光纤激光器的泵浦源_
光纤激光 研究报告

光纤激光研究报告1. 引言光纤激光是一种基于光纤技术的激光器,其具有高功率、高效率、高稳定性等优点,被广泛应用于通信、医疗、材料加工等领域。
本文将对光纤激光的原理、应用和发展进行研究和分析。
2. 光纤激光原理光纤激光的原理主要是通过将激发能量传导到光纤芯心中,通过光纤的全反射作用,形成一条具有高能量浓度的光束。
光纤激光的核心部分是光纤芯心和泵浦源。
通过泵浦源向光纤注入大量能量,激发光纤芯心中的活性离子,产生激光。
3. 光纤激光的应用3.1 通信领域光纤激光在通信领域有着重要的应用。
传输速度快、容量大、抗干扰能力强等优点,使光纤激光成为长距离通信的首选技术。
利用光纤激光进行信号传输,可以实现高速、高质量的数据传输。
3.2 医疗领域光纤激光在医疗领域有着广泛的应用。
通过控制光纤激光的能量和焦点,可以实现对病变组织的精确切割和凝固,达到治疗的目的。
同时,光纤激光还可以用于激光治疗、激光手术等医疗操作。
3.3 材料加工领域光纤激光在材料加工领域也是一种非常重要的工具。
光纤激光具有高能量、高密度的特点,激光束的聚焦性良好,可以用于材料的切割、焊接、打孔等工艺。
相比传统的机械加工方法,光纤激光加工更加精细、高效。
4. 光纤激光的发展4.1 光纤激光器的类型光纤激光器根据工作波长和激光输出方式可以分为多种类型,包括连续波光纤激光器、脉冲光纤激光器、超快脉冲光纤激光器等。
4.2 光纤激光器的参数优化为了进一步提高光纤激光器的工作效率和稳定性,研究人员还对光纤激光器的多个参数进行了优化,包括泵浦光源功率、泵浦光纤长度、光纤材料等。
4.3 光纤激光器的发展趋势随着科技的不断进步,光纤激光器在功率、波长、调制速度等方面都得到了提升。
未来的发展趋势是进一步提高功率和效率,降低成本和体积,不断拓展应用领域。
5. 结论光纤激光作为一种基于光纤技术的激光器,具有广泛的应用前景。
在通信、医疗、材料加工等领域都有重要的应用。
随着技术的不断进步,光纤激光器的性能将不断提高,应用领域也会更加广泛。
光纤激光器的原理与结构

光纤激光器的原理与结构首先,光纤激光器的泵浦源通常使用高功率半导体激光器或激光二极管,将泵浦光能转化为光纤中的激发能量。
泵浦源可以是连续波泵浦(CW)或脉冲泵浦,具体取决于激光器的应用需求。
其次,光纤激光器的增益介质是由掺杂有活性离子的光纤构成的。
掺杂的活性离子通常是稀土元素,如钕(Nd)、铥(Tm)或镱(Yb),这些元素具有较窄的能级跃迁带宽和长寿命,适合用作激光器的活性介质。
这些元素通过离子交换或溶解在玻璃或石英纤维材料中,形成掺杂有活性离子的光纤。
最后,光纤激光器的反光镜用于形成谐振腔,实现激射光的反射和放大。
典型的激光器谐振腔结构包括两个端面反射镜,其中一个是全反射镜,另一个是半透镜。
全反射镜通常是一个金属或多层膜的光学镜片,用于产生高度反射,将光束反射回来增强激光信号。
半透镜则用于部分透射激光光束,将其输出为激光束。
当泵浦光源激发光纤中的活性离子时,它们被跃迁到高能级。
然后,在谐振腔的作用下,由高能级跃迁到低能级的过程中,会发生受激辐射,产生相干的激光光子。
这些光子在光纤中被放大,然后通过半透镜输出为激光束。
值得注意的是,光纤激光器与传统的固体激光器相比,具有许多优点。
首先,光纤激光器具有较高的输出功率和较好的光束质量,使其在工业加工、医疗治疗以及通信等领域有广泛的应用。
其次,光纤激光器的光纤增益介质具有较长的激光寿命和较低的阈值功率,同时光纤本身对激光束的传输具有较好的保护作用。
此外,光纤激光器的结构紧凑,易于集成和使用。
总结起来,光纤激光器是一种基于光子放大器原理的器件,通过泵浦源激发光纤中的活性离子,产生受激辐射,从而形成相干放射的激光。
其结构由泵浦源、光纤增益介质和反光镜组成。
光纤激光器具有高效的能量转换、较长的激光寿命和较好的光束质量等优点,因此在各个领域有广泛的应用。
光纤激光器泵浦源国内外研究进展

光纤激光器泵浦源国内外研究进展一、引言光纤激光器泵浦源是激光器的重要组成部分,它是通过泵浦光源将能量传递给激光介质,从而实现激光器的激发和放大。
光纤激光器泵浦源在激光技术应用中具有广泛的用途,包括通信、医疗、材料加工等领域。
本文将对光纤激光器泵浦源的国内外研究进展进行全面、详细、完整且深入地探讨。
二、国内光纤激光器泵浦源研究进展2.1 传统泵浦源• 2.1.1 氙灯泵浦源• 2.1.2 二极管泵浦源• 2.1.3 激光二极管泵浦源2.2 高效泵浦源• 2.2.1 锐利激光泵浦源• 2.2.2 外腔激光泵浦源• 2.2.3 共振器激光泵浦源2.3 小型化泵浦源• 2.3.1 光纤型泵浦源• 2.3.2 集成型泵浦源• 2.3.3 微型泵浦源2.4 其他新型泵浦源• 2.4.1 飞秒激光泵浦源• 2.4.2 高功率泵浦源• 2.4.3 纳秒脉冲泵浦源三、国外光纤激光器泵浦源研究进展3.1 欧洲研究进展• 3.1.1 德国泵浦源研究• 3.1.2 英国泵浦源研究• 3.1.3 法国泵浦源研究3.2 美国研究进展• 3.2.1 斯坦福大学泵浦源研究• 3.2.2 麻省理工学院泵浦源研究• 3.2.3 加州大学泵浦源研究3.3 亚洲研究进展• 3.3.1 日本泵浦源研究• 3.3.2 韩国泵浦源研究• 3.3.3 中国台湾泵浦源研究四、光纤激光器泵浦源的应用领域4.1 通信领域• 4.1.1 光纤通信泵浦源• 4.1.2 光纤放大器泵浦源• 4.1.3 光纤激光器泵浦源4.2 医疗领域• 4.2.1 激光治疗泵浦源• 4.2.2 光动力疗法泵浦源• 4.2.3 激光手术泵浦源4.3 材料加工领域• 4.3.1 激光切割泵浦源• 4.3.2 激光焊接泵浦源• 4.3.3 激光打标泵浦源五、结论本文全面、详细、完整且深入地探讨了光纤激光器泵浦源的国内外研究进展。
通过对传统、高效、小型化和其他新型泵浦源的研究进行总结,可以看出光纤激光器泵浦源的发展方向。
光纤激光原理

光纤激光原理
光纤激光的原理是利用光纤作为激光器的输出通道,通过激光器内的光的放大和受激发射过程来产生激光。
光纤激光器一般由三个主要部分组成:泵浦源、激光介质和反射镜。
首先,泵浦源会向光纤激光器泵浦光纤注入能量,使激光介质中的部分原子或分子达到激发态。
常用的泵浦源有光纤耦合半导体激光器或固体激光器。
其次,在激光介质中,经过激发的原子或分子会通过受激发射过程释放出光子,这些光子具有相同的频率和相位,形成了激光。
最后,光纤激光器的两端分别放置着两个反射镜。
其中一个镜子是部分透射的,允许一部分激光通过,而另一个镜子是完全反射的,使激光反射回激光介质内。
当激光束以一定的方式通过光纤中的介质时,通过已经建立的反射路径,激光一直来回往复地通过激光介质,从而达到放大和镜像反射的效果。
这样经过多次往复,激光的能量得到不断放大,并最终从部分透射镜激射出来,形成一束强大、单一频率和相干性很高的光,也就是激光。
总结起来,光纤激光器利用泵浦光源的能量激发激光介质中的
原子或分子,通过受激发射过程产生同频率、相干性很高的激光,并通过光纤的反射来实现激光的放大和输出。
掺铒光纤激光器原理

掺铒光纤激光器原理一、概述掺铒光纤激光器是一种基于掺铒光纤(Er-doped fiber)的激光装置,具有输出功率高、调制带宽宽、转换效率高等优点,被广泛应用于激光手术刀、激光雷达、激光打标、光通信和能量激光光源等领域。
本文将详细介绍掺铒光纤激光器的原理和构成。
二、原理1. 掺铒光纤的结构与特性掺铒光纤是由玻璃材料制成的,其结构类似于普通光纤,由包层、掺铒核心和侧面反射层组成。
铒元素在光纤中的浓度较高,可以激发激光振荡。
掺铒光纤具有较高的增益系数,适合产生激光。
2. 激光振荡过程当泵浦光照射掺铒光纤时,铒离子受激发射出电磁波,经过谐振腔反射和损耗,最终形成激光振荡。
在这个过程中,泵浦光的强度、波长和掺铒光纤的结构参数都会影响激光的输出功率和波长。
3. 谐振腔谐振腔是掺铒光纤激光器的关键组成部分,由两个反射镜组成。
其中一个反射镜固定在激光器内部,另一个需要通过外部调节来保证激光在特定波长范围内输出。
谐振腔的长度会影响激光的波长和输出功率。
三、构成1. 泵浦源泵浦源是提供能量的设备,通常采用高强度半导体激光器作为泵浦光源。
泵浦光的波长通常在800-900nm范围内,可以根据掺铒光纤的特性进行调整。
2. 掺铒光纤掺铒光纤是激光振荡的核心部件,决定了激光的输出性质。
通常选用具有较高铒离子浓度的光纤,以获得较高的增益系数和激光输出功率。
3. 反射镜反射镜是构成谐振腔的关键部件,通常采用高反射率的光学镜片。
其中一个反射镜固定在激光器内部,另一个需要通过外部调节来保证激光在特定波长范围内输出。
4. 驱动与控制电路驱动与控制电路是掺铒光纤激光器的核心部分,负责控制泵浦光的强度、波长和照射时间等参数,以保证激光的稳定输出。
同时,还需要监测激光的输出功率、波长和稳定性等指标,以便进行调节和控制。
四、应用领域1. 激光手术刀:掺铒光纤激光器具有较短的波长(2μm),可以穿透组织较浅,适用于激光手术刀领域。
通过调节泵浦光的强度和输出功率,可以控制激光的切割深度和宽度。
光纤激光器的基本结构

光纤激光器的基本结构光纤激光器是一种利用光纤作为激光介质的激光器。
它具有高效率、高稳定性、小体积等优点,被广泛应用于通信、医疗、材料加工等领域。
其基本结构包括泵浦源、光纤增益介质、反射镜和输出窗口。
1. 泵浦源泵浦源是光纤激光器中最重要的组成部分之一,其作用是提供能量给增益介质,使其产生受激辐射。
常用的泵浦源有半导体激光器和二极管激光器两种。
半导体激光器是一种将电能转化为光能的器件,其工作原理是利用半导体材料中的电子与空穴复合时释放出能量的过程来产生激光。
半导体激光器具有小体积、高效率等特点,但其输出功率有限。
二极管激光器也是一种将电能转化为光能的器件,与半导体激光器相比,二极管激光器具有更高的输出功率和更广阔的工作范围。
因此,二极管激光器是目前光纤激光器中常用的泵浦源。
2. 光纤增益介质光纤增益介质是光纤激光器中产生受激辐射的关键部分。
常用的增益介质有掺铒、掺镱等元素的光纤。
掺铒光纤是一种将铒元素掺杂进石英玻璃中制成的光纤,其主要特点是在1.5微米波段具有较高的增益。
掺镱光纤则是将镱元素掺杂进石英玻璃中制成的光纤,其主要特点是在1.06微米波段具有较高的增益。
3. 反射镜反射镜是将激光产生并放大后反射回来形成激射束束流线的关键部分,通常由高反膜和低反膜组成。
高反膜可以使得大部分激发后发出来的能量被反射回去,而低反膜可以使得少量能量通过,从而形成激射束束流线。
4. 输出窗口输出窗口是将激射束束流线从光纤内部输出的关键部分,通常由透明的玻璃或石英制成。
输出窗口可以使得激射束束流线从光纤内部顺利输出,并保护光纤不受外界环境的影响。
总之,光纤激光器的基本结构包括泵浦源、光纤增益介质、反射镜和输出窗口。
这些组成部分相互配合,共同完成了将泵浦能量转化为激射束束流线的过程。
随着科技的不断发展,光纤激光器在各个领域中的应用前景也越来越广阔。
光纤激光器的原理及应用

光纤激光器的原理及应用前言光纤激光器是一种利用光纤作为介质传输激光能量的器件,具有高效率、高可靠性和方便布线的特点。
本文将介绍光纤激光器的工作原理以及其在各个领域的应用。
工作原理光纤激光器是通过一系列的光学元件将光线限制在光纤内部,并利用光纤中的光耦合技术将激光能量传输到目标位置的设备。
下面将详细介绍光纤激光器的工作原理。
1.激光器结构光纤激光器一般由泵浦源、光纤增益介质、谐振腔和输出光纤组成。
泵浦源提供能量供给,激发光纤增益介质中的活性离子跃迁发射出光子。
谐振腔用于产生激光的振荡和放大。
2.光纤增益介质光纤增益介质一般采用掺杂了活性离子的光纤,并且活性离子的浓度要足够高以保证放大效果。
常用的增益介质有掺铒光纤、掺镱光纤、掺铥光纤等。
3.泵浦源泵浦源一般采用激光二极管或固体激光器,通过泵浦能量将活性离子兴奋到激发态。
4.谐振腔谐振腔是光纤激光器中光的振荡和放大的地方。
谐振腔通常由两面具有高反射率的光纤光栅组成,形成一个光学腔,使激光在腔内进行反复反射,增强激光的能量。
5.输出光纤输出光纤负责将激光能量从激光器传输到目标位置。
输出光纤一般具有高纯度、低损耗和稳定的特点。
应用领域光纤激光器具有广泛的应用领域,下面将分别介绍光纤激光器在工业、医疗和通信领域的应用。
工业应用•材料加工:光纤激光器可以用于金属切割、焊接、打孔等材料加工工序,具有精确性高、速度快、不产生物理接触等优点。
•雷达测距:光纤激光器可以应用于测距仪器,利用激光器发射一束光线,通过测量光的反射时间来计算距离。
•光纤通信:光纤激光器可在光纤通信中作为信号的光源和放大器,具有高效率、高信号质量和大带宽等特点。
医疗应用•激光手术:光纤激光器可用于激光手术,如激光手术切割、焊接和去除异物等,具有创伤小、出血少、精确性高等优点。
•激光治疗:光纤激光器可用于激光治疗,如激光照射疗法、激光物理疗法和激光穿透疗法等,可以用于肌肤美容、康复和疾病治疗等。
mopa光纤激光器的原理与结构

mopa光纤激光器的原理与结构MOPA光纤激光器是一种基于光纤技术的激光器,它具有独特的原理和结构。
本文将介绍MOPA光纤激光器的工作原理和结构,并探讨其在实际应用中的优势和局限性。
让我们来了解一下MOPA光纤激光器的工作原理。
MOPA激光器是由Master Oscillator(母振荡器)和Power Amplifier(功率放大器)两部分组成的。
母振荡器产生一个相对较低功率的激光信号,而功率放大器将这个信号放大到较高功率。
这种结构使得MOPA光纤激光器具有灵活的调控能力和高功率输出的特点。
MOPA光纤激光器的结构相对简单。
它由光纤、光纤连接器、泵浦光源、泵浦光纤、光纤耦合器、光纤放大器、输出耦合器等组件组成。
其中,泵浦光源产生高能量的泵浦光,通过泵浦光纤输送到光纤放大器中,光纤放大器将泵浦光能量转化为激光能量,并通过输出耦合器输出。
MOPA光纤激光器相比传统的固态激光器具有许多优势。
首先,由于采用光纤作为传输介质,MOPA光纤激光器具有较高的光束质量和较窄的光谱线宽,能够产生较为纯净的激光输出。
其次,光纤的柔性使得光纤激光器在实际应用中更加便捷和灵活。
此外,光纤激光器具有较高的光电转换效率和较长的使用寿命,能够满足工业生产中对高效、稳定激光源的需求。
然而,MOPA光纤激光器也存在一些局限性。
首先,由于光纤的特性,光纤激光器在高功率输出时容易受到光纤损伤的影响,需要特殊的光纤材料和结构设计来克服这个问题。
其次,光纤激光器的成本相对较高,对于一些低成本应用来说可能不太适合。
此外,光纤激光器在一些特殊波长的输出上受到限制,需要进一步的技术突破和创新。
让我们来看一下MOPA光纤激光器的应用领域。
由于其高功率、高光束质量和稳定的特性,MOPA光纤激光器被广泛应用于激光雕刻、激光打标、激光焊接、激光切割等领域。
特别是在精细加工、电子制造、汽车制造等行业中,MOPA光纤激光器展示出了其独特的优势。
MOPA光纤激光器是一种基于光纤技术的激光器,具有灵活的调控能力和高功率输出的特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.引言 普遍意义的车轮包括轮胎和金属轮辆一轮 辐一轮毅两部分,本文所研究的车轮只限于金 属轮惘一轮辐一轮毅部分,不包括轮胎。车轮 是介于轮胎和车桥之间承受负荷的旋转件,它 不仅承受着静态时车辆本身垂直方向的自重载 荷,同时也经受着车轮行驶过程中来自各个方 向因起动、制动、转弯、物体冲击、路面凹凸 不平等各种动态载荷所产生不规则力的作用, 是车辆行驶系统中重要的安全结构部件,其结 构性能是车轮设计中主要因素[1]。另外,车轮 作为整车外观的主要元素之一,象征着整车的 档次,多变的铝合金车轮轮辐形态和明亮的色 泽越来越为人们所关注,因此车轮的外观设计 也因此变得越发的重要。 2.铝合金车轮的设计方法 车轮制造企业的设计手段依然采用传统的 设计方法,其设计及生产流程如图1所示。
-204-
铝合金车轮设计及结构分析
德州学院汽车工程学院 王豪楠
【摘要】车轮是汽车行驶系统中重要的安全部件,汽车前进的驱动力通过车轮传递,车轮的结构性能对整车的安全性和可靠性有着重要的影响。另外,车轮还是汽车外观 的重要组成部分。传统车轮设计多凭借经验展开,存在着设计盲目性大、设计制造周期长、成本高等诸多弊端。面对日益激烈的市场竞争,企业迫切需要采用科学的手段 改善设计方法,本文所采用的CAD技术和有限元分析方法是解决上述问题的理想方法。本文运用工业设计理论,将造型设计构思表现的方法与技能应用于车轮设计中,结 合车轮结构尺寸优化和形状优化,使工程技术与形式美密切结合,综合表现了车轮的性能、结构和外观美。 【关键词】铝合金车轮;有限元分析;结构设计;强度分析;疲劳分析
在上级下达的计划调拨单之外,都可以推 行联合采购模式,弥补计划库存的不足,分摊 入库的进度压力。这种模式在和平时期,需要 部队、军械管理部门对备件提出储备定额标准 和预先储备方案,定期支付供应商的货款。在 战争状态下,可以充分利用日常积累的渠道优 势和库存平台,快速补充备件,战争状态下, 省略了计划下达的环节,联合采购模式将更加 高效,不会影响配套的进程,便于分散管理压 力。同时,对仓储地点的要求需要严密坚守, 确保秘密。 4.结束语 管理永远在变革中前进。快速响应部队不 断变化的需求,需要强有力的保障与支持。武 器装备备件储备管理模式的不断优化,将不断 强化配套能力建设,为武器装备维修效力的不 断完善奠定坚实的基础。
光纤激光器的研究刚起步阶段只开发出单包层光 纤激光器,常在通讯领域中被应用,但单包层光 纤激光器属于低功率激光器,无法满足医疗激 光、机械加工的要求。这是因为强泵浦光在耦 合进极细的纤芯内时会产生严重的非线性效应, 而降低了转换效率。受到泵浦光的局限,使得光 纤激光器在长时间内都只能应用在低功率的领域 中。直到用双包层光纤代替原有的单模光纤后, 实现了泵浦光到衍射极限的高效率的转换,光纤 激光器终于在高功率激光器领域中占领了一席之 地,将双包层光纤引入到光纤激光器领域,结束 了光纤激光器对泵浦源选择的局限性,光纤激光 器对泵浦源的特性依然有很大的要求,泵浦源的 效率、尺寸、寿命都会直接影响到整个激光器的 光输出情况。
表1 不同泵浦波长处的泵浦效率 数值孔 泵浦波 泵浦功 增益/ 效率/ 光纤种类 径 长/nm 率/mW dB (dB/mW) SiO2/GeO2 SiO2/GeO2 SiO2/Al2O3 SiO2/Al2O3 SiO2/Al2O3 SiO2/GeO2 SiO2/GeO2 SiO2/Al2O3 0.16 0.16 0.18 0.14 0.14 0.20 0.30 0.12 532 980 514 514 528 665 807 1490 25 10.5 100 100 100 100 20 14 34 24 22 16 31 26 8 2 1.35 2.20 0.22 0.16 0.31 0.26 0.40 0.14
一项势在必行的工作。 3.载荷的处理 试验中车轮所受到应力有弯曲疲劳试验工 况下产生的结构应力和车轮在制造过程(如铸 造、机加工、热处理等)中产生的残余应力。 车轮铸造中往往会产生疏松、针孔等缺陷,它 们在一定程度上影响了材料的属性及其疲劳强 度,机加工过程的进刀量和进刀速度等工艺也 会在车轮上留下残余应力,热处理过程有着消 除残余应力的作用,但是这些残余应力受众多 因素影响[4],难以在有限元仿真中进行定量分 析,因此我们只考虑试验工况下车轮结构应力 的作用。 在动态弯曲疲劳试验工况下,车轮承受载 荷来源有三个,轮毅紧固螺栓产生的预紧力、 车轮高速旋转时产生的离心力和试验弯矩载 荷。表1和表2分别为车轮的设计参数及试验参 数。
表3 设计载荷及其相应的试验弯矩
(1)试验弯距 试验弯矩可通过式(1)求得。最小循环次 数也可根据车轮的尺寸及安全系数查SAE J2530 得出,车轮试验参数如表2所示。
参考文献 [1]赵富正.备件管理现状的调查分析与探讨[J].西北工业 大学学报(社会科学版),2009(02). [2]宋世川.设备备品备件集成供应策略[J].物流技术,2004, 11:12-14. [3]谢鹏,洪友祥.库存管理(一)(二)[M].武汉理工大学出版 社,2008. [4]龚英.A类品划分的补充及对库存管理系统的选择[J]. 物流技术,2007(05). [5]赵敏,崔南方.备件库存模式与控制策略研究[J].科技 进步与对策,2004,4:95-96.
选择光纤激光器的泵浦源需要参考如下标 准: (1)高泵浦效率。泵浦效率直接影响泵浦 功率,泵浦功率越高,调谐范围则越大; (2)激发态吸收率(ESA)尽量小。ESA通 常用 ESA / 0 的值来衡量,其中, ESA 为激发态 吸收截面, 0 为基态吸收截面。例如,掺铒光 纤的泵浦光波长为532nm,980nm,1480nm。利 用YAG倍频固体激光器可产生532nm的激光,但 是YAG倍频固体激光器体积庞大,不便于投入 市场。而波长为980nm,1480nm的泵浦激光器 可选用大功率LD,其体积小且效率高,可作为 理想泵浦光源。具体参数可见表1与表2[3]。
光纤激光器的泵浦源可采用传统固体激光 器,也可采用高功率多模单芯结二极管激光模块 或二极管阵列,对于二极管阵列,常用的是端面 泵浦,将光注入光纤包层中。高功率的二极管阵 列可激发产生高功率的激光,平均运行时间高达 态。 ⑤便于供应商进行维修。供应商外派维修 人员自行准备维修备件,减少了临时需从供应 链上游库房调用的环节,有利于供应商自身的 批次管理,也便于供应商随时把握自身备件的 质量状态。 供应商管理库存(VMI),在现有形势下, 更适合上述A/B/C/D分类方法中除A类外其余的 产品,对于A类备件,为确保储存可靠,除了 军械仓库储存外,需要供应商协助储存时,应 签订备件订货管理合同,其余类别的备品备 件,委托生产企业配备。由于现代物流业的高 速发展,运输网络的不断延伸,实行供应商管 理库存,同样能起到快速送达的效果。特别是 火工品备件,如爆破筒,由供应商在使用前装 药,并代为管理,库存更加可靠安全、有效。 3.3 推行供应商参与的联合采购模式 在现代物流业中,出现了供应商参与的联 合库存模式,基本思路是“采购制”。备件联 合库存管理是建立备件用户一体化基础之上的 一种备件共存、共享的库存采购模式,备件用 户与供应商建立战略合作伙伴关系,将共享备 件的库存管理权和所有权交给供应商。强调各 方同时参与,共同制定库存采购计划。 在武器装备备件供应管理过程中,同样可 以借鉴这种模式。这样一方面保障部门可以减 少库存备件资金积压,另一方面供应商必须获 取更准确的备件需求信息,必须加强与保障部 门的联合,通过最终的寄售管理来获取合同, 生产计划编制将更趋合理。双方都可从中降低 库容风险和流动资金消耗。
学术交流
光纤激光器的泵浦源
哈尔滨工程大学理学院
【摘要】根据光纤激光器的特殊结构,提出了光纤激光器泵浦源的不同种类,并给出了选择泵浦源的标准,以及其对应的效率。 【关键词】光纤激光器;泵浦源;高功率激光器
Hale Waihona Puke 董婉佳激光器主要组成部分分别为谐振腔、泵 浦源以及工作物质。泵浦源就是使激光工作介 质达到粒子数反转的激励源。粒子从基态到高 能级的过程称为泵浦过程。常见的泵浦方式主 要有电泵浦、化学泵浦、光泵浦、气动泵浦四 种,而光泵浦和电泵浦是应用最为广泛的方 式。气体激光器常采用电泵浦方式作为激励 源,光泵浦方式则广泛应用于固体和液体激光 器。光泵浦,是用一束光照射工作物质,使工 作物质中的粒子吸收光子的能量而被激励到高 能级上。LD泵浦源具有效率高,噪声较低,频 率稳定,寿命长,结构紧凑等诸多优点,常被 用作固体激光器的泵浦源[1]。 光纤激光器的工作物质一般为掺杂光纤, 反馈腔一般为光纤光栅、光纤端面、环形镜 等;采用光泵浦方式,便于将泵浦光耦合进光 纤,且光纤纤芯本身极细,使其本身更容易形 成上能级粒子数的累积。 光纤激光器的本质是波长转换器,可将泵 浦波长转换为特定波长的光并以激光的形式输 出。从物理学的角度出发,产生光放大的原则 是给工作物质提供其可吸收的波长的光,使工 作物质有效的吸收能量而被激活。因此根据掺 杂材料的不同,对应的吸收波长也不同,对泵 浦光波长的要求也就不同。例如掺钕光纤的泵 浦光波长为800nm,980nm,530nm等,产生的 激光波长为900nm,1060nm,1350nm等;掺铒光 纤的泵浦光波长为800nm,980nm,1480nm等, 产生的激光波长为1550nm[2]。 等。 ④D类:包括BCC、CCB、CBC、CCC共4种。 代表最不重要,可以只存信息,临时订货的零 件,统称D类。例如:电源熔断器、液压密封 圈等。 在基于功能实现的前提下,将拆分的零件 分成28种,而后实行A/B/C/D分类方法,可以 提高武器装备备件储备的导向准确性,细化分 析,减少误差,在采购整个流程的管理上,能 起到积极的推进作用。 (4)推行实行供应商储备库存(VMI) 为了保障备品备件及时供应,在目前条件 下看,应当提倡从备品备件的统一计划储备, 逐步过渡到供应商管理储备库存(VMI)。供应 商库存管理模式的推行,可以恰当把握供应链 的上游对下游库存策略制订的合理性,这对武 器装备备件订货同样适用。 VMI的优越性主要体现在以下几个方面: ①供应商通过内部共享平台共享保障部门 需求信息,集中共享信息。 ②VMI能够提高效率。由于供应商拥有自 主补货决策权,因而能够预先对备件进行计划 安排,防止能力过剩与不足,从而能够安全地 控制库存采取灵活的补货策略,使补货与未来 需求相协调。 ③降低配套成本。在VMI模式下,供需双 方是基于互信的合作伙伴关系,从而减少了传 统补货模式下协商、谈判等事务性工作。 ④提高了服务水平。如当需求异常波动 时,供应商能够及时获取需求信息,同步做出 快速反应,同时也能控制和保持备件的维护状