数据的集中趋势与离散程度(非常全面)

合集下载

数据的集中趋势和离散程度(名师总结)

数据的集中趋势和离散程度(名师总结)

数据的集中趋势和离散程度【知识点1】正确理解平均数、众数和中位数的概念一、平均数:平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势.平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化.例1:有四个数每次取三个数,算出它们的平均数再加上另一个数,用这种方法计算了四次,分别得到以下四个数:86, 92, 100, 106, 那么原4个数的平均数是________ .例2:有几位同学参加语文考试,赵峰的得分如果再提高13分,他们的平均分就到达90分,如果赵峰的得分降低5分,他们的平均分就只得87分,那么这些同学共有________人.例3:有5个数,其平均数为138,按从小到大排列,从小端开始前3个数的平均数为127,从大端开始顺次取出3个数,其平均数为148,那么第三个数是_______ .例4:某5个数的平均值为60,假设把其中一个数改为80,平均值为70,这个数是________ .例10:某人沿一条长为12千米的路上山,又从原路返回,上山的速度是2千米/小时,下山的速度是6千米/小时。

那么,他在上山和下山的全过程当中的平均速度是多少千米每小时?例11:假设不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。

求该校初二年级在这次数学考试中的平均成绩?二、众数:在一组数据中出现次数最多的数据叫做这一组数据的众数.一组数据中的众数有时不唯一.众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需要排列,又不需要计算,只要能找出样本中出现次数最多的那一个〔或几个〕数据就可以了.当一组数据中有数据屡次重复出现时,它的众数也就是我们所要关心的一种集中趋势.注:众数是数据中出现次数最多的数据,是一组数据中的原数据,而不是相应的次数.众数有可能不唯一,注意不要遗漏.例12:在一次数学测验中,甲、乙、丙、丁四位同学的分数分别是90、x 、90、70,假设这四个同学得分的众数与平均数恰好相等,那么他们得分的中位数是【 】A 、100 B 、90 C 、80 D 、70 例13:当5个整数从小到大排列,其中位数是4,如果这组数据的唯一众数是6,那么5个整数可能的最大的和是【 】A 、21 B 、22 C 、23 D 、24例14:10名工人,某天生产同一零件,生产到达件数是:15,17,14,10,15,19,17,16,14,12,那么这一组数据的众数是【 】A 、15 B 、17 15 C 、14 D 、17 15 14 例15:〔1〕计算这9双鞋尺码的平均数、中位数和众数.〔2〕哪一个指标是鞋厂最感兴趣的指标?哪一个指标是鞋厂最不感兴趣的?三、中位数:是将一组数据按大小顺序排列后,处在最中间的一个数〔或处在最中间的两个数的平均数〕.一组数据中的中位数是唯一的. 注:求中位数要先把数据按大小顺序排列,可以从小到大,也可以从大到小.如果数据个数n 为奇数时,第21+n 个数据为中位数;如果数据个数n 为偶数时,第2n 、12+n 个数据的平均数为中位数.例16:李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的樱桃,分别称得每据调查,市场上今年樱桃的批发价格为每千克15元.用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收入分别约为【 】A .200千克,3000元B .1900千克,28500元C . 2000千克,30000元D .1850千克,27750元〔1〕该班学生每周做家务劳动的平均时间是多少小时?〔2〕这组数据的中位数、众数分别是多少?〔3〕请你根据〔1〕、〔2〕的结果,用一句话谈谈自己的感受.【知识点2】极差、方差和标准差极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量.一、极差一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,实际生活中我们经常用到极差.如一支足球队队员中的最大年龄与最小年龄的差,一个公司成员中最高收入与最低收入的差等都是极差的例子.极差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.二、方差方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大方差越小数据的波动越小. 求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x 1、x 2、x 3、…、x n 的平均数为x ,那么该组数据方差的计算公式为:])()()[(1222212x x x x x x nS n -++-+-= . 例18:数据0、1、2、3、x 的平均数是2,那么这组数据的极差和标准差分别是【 】A 4,2B 4,2C 2,10D 4,10三、标准差在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差.即标准差=方差. 例19:数据90,91,92,93的标准差是【 】〔A 〕 2 〔B 〕54 〔C 〕54 〔D 〕52✪注意:极差、方差、标准差的关系方差和标准差都是用来描述一组数据波动情况的量,常用来比拟两组数据的波动大小.两组数据中极差大的那一组并不一定方差也大.在实际问题中有时用到标准差,是因为标准差的单位和原数据的单位一致,且能缓解方差过大或过小的现象.例20:从甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下:〔单位:cm 〕甲: 21 42 39 14 19 22 37 41 40 25乙: 27 16 40 41 16 44 40 40 27 44(1)根据以上数据分别求甲、乙两种玉米的极差、方差和标准差.(2)哪种玉米的苗长得高些;(3)哪种玉米的苗长得齐.例21:市体校准备挑选一名跳高运发动参加全市中学生运动会,对跳高运动队的甲、乙两名运发动进行了8次选拔比赛.他们的成绩〔单位:m 〕如下:甲:1.70 1.65 1.68 1.69 1.72 1.73 1.68 1.67乙:1.60 1.73 1.72 1.61 1.62 1.71 1.70 1.75(1)甲、乙两名运发动的跳高平均成绩分别是多少?(2)哪位运发动的成绩更为稳定?(3)假设预测,跳过1.65m 就很可能获得冠军,该校为了获得冠军,可能选哪位运发动参赛?假设预测跳过1.70m 才能得冠军呢?。

数据的中心趋势和离散程度

数据的中心趋势和离散程度

数据的中心趋势和离散程度数据分析是现代社会中不可或缺的一部分,它帮助我们理解和解释各种现象。

在数据分析中,了解数据的中心趋势和离散程度是非常重要的。

本文将介绍数据的中心趋势和离散程度的概念,并提供几种用于测量的方法。

一、中心趋势中心趋势是一组数据集中的一个值,它代表了数据的平均水平或核心位置。

最常用的中心趋势度量是算术平均数或平均值。

平均数被定义为一组数值之和除以该组数值的数量。

例如,给定一组数值:2, 4, 6, 8, 10,它们的平均数为6。

另一个常用的中心趋势度量是中位数。

中位数是将一组数据按照大小顺序排列后,位于中间位置的值。

如果数据集中有偶数个数值,则中位数为中间两个数值的平均值。

例如,给定一组数值:2, 4, 6, 8,它们的中位数为5。

除了平均数和中位数,还有一种用于测量中心趋势的度量是众数。

众数是数据集中出现频率最高的数字。

如果数据集中存在多个众数,则称为多峰分布。

例如,给定一组数值:2, 2, 4, 6, 8,它们的众数为2。

二、离散程度离散程度描述了数据集中数值的分散程度或散布范围。

如果数据集中的数值都非常接近,那么离散程度很小;如果数值相差很大,那么离散程度很大。

最常用的离散程度度量是方差和标准差。

方差是每个数值与平均数之差的平方的平均值。

标准差是方差的平方根。

方差和标准差越大,表示数据集的离散程度越大。

例如,给定一组数值:2, 4, 6, 8, 10,它们的方差为8,标准差为2.83。

这意味着这组数据的离散程度相对较小。

而如果给定一组数值:2, 2, 4, 6, 20,它们的方差为56,标准差为7.48。

这组数据的离散程度较大。

除了方差和标准差,还有其他一些度量离散程度的方法,例如范围和百分位数。

范围是数据集的最大值和最小值之间的差值。

百分位数是将数据集按大小顺序排列后,某个百分比处的数值。

例如,第75百分位数是将数据集分为四个相等的部分后,处于第三个部分的数值。

总结:在数据分析中,了解数据的中心趋势和离散程度是非常重要的。

数据的集中趋势与离散程度

数据的集中趋势与离散程度

数据的集中趋势与离散程度统计学中,描述和衡量数据分布特征的两个重要方面是集中趋势和离散程度。

集中趋势指的是数据集中在哪个数值附近,而离散程度描述了数据的分散程度。

在本文中,我将详细介绍集中趋势和离散程度的定义、常用的衡量指标和如何应用。

一、集中趋势集中趋势是指数据集中在哪个数值处的趋势或位置,常用的衡量指标包括均值、中位数和众数。

1. 均值均值是数据集所有观测值的算术平均数。

它是最常用的衡量集中趋势的指标。

计算均值的方法是将所有观测值相加,再除以观测值的个数。

均值受极端值的影响较大。

2. 中位数中位数是将数据集按照大小排序后,位于中间位置的观测值。

如果数据集的个数是奇数,则中位数就是排序后位于中间的观测值;如果数据集的个数是偶数,则中位数是中间两个观测值的平均数。

中位数对极端值不敏感,更能反映数据的典型情况。

3. 众数众数是数据集中出现频率最高的观测值。

一个数据集可能存在一个众数,也可能存在多个众数,或者没有众数。

众数主要用于描述离散型数据。

二、离散程度离散程度是描述数据分散程度的指标,常用的衡量指标包括极差、方差和标准差。

1. 极差极差是数据集中最大观测值和最小观测值之间的差值。

极差越大,表示数据的离散程度越大;极差越小,表示数据的离散程度越小。

极差对极端值非常敏感。

2. 方差方差是数据集观测值与均值之差的平方的平均值。

方差衡量了数据与其均值之间的离散程度,数值越大表示数据的离散程度越大,反之亦然。

方差对极端值非常敏感。

3. 标准差标准差是方差的平方根,用于衡量数据集的离散程度。

标准差具有与原始数据相同的度量单位,比方差更容易解释和理解。

标准差越大,表示数据的离散程度越大,反之亦然。

三、应用集中趋势和离散程度的概念和指标在各个领域具有广泛的应用。

在金融领域,通过分析股票价格的均值和离散程度,可以评估股票的风险和收益。

在市场调研中,通过分析产品价格的中位数和标准差,可以了解市场需求和产品价值的稳定性。

数据的集中趋势与离散程度

数据的集中趋势与离散程度

数据的集中趋势与离散程度在我们的日常生活和各种工作领域中,数据无处不在。

无论是研究经济趋势、评估学生的考试成绩,还是分析市场销售数据,了解数据的特征都是至关重要的。

而数据的集中趋势和离散程度就是两个关键的特征,它们能帮助我们更好地理解数据所蕴含的信息。

先来说说数据的集中趋势。

简单来讲,集中趋势就是数据呈现出的一种“聚集”的特点,反映了数据的中心位置或者一般水平。

最常见的用于描述集中趋势的指标有平均数、中位数和众数。

平均数,大家应该都很熟悉。

就是把一组数据的所有数值加起来,然后除以数据的个数。

比如说,一个班级里五位同学的数学考试成绩分别是 80 分、90 分、85 分、75 分和 95 分,那么他们的平均成绩就是(80 + 90 + 85 + 75 + 95)÷ 5 = 85 分。

平均数很容易计算,也能直观地反映出这组数据的大致水平。

中位数呢,是将一组数据按照从小到大或者从大到小的顺序排列,如果数据的个数是奇数,那么处于中间位置的那个数就是中位数;如果数据的个数是偶数,那么中间两个数的平均值就是中位数。

比如,还是上面那五个同学的成绩,从小到大排列为 75 分、80 分、85 分、90 分、95 分,因为数据个数是奇数,所以中位数就是 85 分。

中位数的优点在于,它不受极端值的影响。

比如,如果有一个同学考了20 分,那么这组数据的平均数就会被拉低很多,但中位数却不会受到太大影响。

众数则是一组数据中出现次数最多的那个数值。

比如说,一组数据是 1,2,2,3,3,3,4,4,4,4,那么众数就是 4。

众数可以反映出数据中最常见的情况。

了解了数据的集中趋势,我们再来看数据的离散程度。

离散程度反映的是数据的分散情况,也就是数据相对于中心位置的偏离程度。

常见的描述离散程度的指标有极差、方差和标准差。

极差是一组数据中的最大值减去最小值。

比如,一组数据是 10,20,30,40,50,那么极差就是 50 10 = 40。

理解数据的集中趋势与离散程度

理解数据的集中趋势与离散程度

理解数据的集中趋势与离散程度数据是我们生活中不可或缺的一部分,无论是在科学研究、商业决策还是个人生活中,我们都需要处理和分析大量的数据。

在数据分析过程中,了解数据的集中趋势和离散程度是非常重要的,它们能够帮助我们更好地理解数据的分布和特征。

一、集中趋势集中趋势是指数据分布中心的位置,常用的集中趋势度量指标有均值、中位数和众数。

均值是一组数据的平均值,通过将所有数据相加再除以数据个数得到。

均值能够反映数据的总体水平,但受到极端值的影响较大。

例如,考虑一个班级的学生成绩,大部分学生的成绩在70-90分之间,但有一个学生得了100分,这个极端值会使得均值偏高。

中位数是将一组数据按照大小顺序排列后,位于中间位置的数值。

中位数不受极端值的影响,更能反映数据的典型值。

在上述例子中,中位数仍然能够准确地反映学生的典型成绩水平。

众数是一组数据中出现次数最多的数值,它代表了数据分布的最高峰。

众数适用于描述离散型数据,如人口统计中的年龄分布。

二、离散程度离散程度是指数据分布的分散程度,常用的离散程度度量指标有范围、方差和标准差。

范围是一组数据的最大值与最小值之间的差距,它能够直观地反映数据的离散程度。

然而,范围只考虑了极端值,没有考虑其他数据的分布情况。

方差是一组数据与其均值之差的平方的平均值,它能够反映数据与均值之间的差异。

方差越大,数据的离散程度越高。

标准差是方差的平方根,它具有与原始数据相同的单位。

标准差能够衡量数据的离散程度,并且与均值具有相同的量纲,因此更容易进行比较和解释。

三、应用举例理解数据的集中趋势和离散程度在各个领域都有广泛的应用。

在金融领域,我们可以通过分析股票的收益率来了解市场的集中趋势和离散程度。

均值和中位数能够帮助我们了解市场的平均收益水平,而标准差则能够反映市场的波动性。

这些指标对于投资者制定投资策略和管理风险非常重要。

在医学研究中,我们可以通过分析患者的生命体征数据来了解疾病的发展趋势和离散程度。

第21章数据的集中趋势和离散程度

第21章数据的集中趋势和离散程度

第21章 数据的集中趋势和离散程度回顾与思考 1.统计的一般过程2.平均数、中位数和众数(1)定义:①有n 个数x 1,x 2,…,x n ,则x= 叫这n 个数的平均数.②一组数据中 的数据叫这组数据的众数.③将一组数据按大小依次排列,把处在 或 叫这组数据的中位数. (2)平均数的计算方法①定义法;②加权平均法:x = ;③新数据法:若x 1,x 2,…,x n 的平均数是x ,则ax 1,ax 2,…,ax n 的平均数是 ;x 1+b ,x 2+b ,…,x n +b 的平均数是 ;ax 1+b ,ax 2+b ,…,ax n +b 的平均数是 .(3)平均数、众数和中位数的意义:平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同,平均数是度量一组数据波动大小的基准,是描述一组数据的集中趋势的量.平均数大小与每一个数据都有关,所有数据都参加运算,其中任何数据的变动都会相应引起平均数的变动,是利用数据信息最充分的特征数,但很容易受极端值的影响;中位数计算简单,只与数据的排列位置有关,某些数据的变动与对中位数没有影响,但不能充分利用和反映所有的数据信息,当一组数据中个别数据变动较大时,可用它来描述数据的集中趋势;众数计算简单,只与数据重复的次数有关,但不能充分利用和反映所有的数据信息,当各数据的重复次数大致相等时,众数往往没有特别的意义.当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量.平均数与中位数均唯一,但众数不一定唯一. 3.极差、方差与标准差(1)定义:在一组数据中, 的差叫这组数据的极差.在一组数据x 1,x 2,…,x n 中,各数据与它们的平均数x 的差的平方的平均数,•叫做这组数据的方差.通常用“S 2”表示,即S 2= .数据收集数据整理数据分析 作出决策普查与抽查 个体样本总体样本容量 涉及 概念 收集 方式 整理 统计表和统计图形式集中趋势离散程度 平均数 中位数 众数 极差方差标准差方差的叫做这组数据的标准差,用“S”表示,即S= .(2)方差的计算①基本公式:S2= ;②简化计算公式:S2 = ,也可写成S2= ,此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方.③新数据法:若x1,x2,…,x n的方差是s2,标准差是s,则ax1,ax2,…,ax n的方差是,标准差是;x1+b,x2+b,…,x n+b的方差是,标准差是;ax1+b,ax2+b,…,ax n+b 的方差是,标准差是.(3)方差和标准差的意义:方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,我们所研究的权是这两组数据的个数相等、平均数相等或比较接近时的情况.方差较大的数据波动较大,方差较小的数据波动较小.4.用样本估计总体方法与技能【例1】小明对这家公司有了一定的了解,他决定留下来工作,公司并对员工的工资进行调整。

沪科版数据的集中趋势与离散程度课件

沪科版数据的集中趋势与离散程度课件

偏态分布
定义
偏态分布是指数据分布的形状偏离正态分布的情况。
类型
正偏态分布和负偏态分布。
图形特征
正偏态分布时,数据集中于右侧,左侧有较长尾部;负偏态分布时, 数据集中于左侧,右侧有较长尾部。
峰态分布
1 2 3
定义 峰态分布是指数据分布的顶点部分的形状。
类型 尖锐峰态和扁平峰态。
图形特征 尖锐峰态时,数据分布顶点突出,两侧较陡峭; 扁平峰态时,数据分布顶点较平缓,两侧较平直。
特点
平均数易受极端值的影响,当数据 集中出现极端值时,平均数的代表 性可能会降低。
中位数
01 02
定义
中位数是一组数据按大小顺序排列后,处于中间位置的数。如果数据的 个数是奇数,则中位数是中间那个数;如果数据的个数是偶数,则中位 数是中间两个数的平均值。
计算方法
将数据按大小顺序排列,然后找到中间位置的数即可。
01
02
03
平均价格趋势
通过计算股票的平均价格, 可以了解股票价格的总体 趋势。
价格波动分析
通过观察股票价格的波动 情况,可以分析股票的活 跃度和市场情绪。
价格与收益关系
研究股票价格与公司收益 之间的关系,有助于预测 未来的股票价格走势。
风险评 估
波动率分析
通过计算股票价格的波动 率,可以评估股票的风险 水平。
数据的集中趋势与离散程度在数据分 析中的应用
描述性统计分析
确定数据分布的集中趋势
01
通过计算平均数、中位数和众数等统计指标,可以大致了解数
据的集中趋势。
确定数据分布的离散程度
02
通过计算方差、标准差和四分位数间距等统计指标,可以了解
数据的离散程度。

数据的集中趋势离散程度

数据的集中趋势离散程度

数据的集中趋势离散程度数据的集中趋势是指数据分布的中心位置,可以通过测量数据的均值、中位数和众数来描述。

数据的离散程度是指数据集中趋势的分散程度,可以通过测量数据的范围、方差和标准差来描述。

首先,数据的集中趋势可以通过均值来衡量。

均值是将所有数据加总后除以数据的个数得到的平均值。

它将数据集中在一个中心位置,可以反映数据的整体水平。

然而,均值容易受到极值的影响,因此需要结合其他指标综合考虑。

中位数是将数据按照大小排序后位于中间位置的值,可以将数据集合分为两部分。

中位数不受极值的影响,适用于有极值存在的情况。

中位数能反映数据的中间位置,相对稳定。

众数是在数据集中出现频率最高的值。

众数可以反映数据的最常见取值,适用于描述离散数据。

其次,数据的离散程度可以通过范围来衡量。

范围是最大值减去最小值,它反映了数据集的变化幅度。

范围简单直观,但不稳定,容易受到极值的影响。

方差是每个数据与均值差的平方的平均数,可以描述数据集与均值的偏离程度。

方差越大,数据越分散;方差越小,数据越集中。

方差让我们能够了解数据集内部的差异。

标准差是方差的平方根,它与均值具有相同的量纲,能更直观地反映数据的离散程度。

标准差比方差更常用,因为它的单位与原始数据相同,易于理解。

数据的集中趋势和离散程度是相互关联的,它们一起能够提供一个完整的数据描述。

例如,在比较两组数据的差异时,可以通过比较均值和标准差来判断其集中趋势和离散程度。

总体而言,数据的集中趋势和离散程度是统计分析中常用的指标,能够提供重要的数据特征,帮助我们理解数据的分布情况,从而进行决策和预测。

在实际应用中,我们需要根据具体情况选择合适的指标,并结合其他分析方法来综合评价数据的集中趋势和离散程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上面的平均数0.17称为3个数0.15、0.21、018的加权平均数, 三个郊县的人数(单位是万),15、7、10分别为三个数据 的权
若n个数
x1, x2 , ,xn
则:
的权分别是
f1, f 2, ,f n
x1f1 x2 f 2 xn f n f1 f 2 f 3 f n
1 s [( x1 x) 2 ( x2 x) 2 n
2
( xn x) 2 ]
跟踪练习
1.在下列方差的计算中
2 1 ( x 20) 2 ( x 20) 2 ... ( x 20) 2 s 10 n 2 1
数字10 表示
,数字20表示
月 工 资/元
人数 2700 2000 1500 1000 900 800 700
1
1
2
3
18
23
2
请问他们各自所说的月工资水平分别是指哪一种?(平 均数、中位数还是众数),哪个数据更具有代表性?
问题 2:某商场在一个月内销售某中品牌的冰箱 共58台,具体情况如下:
型号 销售数量 200升 6台 215升 38台 185升 14台 176升 8台
ax b a s
a2 s 2
? ?
离 4.极 差:反映数据变化范围的大小,易受 极端值影响; 散 程 5.方 差:反映数据波动的大小; 度 6.标准差:反映数据波动的大小,且与数据
单位一致.


已知数据a1,a2,…,an的平均数为x,方 差为y,标准差为z. 求下列各组数据的平均数、方差、标准差. ①a1+3,a2+3,…,an+3. ②a1-3,a2-3,…,an-3. ③3a1,3a2,3a3 ,…,3an. ④2a1-3,2a2-3,2a3-3,…,2an-3.
数据的集中趋势
1. 算术平均数: 一组数据的总和与这组数据的个数之比 叫做这组数据的算术平均数.
算术平均数是反映一组数据中数据总体的平均大小 情况的量.
计算公式:
x1+x2+ x3+ · · ·+ x= n xn 1 x = x0 + n
x1 x0 x2 x0 xn x0
3、一组数据中某些数据多次重复出现时,众 数往往是人们尤为关心的一个量,但各个数据 的重复次数大致相等时,众数往往没有特别意 义.
2、八年级某班的教室内,三位同学正在为谁的数学成绩 最好而争论,他们的5次数学成绩分别是:
小华 72 84 95 98 95
小明
62
62
97
99
100
小刚
40
72
80
100
3 0
3
3 1
4
3 2
4
3 6
1
1
1
1
问题 1 :在调查一家工厂的月工资水平时,这家工厂的 月工资为 2700 元的厂长回答说:“我厂月工资水平是 934 元”;代表该厂工人的工会负责人说:“月工资水 平是800元”;而税务检查人员说:月工资水平是850元。 这三种不同的说法都是根据下面的数据表得出的:
• 例 在一次校园网页设计比赛中,8位评委对甲、乙两名选手的评 分情况如下:
1号 甲 乙 9.0 9.4 2号 9.0 9.6 3号 9.2 9.2 4号 9.8 8.0 5号 9.8 9.5 6号 9.2 9.0 7号 9.5 9.2 8号 9.2 9.4
分析:确定选手的最后得分有两种方案:一是将评委 评分的平均数作为最后得分;二是将评委的评分中一 个最高分与一个最低分去掉后的平均数作为最后得分.
.
.
2.已知某组数据的方差是4,则这组数据的标准差是 3.甲、乙两名战士在射击训练中,打靶的次数相同,且 射击成绩的平均数x甲 = x乙,如果甲的射击成绩比较稳 2 2 定,那么方差的大小关系是S 甲————S 乙。
课堂总结
1 s [( x1 x) 2 ( x2 x) 2 n
2
1 方案一: x甲 (8.8 9.2 2 9.3 3 9.5 9.8) 9.21(分) 8 1 x乙 (8.0 9.0 9.2 2 9.4 2 9.5 9.6) 916 . (分) 8 此方案,甲的成绩比乙高.
方案二:去掉一个最高分,去掉一个最低分, 1 y甲 (9.0 2 9.2 3 9.5) 9..18(分), 6 1 y甲 (9.0 9.2 2 9.4 2 9.5) 9..28(分), 6 此方案乙的成绩比甲高,与大多数评委的观点相符。 因此,按方案二评定选手的最后得分较可取.
上面例题中,为什么该公司员工收入的 平均数比中位数、众数高很多?请你分 析一下原因.
1.数据11, 8, 2, 7, 9, 2, 7, 3, 2, 0, 5的众数是
.
2.数据15, 20, 20, 22,30,30的众数是
.
3.在数据-1, 0, 4, 5, 8中插入一个数据x ,使得这组数据 的中位数是3,则x= . 4.数据8, 8, x, 6的众数与平均数相同,那么它们的中位数是 5.5个正整数从小到大排列,若这组数据的中位数是3,众数是 7且唯一,则这5个正整数的和是( ). A.20 B.21 C.22 D.23
课堂总结
数据 平均数 方差 标准差 极差
x1 , x2 , x3 ,
xn .
x xb ax
s
2 2
s
2 2
M
x1 b, x2 b, x3 b, xn b.
s
s
?
ax1 , ax2 , ax3 ,
axn .
as
2 2 2 2
a2 s 2
ax1 b, ax2 b, ax3 b, axn b.
有人对展览馆七天中每天进馆参观的人 数做了记录,情况如下: 180,176,176,173,176,181,182 求这组数据的中位数和众数.
8、如下表是统计某一城市7月份的每天的气温情况统 计表,求7月份的气温的众数.
气 温 ℃ 天 数
2 1 2 3 2 4
2 6 2
2 7 3
2 8
2
2 9
4
你认为小明的做法有道理吗?为什么?
小明求得这个市郊县的人均耕地面积为:
x
0.15 0.21 0.18 0.18(公顷 ) 3
你认为小明的做法有道理吗?为什么?
而应该这样算是:
0.15 15 0.21 7 0.18 10 0.17 (公顷) 15 7 10
0.15 15 0.21 7 0.18 10 0.17 (公顷) 15 7 10
权重的意义: 加权平均数的意义:
权重
各个数据在该组数据中所占有的不同重要性的反映.
按各个数据的权重来反映该组数据的总体平均大小情况.
练习3
小明同学在初二年级第一学期的数学成绩如下表格, 按图示的平时、期中、期末的权重 , 计算小明同学的学期总 请 评成绩. 平时
10%
考试 平时1 平时2 平时3 期中 期末 成绩 89 78 85 90 87
叫做这n个数的加权平均数。 数据的权能够反映的数据的相对“重要程度”。
算术平均数和加权平均数有 什么联系和区别? 算术平均数是加权平均数的 一种特殊情况,即各项的权相等时, 加权平均数就是算术平均数。
公司的经理说:“我公司员工收入很高,月平 均工资为2000元”; 公司的一位职员 D 说:“我们好几个人的工资 都是1100元”; 公司的另一位职员 C 说:“我的工资是 1200 元 ,在公司算中等收入”. 那么请问这三人分别从哪个角度说的呢?你是 怎样看待该公司员工的收入呢?请小组交流、 讨论.
100
他们都认为自己的成绩比另外两位同学好,请问他们分别 从哪一方面来说的?从三人的测验对照图来看,你认为哪一 个同学的成绩最好呢?
1 s [( x1 x) 2 ( x2 x) 2 n
2
( xn x) 2 ]
1 2 2 s [( x1 x) ( x2 x) n
期末 60%
期中 30%
解: 先计算小明的平时成绩: (89+78+85)÷ = 84 3 再计算小明的总评成绩 : 84×10%+ 90×30%+ 87×60% = 87.6 (分)
问题探索
某公司对应聘者A、B、C、D进行面试时, 按三个方 给予打分如右表 . 面 B C D 项 目 占分 A 你就公司主事 14 18 17 16 身份探索下列问题: 专业知识 20 ⑴总分计算发 工作经验 20 18 16 14 16 现D最高, 故录用D. 仪表形象 20 12 11 14 14 这样的录用中, 三个方面的权重各是多少? 合理吗? ⑵若设置上述三个方面的重要性之比为6:3:1, 那么这 个方面的权重分别是 _________________, 该录用谁? 三 60% , 30%, 10% ⑶若设置上述三个方面的重要性之比为10:7:3, 那么这 三个方面的权重分别是_________________, 又该录用 50% , 35%, 15% 谁?
( xn x) 2 ]
1 2 2 s [( x1 x) ( x2 x) n
( xn x) ]
2
方差(标准差)越小,波动越小,越稳定. 方差(标准差)越大,波动越大,越不稳定 .
数据的分析指标
集 1.平均数:反映数据的平均水平; 中 2.中位数:数据从小到大排列后,处于中间 趋 位置的数或中间两数的平均数; 势 3.众 数:出现次数最多的数;
考考你:有一篇报道说,有一个身高 1.7米的人在平均水深只有0.5米的一条 河流中淹死了,你感觉奇怪吗?
相关文档
最新文档