化工原理复习小结

合集下载

化工原理知识点总结期末

化工原理知识点总结期末

化工原理知识点总结期末一、化工原理的基础知识1. 化学反应原理化学反应是指原子或者分子之间的化学变化。

化学反应的类型包括合成反应、分解反应、置换反应和氧化还原反应等。

化学反应速率由浓度、温度、压力、催化剂等因素影响。

2. 化学平衡原理化学平衡是指反应物和生成物的浓度达到一定比例的状态。

根据化学平衡定律,反应物和生成物的浓度比例由反应的热力学性质决定,并受到温度、压力或者浓度的影响。

3. 化学动力学化学动力学研究化学反应速率和反应机理的关系。

根据化学反应速率公式可以推导出各种反应速率与浓度、温度、压力等因素的关系。

4. 化工流程图化工流程图是化工生产过程的图示表示,包括物料流程图、能量流程图和设备图等。

根据化工流程图可以设计化工生产过程,并进行操作控制。

5. 化工物性化工物性包括物质的物理性质和化学性质两个方面。

物质的物理性质包括密度、粘度、熔点和沸点等;物质的化学性质包括化学反应性、溶解度和稳定性等。

6. 化工热力学化工热力学研究能量转化和传递的原理。

根据热力学定律可以推导出系统的能量平衡和热效率等问题。

7. 化工传质学化工传质学研究物质的传输和分离原理。

根据传质学理论可以设计分离设备和传质设备,提高化工生产效率。

8. 化工反应工程化工反应工程研究化学反应的工程化原理。

根据反应工程理论可以设计反应器和催化剂,优化反应条件。

9. 化工系统控制化工系统控制研究化工生产过程的控制原理。

根据系统控制理论可以设计控制系统和自动化装置,提高化工生产的稳定性和可靠性。

10. 化工安全与环保化工安全与环保研究化工生产过程的安全和环保原理。

根据安全与环保理论可以设计安全设备和环保装置,保障化工生产的安全和环保。

二、化工原理的应用1. 化工生产过程化工生产过程包括化学反应、传质过程、分离过程和能量转化过程等。

根据化工原理可以设计化工生产装置和优化生产过程,提高产品质量和降低成本。

2. 化工产品制备化工产品制备包括化工原料的合成、加工和制备等。

化工原理复习总结

化工原理复习总结

化工原理复习总结化工原理是涉及动力学、热力学、传质、反应等多个方面的一个重要科目,学习该科目需要对基础知识有深刻的理解和掌握。

本文将对化工原理的重要知识点进行复习总结,帮助读者快速掌握该科目的核心内容。

一、动力学动力学是化工原理中的一个重要方面,它研究化学反应的速度和反应机理。

化学反应的速率是指反应物浓度变化与时间的比值,通常表示为rxn = d[C]/dt,其中 C 表示反应物的浓度。

化学反应速率与反应物浓度相关,可以通过最小分子原理和反应级数求解。

最小分子原理表明,反应速率与反应物的每个分子的数量和反应的可能性有关,而反应级数则是化学反应中各反应物分子个数的指数总和。

化学动力学研究化学反应的速率规律,其中较为常见的反应速率规律有零级反应、一级反应和二级反应。

零级反应表示反应速率与反应物浓度无关,一级反应表示反应速率与反应物浓度成正比,二级反应表示反应速率与反应物浓度平方成正比。

化学反应的速率常常与反应温度、反应物浓度、反应物种类、反应物形态等因素相关,可以通过复合反应、竞争反应、反应路径分析等方法进行分析。

二、热力学热力学是化工原理中的另一个重要方面,它研究与热量相关的化学反应和物理过程。

热力学的核心理论是热力学第一定律和热力学第二定律。

热力学第一定律(能量守恒定律)表示,能量在系统中的转化是不能被破坏的,即系统内部的能量总量不会发生改变;热力学第二定律(熵增原理)则表示,任何一个孤立系统的熵都不会减少,而是不断增加。

热力学应用广泛,包括化学反应热、热力学循环中功和热的转换、热化学平衡等。

化学反应热是指在常压下反应物到生成物间所放出或吸收的热量。

热力学循环是指通过热和功的相互转换,使得在循环过程中热机能够不断地从热源中吸收热量,,并将一部分热量再次传递回热源。

在热化学平衡中,同一温度下,反应物与产物间存在一种动态平衡状态,称为热化学平衡,可以通过配合定律进行计算。

三、传质传质是化工原理中必须考虑的方面之一,它研究物质在液相、气相、固相间的运动以及溶质浓度和传质系数的关系。

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结一、化工原理的概念和基本原理1. 化工原理的概念化工原理是指研究化工过程中各种物质变化和能量变化规律的科学。

化工原理是化学工程学科的基础,它研究化工过程中的化学反应、物质传递、热力学、流体力学等基本原理和规律。

2. 化工原理的基本原理化工原理的基本原理包括热力学、化学反应动力学、物质传递和流体力学等方面的基本原理。

(1)热力学热力学是研究物质的能量转化规律和能量平衡的科学。

在化工过程中,热力学原理适用于研究热平衡、热力学循环、热力学分析等方面的问题。

(2)化学反应动力学化学反应动力学是研究化学反应速率和影响因素的科学。

化工过程中的化学反应速率、反应机理、反应平衡等问题都需要运用化学反应动力学的原理进行分析和研究。

(3)物质传递物质传递是指物质在不同相之间的传递过程,包括物质的扩散、对流,以及传质设备的设计和运行原理等问题。

(4)流体力学流体力学是研究流体运动规律和流体性质的科学。

在化工过程中,很多问题都需要用到流体力学原理,如管道输送、泵的选择和设计、流体混合等方面的问题。

这些基本原理是化工原理研究的基础,它们为化工过程的设计、优化和运行提供了理论支持和技术指导。

二、化工过程的热力学分析1. 化学平衡在化工过程中,化学反应是一个重要的环节,化学反应的平衡状态对于产品的质量和产率有很大的影响。

因此,分析化学平衡是化工过程设计和运行中的重要内容。

2. 热力学循环热力学循环是指利用热力学原理设计和运行的热力系统,如蒸汽发电系统、制冷系统等。

热力学循环的分析和设计对于提高能量利用率和节能减排具有重要意义。

3. 热力学分析热力学分析是指利用热力学原理对化工过程中的能量转化和热平衡进行分析。

热力学分析通常包括能量平衡、热效率、热损失等方面的内容,它是化工过程优化和节能改造的重要手段。

三、化工过程的化学反应动力学分析1. 反应速率反应速率是指化学反应中物质的转化速率,其大小受到温度、浓度、压力等因素的影响。

化工原理总结期末复习

化工原理总结期末复习

化工原理总结期末复习化工原理是化学工程学科的基础,是化工工程师必须掌握的重要知识。

化工原理包括了化学反应工程、传递现象和热力学三个方面的内容。

在本次的学习中,主要涉及了化学反应工程和传递现象的理论与实践,并对热力学的基本概念进行了回顾与总结。

下面将对这三个方面的知识进行具体的总结和回顾。

一、化学反应工程化学反应工程是化工原理中的重要内容,它研究了化学反应的基本原理、反应动力学以及反应系统的设计和操作。

在化学反应工程中,有几个重要的概念需要掌握。

1. 化学反应平衡化学反应平衡是指在一定条件下,反应物和产物浓度之间达到动态平衡的状态。

平衡常数K是反应系统平衡状态的定量指标,它表示了反应物和产物之间的相对浓度。

平衡常数的计算可通过热力学的方法,如Gibbs自由能和化学势的概念。

2. 反应动力学反应动力学研究的是化学反应的速率和速率方程。

速率方程描述了反应速率与反应物浓度之间的关系,它可以通过实验数据拟合得到。

反应速率受到几个因素的影响,包括反应物浓度、温度和催化剂等。

常用的反应动力学方程有零级、一级、二级反应等。

3. 反应器设计反应器设计是指根据反应动力学和传递现象等知识,选择合适的反应器类型,设计出达到预期反应效果的反应器。

常用的反应器类型有批量反应器、连续流动反应器、固定床反应器等。

反应器设计要考虑多个因素,包括反应器尺寸、热效应、控制方式等。

二、传递现象传递现象是化学反应工程中的另一个重要内容,涉及了物质和能量的传递过程。

在传递现象中,有几个基本概念需要了解。

1. 质量传递质量传递是指溶质从高浓度区向低浓度区的传递过程。

在化学反应工程中,质量传递过程常发生在液相中,如溶质在溶液中的扩散。

质量传递过程受到多个因素的影响,包括浓度差、传质系数等。

2. 热传递热传递是指热量从高温区向低温区的传递过程。

在化学反应工程中,热传递常发生在反应器中,如反应器内部的热量的扩散。

热传递过程受到多个因素的影响,包括温度差、热传导系数等。

化工原理个人复习总结

化工原理个人复习总结

1、流体流动1、流体微团:连续的流体中微小的质点团,它的体积可以看为无限小2、连续介质模型(1)概念:即流体在充满着一个体积时,不留任何自由空隙,既没有真空的地方也没有分子的微观运动,即把流体看作是连绵不断的不留任何自由空间的连续介质。

在多数的情况下,利用连续介质假设得到的计算结果和实验符合得很好。

3、表压、绝压、真空度与等压面(1)表压:以一个大气压下为0开始计量压力。

(2)绝压:以真空下为0开始计量压力。

(3)真空度:处于真空状态下的气体稀薄程度。

若所测设备内的压强低于大气压强,其压力测量需要真空表。

从真空表所读得的数值称真空度。

真空度数值是表示出系统压强实际数值低于大气压强的数值,即:真空度=大气压强-绝压,绝压=大气压+表压。

(4)等压面:气压相同的面。

在充满平衡流体空间,连接压强相等的各点所组成的面,即空间气压相等的各点所组成的面。

由于同一高度,各地气压不相等,等压面在空间不是平面,而是像地形一样起伏不平。

4、流量与流速(1)流量:单位之间内流过管路某一截面的物质量。

(2)流速:单位时间内瘤体在流动方向上流经的距离。

(3)关系:流量q v=流速u̅×面积A5、稳定流动与不稳定流动(1)稳定流动:流体在管道内或在窑炉系统中流动时,如果任一截面上的流动状况(流速、压强、重度、成分等)都不随时间而改变的流动。

(2)不稳定流动:反之,流动各量随着时间而改变的流动。

5、牛顿黏性定律和粘度及其影响因素(1)牛顿黏性定律:流体内摩擦力与两层流体间的相对速度成正比。

(2)粘度:液体或气体在流动时,在其分子间产生内摩擦的性质,称为液体的黏性,黏性的大小用粘度表示。

(3)影响因素:一、温度二、压力三、溶液组成四、物质分子结构6、流体流动类型与雷诺数(1)流体流动类型一、层流:流体指点做直线运动。

二、湍流:流体在总体上沿管道向前运动,同时还在各个方向做随机的脉动。

(2)雷诺数Re<2000时,为层流区。

化工原理学结模板5篇

化工原理学结模板5篇

化工原理学结模板5篇Model of chemical engineering principle汇报人:JinTai College化工原理学结模板5篇前言:工作总结是将一个时间段的工作进行一次全面系统的总检查、总评价、总分析,并分析不足。

通过总结,可以把零散的、肤浅的感性认识上升为系统、深刻的理性认识,从而得出科学的结论,以便改正缺点,吸取经验教训,指引下一步工作顺利展开。

本文档根据工作总结的书写内容要求,带有自我性、回顾性、客观性和经验性的特点全面复盘,具有实践指导意义。

便于学习和使用,本文档下载后内容可按需编辑修改及打印。

本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】1、篇章1:化工原理学结范文标准版2、篇章2:化工原理学结范文最新版3、篇章3:化工原理学结模板常用版4、篇章4:化工原理学结模板(基础版)5、篇章5:化工原理学结范文通用版篇章1:化工原理学结范文标准版本学期顺利完成了化学工程与工艺专业共100名同学的化工原理课程设计,总体来看学生的工艺计算、过程设计及绘图等专业能力得到了真正有效的提高,可以较好地把理论学习中的分散知识点和实际生产操作有机结合起来,得到较为合理的设计成果,达到了课程综合训练的目的,提高了学生分析和解决化工实际问题的能力。

同时,在设计过程中也存在者一些共性的问题,主要表现在:一、设计中存在的问题1.设计过程缺乏工程意识。

学生在做课程设计时所设计的结果没有与生产实际需要作参考,只是为了纯粹计算为设计,缺乏对问题的工程概念的解决方法。

2.学生对单元设备概念不强。

对化工制图、设备元件、材料与标准不熟悉,依葫芦画瓢的不在少数,没有达到课程设计与实际结合、强化“工程”概念的目的。

绘图能力欠缺,如:带控制点工艺流程图图幅设置、比例及线型选取、文字编辑、尺寸标注以及设备、仪表、管件表示等绘制不规范。

3.物性参数选择以及计算。

化工原理小结

化工原理小结

化工原理小结化工原理是化学工程的一门基础课程,它主要讲述了化学工程中的基本原理和基本方法。

化工原理的学习是学习化学工程专业的基础,具有重要的理论和实际意义。

下面对化工原理进行一个小结。

化工原理主要包括三个方面的内容:物理化学、热力学和传递过程。

其中,物理化学研究物质的性质和变化规律,热力学研究能量的转化和传递规律,传递过程研究质量、能量和动量的传递和转化。

在物理化学方面,我们学习了化学反应、溶液、气体等的性质和变化规律。

我们了解到,化学反应是物质发生变化的过程,可以通过平衡方程式来描述反应的化学变化。

溶液是由溶质和溶剂组成的,具有溶解度和浓度等特性。

气体是一种无定形的物质,具有压力、体积和温度等性质。

通过对这些性质和变化规律的学习,我们可以更好地理解和掌握化学反应、溶液和气体等的基本原理。

在热力学方面,我们学习了能量的转化和传递规律。

我们了解到,能量是物质存在和变化的动力源,可以以不同的形式存在,如热能、功和化学能等。

热力学通过研究物质系统的热力学性质,如焓、熵和自由能等,来描述和分析能量的转化和传递过程。

通过对热力学的学习,我们可以更好地理解和预测化学反应、相变和能量转化等的行为和规律。

在传递过程方面,我们学习了质量、能量和动量的传递和转化规律。

我们了解到,质量传递是物质由高浓度区向低浓度区传递的过程,如扩散和传质。

能量传递是能量分子之间的传递和转化,如传热和传质。

动量传递是物体之间的运动和碰撞过程。

通过对这些传递过程的学习,我们可以更好地理解和分析物质流动、传热和传质等的过程和规律。

综上所述,化工原理是化学工程的一门基础课程,它包括物理化学、热力学和传递过程三个方面的内容。

通过对化工原理的学习,我们可以更好地理解和掌握化学反应、溶液和气体等的基本原理,能量转化和传递的规律,质量、能量和动量的传递和转化过程。

这对我们深入学习和研究化学工程专业知识和技能,具有重要的理论和实际意义。

化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版)

第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。

表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。

此方程式只适用于静止的连通着的同一种连续的流体。

应用:U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计微差压差计二、流体动力学● 流量质量流量 m S kg/sm S =V S ρ体积流量 V S m 3/s质量流速 G kg/m 2s(平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = ● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W pu g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;m S =GA=π/4d 2G V S =uA=π/4d 2u5、 单位必须一致:有关物理量的单位必须一致相匹配。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蒸 馏––––基本概念和基本原理利用各组分挥发度不同将液体混合物部分汽化而使混合物得到分离的单元操作称为蒸馏。

这种分离操作是通过液相和气相之间的质量传递过程来实现的。

对于均相物系,必须造成一个两相物系才能将均相混合物分离。

蒸馏操作采用改变状态参数的办法(如加热和冷却)使混合物系内部产生出第二个物相(气相);吸收操作中则采用从外界引入另一相物质(吸收剂)的办法形成两相系统。

一、两组分溶液的气液平衡1. 拉乌尔定律 理想溶液的气液平衡关系遵循拉乌尔定律:p A =p A 0x A p B =p B 0x B =p B 0(1-x A )根据道尔顿分压定律:p A =Py A 而P =p A +p B则两组分理想物系的气液相平衡关系:0BA AB P p x p p -=-———泡点方程0A A A p x y P =———露点方程对于任一理想溶液,利用一定温度下纯组分饱和蒸汽压数据可求得平衡的气液相组成;反之,已知一相组成,可求得与之平衡的另一相组成和温度(试差法)。

2. 用相对挥发度表示气液平衡关系 溶液中各组分的挥发度v 可用它在蒸汽中的分压和与之平衡的液相中的摩尔分率来表示,即 B A B B=A A p p x x υυ= 溶液中易挥发组分的挥发度对难挥发组分的挥发度之比为相对挥发度。

其表达式有: A A B A B A B B B Ay x p p x x y x υαυ=== 对于理想溶液: 00A B p p α= 气液平衡方程:1(1)x y xαα=+- α值的大小可用来判断蒸馏分离的难易程度。

α愈大,挥发度差异愈大,分离愈易;α=1时不能用普通精馏方法分离。

3. 气液平衡相图(1)温度—组成(t -x -y )图该图由饱和蒸汽线(露点线)、饱和液体线(泡点线)组成,饱和液体线以下区域为液相区,饱和蒸汽线上方区域为过热蒸汽区,两曲线之间区域为气液共存区。

气液两相呈平衡状态时,气液两相温度相同,但气相组成大于液相组成;若气液两相组成相同,则气相露点温度大于液相泡点温度。

(2)x -y 图x -y 图表示液相组成x 与之平衡的气相组成y 之间的关系曲线图,平衡线位于对角线的上方。

平衡线偏离对角线愈远,表示该溶液愈易分离。

总压对平衡曲线影响不大。

二、精馏原理 精馏过程是利用多次部分汽化和多次部分冷凝的原理进行的,精馏操作的依据是混合物中各组分挥发度的差异,实现精馏操作的必要条件包括塔顶液相回流和塔底产生上升蒸汽。

精馏塔中各级易挥发组分浓度由上至下逐级降低;精馏塔的塔顶温度总是低于塔底温度,原因之一是:塔顶易挥发组分浓度高于塔底,相应沸点较低;原因之二是:存在压降使塔底压力高于塔顶,塔底沸点较高。

当塔板中离开的气相与液相之间达到相平衡时,该塔板称为理论板。

精馏过程中,再沸器的作用是提供一定量的上升蒸汽流,冷凝器的作用是提供塔顶液相产品及保证由适宜的液相回流。

三、两组分连续精馏的计算1.全塔物料衡算总物料衡算:F D W =+易挥发组分: F D W Fx Dx Wx =+塔顶易挥发组分回收率: D D FDx Fx η= 塔底难挥发组分回收率:W W F (1)(1)W x F x η-=- 精馏段物料衡算和操作线方程总物料衡算: V L D =+易挥发组分: n +1nD V y L x D x =+ 操作线方程: D n +1n 11x R y x R R =+++ 其中:R =L /D ——回流比上式表示在一定操作条件下,精馏段内自任意第n 层板下降的液相组成x n 与其相邻的下一层板(第n+1层板)上升蒸汽相组成y n+1之间的关系。

在x —y 坐标上为直线,斜率为R /R +1,截距为x D /R +1。

2.提馏段物料衡算和操作线方程总物料衡算: L V W ''=+易挥发组分: m m +1W L x V y W x ''''=+ W 操作线方程: m+1m W L W y x x V V '''=-''上式表示在一定操作条件下,提馏段内自任意第m 层板下降的液相组成x′m 与其相邻的下一层板(第m+1层板)上升蒸汽相组成y ′m+1之间的关系。

L ′除与L 有关外,还受进料量和进料热状况的影响。

四、进料热状况参数实际操作中,加入精馏塔的原料液可能有五种热状况:(1)温度低于泡点的冷液体;(2)泡点下的饱和液体;(3)温度介于泡点和露点的气液混合物;(4)露点下的饱和蒸汽;(5)温度高于露点的过热蒸汽。

热原料液的千摩尔汽化潜的热量进料变为饱和蒸汽所需将kmol I I I I q L V F V 1≈--= 不同进料热状况下的q 值对于饱和液体、气液混合物和饱和蒸汽进料而言,q 值等于进料中的液相分率。

L L qF '=+ (1)V V q F '=+-q 线方程(进料方程)为:11F x q y x q q =--- 上式表示两操作线交点的轨迹方程。

塔底再沸器相当于一层理论板(气液两相平衡),塔顶采用分凝器时,分凝器相当于一层理论板。

由于冷液进料时提馏段内循环量增大,分离程度提高,冷液进料较气液混合物进料所需理论板数为少。

五、回流比及其选择(1)全回流R =L /D =∞,操作线与对角线重合,操作线方程y n =x n-1,达到给定分离程度所需理论板层数最少为N min 。

(2)最小回流比当回流比逐渐减小时,精馏段操作线截距随之逐渐增大,两操作线位置将向平衡线靠近,为达到相同分离程度所需理论板层数亦逐渐增多。

达到恒浓区(夹紧区)回流比最小,所需理论板无穷多。

I . 正常平衡线min min 1D q D qx y R R x x -=+- 饱和液体进料时:x q =x F饱和蒸汽进料时:y q =y FII . 不正常平衡线由a (x D ,y D )或c (x W ,x W )点向平衡线作切线,由切线斜率或截距求R min 。

(3)适宜回流比R =(1.1~2)R min 精馏设计中,当回流比增大时所需理论板数减少,同时蒸馏釜中所需加热蒸汽消耗量增加,塔顶冷凝器中冷却介质消耗量增加,操作费用相应增加,所需塔径增大。

精馏操作时,若F 、D 、x F 、q 、R 、加料板位置都不变,将塔顶泡点回流改为冷回流,则塔顶产品组成x D 变大。

精馏设计中,回流比愈大,操作能耗愈大,随着回流比逐渐增大,操作费和设备费的总和将呈现先减小后增大的过程。

六、板效率和实际塔板数1.单板效率(默弗里效率)n n+1mV *n n+1y y E y y -=- n-1n mL *n-1nx x E x x -=- 2.全塔效率T PN E N = 精馏塔中第n -1,n ,n +1块理论板,y n+1<y n ,t n-1<t n ,y n >x n-1。

精馏塔中第n -1,n ,n +1块实际板,x n *<x n ,y n *>y n 。

如板式塔设计不合理或操作不当,可能产生液泛、漏液、及雾沫夹带等不正常现象,使塔无法正常工作。

负荷性能图有五条线,分别是雾沫夹带、液泛、漏液、液相负荷上限和液相负荷下限。

吸 收––––基本概念和基本原理 利用各组分溶解度不同而分离气体混合物的单元操作称为吸收。

混合气体中能够溶解的组分称为吸收质或溶质(A );不被吸收的组分称为惰性组分或载体(B );吸收操作所用的溶剂称为吸收剂(S );吸收所得溶液为吸收液(S+A );吸收塔排出的气体为吸收尾气。

当气相中溶质的的实际分压高于与液相成平衡的溶质分压时,溶质从气相向液相转移,发生吸收过程;反之当气相中溶质的的实际分压低于与液相成平衡的溶质分压时,溶质从液相向气相转移,发生脱吸(解吸)过程。

一、气–液相平衡–––––––传质方向与传质极限平衡状态下气相中溶质分压称为平衡分压或饱和分压,液相中的溶质浓度称为平衡浓度或饱和浓度––––––溶解度。

对于同一种溶质,溶解度随温度的升高而减小,加压和降温对吸收操作有利,升温和减压有利于脱吸操作。

亨利定律: p *=E x ––––E 为亨利系数,单位为压强单位,随温度升高而增大,难溶气体 (稀溶液) E 很大,易溶气体E 很小。

对理想溶液E 为吸收质的饱和蒸气压。

p *=c /H ––H 为溶解度系数,单位:kmol/(kN·m),H=ρ/(EM s ),随温度升高 而减小,难溶气体H 很小,易溶气体H 很大。

y *=m x ––––m 相平衡常数,无因次,m=E/P ,m 值愈大,气体溶解度愈小; m 随温度升高而增加,随压力增加而减小。

Y *=m X –––当溶液浓度很低时大多采用该式计算。

X =x /(1-x ); Y =y/(1-y ); x , y ––––摩尔分率, X ,Y ––––摩尔比浓度二、传质理论––––传质速率分子扩散–––凭借流体分子无规则热运动传递物质的现象。

推动力为浓度差,由菲克定律描述:A A AB d d C J D Z=- J A ––扩散通量,kmol/(m 2·s) D AB ––扩散系数涡流扩散–––凭借流体质点的湍动和旋涡传递物质的现象。

等分子反向扩散传质速率:气相内 A1A2A ()D p p N RTZ -=液相内 A1A2A ()D C c N Z '-=单相扩散传质速率:气相内 A A A A Ai G A Ai Bm()()Nc D P N J p p k p p C RTZ p =+=-=-液相内 A A i A L A i A sm()()D C N c c k c c Z c '=-=- 其中 P /p Bm >1为漂流因数,反映总体流动对传质速率的影响。

B2B1Bm B2B1ln p p p p p -= 一般而言,双组分等分子反向扩散体现在精馏单元操作中,而一组分通过另一组分的单相扩散体现在吸收单元操作中。

气相中,温度升高物质的扩散系数增大,压强升高则扩散系数降低;液相中粘度增加扩散系数降低。

在传质理论中有代表性的三个模型分别为双膜理论、溶质渗透理论和表面更新理论。

传质速率方程––––传质速率=传质推动力/传质阻力G i L i Y i X i ()()()()N k p p k c c k Y Y k X X =-=-=-=-G L Y X (*)(*)(*)(*)N K p p K c c K Y Y K X X =-=-=-=- 注意传质系数与推动力相对应,即传质系数与推动力的范围一致,传质系数的单位与推动力的单位一致。

吸收系数之间的关系:G G L111K k Hk =+ L L G 11H K k k =+ Y Y X 11m K k k =+ X X Y111K k m k =+ Y G k Pk = X L k Ck =气膜控制与液膜控制的概念 对于易溶气体,H 很大,传质阻力绝大部分存在于气膜之中,液膜阻力可以忽略,此时K G ≈k G ,这种情况称为―气膜控制‖;反之,对于难溶气体,H 很小,传质阻力绝大部分存在于液膜之中,气膜阻力可以忽略,此时K L ≈k L ,这种情况称为―液膜控制‖。

相关文档
最新文档