBD⊥平面SAC2CY齿轮油泵(2)设,连结SO,则SO⊥BD由AB=2,知,∴螺杆油泵∴令点A到平面SBD的距离为h,由SA⊥平面ABCD则∴∴点A到平面SBD的距离为螺杆油泵(3)设SA=,建立如图所示空间直角坐标系,为计算方便,不妨设AB=1,则C(1,1,0),S(0,0,),B(1,0,0),D(0,1,0)∴,,渣油泵再设平面SBC和平面SCD的法向量分别为,,则YHB卧式齿轮润滑油泵∴,取,则∴可得又沥青保温泵∴,取,则∴可取∴zyb增压燃油泵要使得二面角的大小为,则,从而,即当时,二面角B—SC—D的大小为螺杆油泵19. (1)设G为的中点,连结DF、OG,则,∴OG//BE 易知F为OC中点,又D为AC中点∴AO//DF又∵面BDE ∴AO//截面BDE(2)∵是直三棱柱,∴BC⊥侧面∴侧面⊥侧面煤焦油泵设O到侧面的距离为h,则h等于O到侧面的距离又∵O为的中点煤焦油泵∴故煤焦油泵20. (1)连结MC、NC,可得PQ//NC,则就是异面直线MN与PQ 所成的角∵是等边三角形∴3GR螺杆泵则MN与PQ所成的角等于(2)不失一般性,设正方体的棱长为1,则(立方单位)∵(立方单位)沥青齿轮泵∴沥青泵(3)∵PN⊥平面AQMP ∴平面MPQ⊥平面NPQ作MO⊥PQ于O,ME⊥NQ于E,连结OE,并设正方体的棱长为1,则MO⊥平面NPQ∵OE是ME在平面NPQ内的射影KCB齿轮油泵∴OE⊥NQ则是二面角M—NQ—P的平面角由~,得∴可调压渣油泵∵ MO⊥OE ∴∴则二面角M—NQ—P的大小为高压渣油泵21. (1)以点D为坐标原点,DA为x轴,DC为y轴,为z轴建立空间直角坐标系,设正方体的棱长为,则A(,0,0),,,KCB-300∴,∴齿轮油泵kcb 55∴异面直线与所成角的余弦值为(2)假设存在点使得∴,,高压渣油泵∴,,,则KCB齿轮油泵∴存在点,且时,22. 以A为原点,分别为所在的直线为x轴,y轴,z轴,建立空间直角坐标系,则C(2,2,0),D(0,6,0),G(1,4,0),,F(0,2,0),E(2,2,2)2CY齿轮油泵(1),∴螺杆油泵即与所成的角为所以异面直线EF与所成的角为螺杆油泵(2)取,连结,则H(0,2,4),∵平面∴是EF在平面上的射影渣油泵∵∴∴直线EF与平面所成的角为(3)过E作EP⊥FG于P,过作于Q YHB卧式齿轮润滑油泵∵P、Q在平面内,且在直线FG上,在平面内FG的方程为故可设P、Q点坐标为,则,,沥青保温泵∵∴∴又∵∴∴∴,zyb增压燃油泵∴∴二面角E—FG—D1的大小为螺杆油泵。