(完整word版)stata命令语句.docx

合集下载

(完整word版)STATA第四章t检验和单因素方差分析命令输出结果说明

(完整word版)STATA第四章t检验和单因素方差分析命令输出结果说明

第四章t 查验和单要素方差剖析命令与输出结果说明·单要素方差剖析单要素方差剖析又称为 OnewayANOVA, 用于比许多组样本的均数能否同样,并假定:每组的数据听从正态散布 , 拥有同样的方差,且互相独立,则无效假定。

原假定: H0 : 各组整体均数同样。

在 STATA中可用命令:oneway 察看变量分组变量[, means bonferroni]此中子命令 bonferroni是用于多组样本均数的两两比较查验。

例:测定健康男子各年纪组的淋巴细胞转变率 (%),结果见表,问: 各组的淋巴细胞转变率的均数之间的差异有无明显性?健康男子各年纪组淋巴细胞转变率 (%)的测定结果 :11-20 岁组: 58 61 61 62 63 68 70 70 74 78 41-50岁组: 54 57 57 58 60 60 63 64 66 61-75 岁组:43 52 55 56 60用变量 x 表示这些淋巴细胞转变率以及用分组变量group=1,2,3 分别表示11-20 岁组, 41-50岁组和 61-75 岁组 , 即:数据表示为:x586161626368707074785457 group111111111122x575860606364664352555660 group222222233333则用 STATA 命令:oneway x group, mean bonferroni| Summary of xgroup |Mean①-------------+------------1|23|------+------------Total |②Analysis of VarianceSource SS df MS F Prob > F-------------------------------------------------------------------------------Between groups③2④⑤ 9.77 ⑥ 0.0010 ⑦Within groups⑧21⑨⑴-------------------------------------------------------------------------------Total23(2) Bartlett's test for equal variances:chi2(2)( 3)Comparison of x by group(Bonferroni)Row Mean-|Col Mean|12-------------- --|--------------------------------------2|( 4)|( 5)|3|( 6)( 8)|( 7)( 9)①对应三个年纪组的淋巴细胞转变率的均数;②三组归并在一同的总的样本均数;③组间隔均差平方和;④组间隔均差平方和的自由度;⑤组间均方和 ( 即:⑤=③ / ④ ) ;⑧组内离均差平方和;⑨组内离均差平方和的自由度;( 1)组内均方和 ( 即:( 1)=⑧ / ⑨) ;⑥为 F 统计值 ( 即为⑤ / (1)) ;⑦为相应的 p 值;( 2)为方差齐性的 Bartlett 查验;( 3)方差齐性查验相应的 p 值;(4)第二组的淋巴细胞转变率样本均数—第一组的淋巴细胞转变率的样本均数的差;(5)第二和第一组均数差的明显性查验所对应 p 值;( 6)第三组的淋巴细胞转变率样本均数—第一组的淋巴细胞转变率的样本均数的差;(7)第三和第一组均数差的明显性查验所对应的 p 值;( 8)第三组的淋巴细胞转变率样本均数—第二组的淋巴细胞转变率的样本均数的差;(9)第三和第二组均数差的明显性查验所对应的 p 值。

stata命令大全(全)

stata命令大全(全)

********* 面板数据计量分析与软件实现 *********说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。

本人做了一定的修改与筛选。

*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计) * 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog生产函数,一步法与两步法的区别。

常应用于地区经济差异、FDI 溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。

常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel 格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省2000年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。

stata命令大全(全)

stata命令大全(全)

*********面板数据计量分析与软件实现*********说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。

本人做了一定的修改与筛选。

*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计)* 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog生产函数,一步法与两步法的区别。

常应用于地区经济差异、FDI溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。

常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省2000年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。

(完整word版)stata命令语句.docx

(完整word版)stata命令语句.docx

stata学习心得(网络版存盘)2009-03-25 18:06调整变量格式:format x1 %10.3f——将 x1的列宽固定为10,小数点后取三位format x1 %10.3g——将x1的列宽固定为10,有效数字取三位format x1 %10.3e——将x1的列宽固定为10,采用科学计数法format x1 %10.3fc——将x1的列宽固定为10,小数点后取三位,加入千分位分隔符format x1 %10.3gc——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符format x1 %-10.3gc——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符,加入“- ”表示左对齐合并数据:桌面 \2006.dta", clear桌面 \1999.dta"——将 1999 和 2006 的数据按照样本(observation)排列的自然顺序合并起来桌面 \2006.dta", clear桌面 \1999.dta" ,unique sort——将 1999 和 2006 的数据按照唯一的(unique )变量 id 来合并,在合并时对id 进行排序( sort )建议采用第一种方法。

对样本进行随机筛选:sample 50在观测案例中随机选取50%的样本,其余删除在观测案例中随机选取50 个样本,其余删除查看与编辑数据:browse x1 x2 if x3>3(按所列变量与条件打开数据查看器)edit x1 x2 if x3>3(按所列变量与条件打开数据编辑器)数据合并( merge)与扩展( append)merge 表示样本量不变,但增加了一些新变量;append 表示样本总量增加了,但变量数目不变。

one-to-one merge:数据源自stata tutorial中的exampw1和exampw2第一步:将exampw1按 v001 ~ v003 这三个编码排序,并建立临时数据库tempw1clearuse "t:\statatut\exampw1.dta"su—— summarize 的简写sort v001 v002 v003save tempw1第二步:对exampw2做同样的处理clearuse "t:\statatut\exampw2.dta"susort v001 v002 v003save tempw2第三步:使用tempw1 数据库,将其与tempw2 合并:clearmerge v001 v002 v003 using tempw2第四步:查看合并后的数据状况:ta _merge——tabulate _merge的简写su第五步:清理临时数据库,并删除_merge,以免日后合并新变量时出错erase tempw1.dtaerase tempw2.dtadrop _merge数据扩展append:数据源自stata tutorial中的fac19和newfacclearuse "t:\statatut\fac19.dta"ta regionappend using "t:\statatut\newfac"ta region合并后样本量增加,但变量数不变茎叶图:stem x1,line(2)(做x1的茎叶图,每一个十分位的树茎都被拆分成两段来显示,前半段为0~ 4,后半段为5~ 9)stem x1,width(2)(做x1的茎叶图,每一个十分位的树茎都被拆分成五段来显示,每个小树茎的组stem x1,round(100)(将x1除以100后再做x1的茎叶图)直方图采用 auto 数据库histogram mpg, discrete frequency normal xlabel(1(1)5)(discrete表示变量不连续,frequency表示显示频数,normal加入正太分布曲线,xlabel设定x轴,1和5为极端值, (1) 为单位)histogram price, fraction norm(fraction表示y轴显示小数,除了frequency和fraction这两个选择之外,该命令可替换为“ percent”百分比,和“ density ”密度;未加上discrete就表示将price当作连续变量来绘图)histogram price, percent by(foreign)(按照变量“ foreign ”的分类,将不同类样本的“price ”绘制出来,两个图分左右排布)histogram mpg, discrete by(foreign, col(1))(按照变量“ foreign ”的分类,将不同类样本的“mpg”绘制出来,两个图分上下排布)histogram mpg, discrete percent by(foreign, total) norm(按照变量“ foreign ”的分类,将不同类样本的“mpg”绘制出来,同时绘出样本整体的“总”直方图)二变量图:graph twoway lfit price weight || scatter price weight(作出 price和weight的回归线图——“ lfit”,然后与price和weight的散点图相叠加)twoway scatter price weight,mlabel(make)(做 price和weight的散点图,并在每个点上标注“make”,即厂商的取值)twoway scatter price weight || lfit price weight,by(foreign)(按照变量foreign的分类,分别对不同类样本的price和weight做散点图和回归线图的叠加,两图呈左右分布)twoway scatter price weight || lfit price weight,by(foreign,col(1))(按照变量foreign的分类,分别对不同类样本的price和weight做散点图和回归线图的叠加,两图呈上下分布)twoway scatter price weight [fweight= displacement],msymbol(oh)(画出 price和weight的散点图,“ msybol(oh)”表示每个点均为中空的圆圈,[fweight=displacement]表示每个点的大小与displacement的取值大小成比例)twoway connected y1 time,yaxis(1) || y2 time,yaxis(2)(画出 y1 和 y2 这两个变量的时间点线图,并将它们叠加在一个图中,左边“yaxis(1) ”为y1 的度量,右边“yaxis(2) ”为y2 的)twoway line y1 time,yaxis(1) || y2 time,yaxis(2)(与上图基本相同,就是没有点,只显示曲线)graph twoway scatter var1 var4 || scatter var2 var4 || scatter var3 var4(做三个点图的叠加)graph twoway line var1 var4 || line var2 var4 || line var3 var4(做三个线图的叠加)graph twoway connected var1 var4 || connected var2 var4 || connected var3 var4(叠加三个点线相连图)更多变量:graph matrix a b c y(画出一个散点图矩阵,显示各变量之间所有可能的两两相互散点图)graph matrix a b c d,half(生成散点图矩阵,只显示下半部分的三角形区域)用 auto 数据集:graph matrix price mpg weight length,half by(foreign,total col(1) )(根据 foreign变量的不同类型绘制price等四个变量的散点图矩阵,要求绘出总图,并上下排列】=具)其他图形:graph box y,over(x) yline(.22)(对应 x 的每一个取值构建y 的箱型图,并在y 轴的 0.22 处划一条水平线)graph bar (mean) y,over(x)对应 x 的每一个取值,显示y 的平均数的条形图。

(完整word版)STATA面板数据模型操作命令讲解

(完整word版)STATA面板数据模型操作命令讲解

STATA 面板数据模型估计命令一览表一、静态面板数据的STATA 处理命令εαβit ++=xy itiit固定效应模型μβit +=xy ititεαμit+=itit随机效应模型(一)数据处理输入数据●tsset code year 该命令是将数据定义为“面板”形式 ●xtdes 该命令是了解面板数据结构●summarize sq cpi unem g se5 ln 各变量的描述性统计(统计分析)●gen lag_y=L.y /////// 产生一个滞后一期的新变量 gen F_y=F.y /////// 产生一个超前项的新变量gen D_y=D.y /////// 产生一个一阶差分的新变量gen D2_y=D2.y /////// 产生一个二阶差分的新变量(二)模型的筛选和检验●1、检验个体效应(混合效应还是固定效应)(原假设:使用OLS混合模型)●xtreg sq cpi unem g se5 ln,fe对于固定效应模型而言,回归结果中最后一行汇报的F统计量便在于检验所有的个体效应整体上显著。

在我们这个例子中发现F统计量的概率为0。

0000,检验结果表明固定效应模型优于混合OLS模型.●2、检验时间效应(混合效应还是随机效应)(检验方法:LM统计量)(原假设:使用OLS混合模型)●qui xtreg sq cpi unem g se5 ln,re (加上“qui"之后第一幅图将不会呈现)xttest0可以看出,LM检验得到的P值为0.0000,表明随机效应非常显著。

可见,随机效应模型也优于混合OLS模型.●3、检验固定效应模型or随机效应模型(检验方法:Hausman检验)原假设:使用随机效应模型(个体效应与解释变量无关)通过上面分析,可以发现当模型加入了个体效应的时候,将显著优于截距项为常数假设条件下的混合OLS模型。

但是无法明确区分FE or RE的优劣,这需要进行接下来的检验,如下:Step1:估计固定效应模型,存储估计结果Step2:估计随机效应模型,存储估计结果Step3:进行Hausman检验●qui xtreg sq cpi unem g se5 ln,feest store fequi xtreg sq cpi unem g se5 ln,reest store rehausman fe (或者更优的是hausman fe,sigmamore/ sigmaless)可以看出,hausman检验的P值为0.0000,拒绝了原假设,认为随机效应模型的基本假设得不到满足。

stata命令大全(全)资料

stata命令大全(全)资料

stata命令大全(全)资料********* 面板数据计量分析与软件实现 *********说明:以下do文件相当一部分内容来自于中山大学连玉君STATA 教程,感谢他的贡献。

本人做了一定的修改与筛选。

*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计) * 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog生产函数,一步法与两步法的区别。

常应用于地区经济差异、FDI 溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。

常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel 格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省2000年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。

(完整word版)stata命令语句

(完整word版)stata命令语句

stata学习心得(网络版存盘)2009-03-25 18:06调整变量格式:format x1 %10.3f ——将x1的列宽固定为10,小数点后取三位format x1 %10.3g ——将x1的列宽固定为10,有效数字取三位format x1 %10.3e ——将x1的列宽固定为10,采用科学计数法format x1 %10.3fc ——将x1的列宽固定为10,小数点后取三位,加入千分位分隔符format x1 %10.3gc ——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符format x1 %-10.3gc ——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符,加入“-”表示左对齐合并数据:use "C:\Documents and Settings\xks\桌面\2006.dta", clearmerge using "C:\Documents and Settings\xks\桌面\1999.dta"——将1999和2006的数据按照样本(observation)排列的自然顺序合并起来use "C:\Documents and Settings\xks\桌面\2006.dta", clearmerge id using "C:\Documents and Settings\xks\桌面\1999.dta" ,unique sort——将1999和2006的数据按照唯一的(unique)变量id来合并,在合并时对id进行排序(sort)建议采用第一种方法。

对样本进行随机筛选:sample 50在观测案例中随机选取50%的样本,其余删除sample 50,count在观测案例中随机选取50个样本,其余删除查看与编辑数据:browse x1 x2 if x3>3 (按所列变量与条件打开数据查看器)edit x1 x2 if x3>3 (按所列变量与条件打开数据编辑器)数据合并(merge)与扩展(append)merge表示样本量不变,但增加了一些新变量;append表示样本总量增加了,但变量数目不变。

stata命令大全(全)Word版

stata命令大全(全)Word版

*********面板数据计量分析与软件实现*********说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。

本人做了一定的修改与筛选。

*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计)* 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog 生产函数,一步法与两步法的区别。

常应用于地区经济差异、FDI溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。

常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/ gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省2000年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

stata学习心得(网络版存盘)2009-03-25 18:06调整变量格式:format x1 %10.3f——将 x1的列宽固定为10,小数点后取三位format x1 %10.3g——将x1的列宽固定为10,有效数字取三位format x1 %10.3e——将x1的列宽固定为10,采用科学计数法format x1 %10.3fc——将x1的列宽固定为10,小数点后取三位,加入千分位分隔符format x1 %10.3gc——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符format x1 %-10.3gc——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符,加入“- ”表示左对齐合并数据:桌面 \2006.dta", clear桌面 \1999.dta"——将 1999 和 2006 的数据按照样本(observation)排列的自然顺序合并起来桌面 \2006.dta", clear桌面 \1999.dta" ,unique sort——将 1999 和 2006 的数据按照唯一的(unique )变量 id 来合并,在合并时对id 进行排序( sort )建议采用第一种方法。

对样本进行随机筛选:sample 50在观测案例中随机选取50%的样本,其余删除在观测案例中随机选取50 个样本,其余删除查看与编辑数据:browse x1 x2 if x3>3(按所列变量与条件打开数据查看器)edit x1 x2 if x3>3(按所列变量与条件打开数据编辑器)数据合并( merge)与扩展( append)merge 表示样本量不变,但增加了一些新变量;append 表示样本总量增加了,但变量数目不变。

one-to-one merge:数据源自stata tutorial中的exampw1和exampw2第一步:将exampw1按 v001 ~ v003 这三个编码排序,并建立临时数据库tempw1clearuse "t:\statatut\exampw1.dta"su—— summarize 的简写sort v001 v002 v003save tempw1第二步:对exampw2做同样的处理clearuse "t:\statatut\exampw2.dta"susort v001 v002 v003save tempw2第三步:使用tempw1 数据库,将其与tempw2 合并:clearmerge v001 v002 v003 using tempw2第四步:查看合并后的数据状况:ta _merge——tabulate _merge的简写su第五步:清理临时数据库,并删除_merge,以免日后合并新变量时出错erase tempw1.dtaerase tempw2.dtadrop _merge数据扩展append:数据源自stata tutorial中的fac19和newfacclearuse "t:\statatut\fac19.dta"ta regionappend using "t:\statatut\newfac"ta region合并后样本量增加,但变量数不变茎叶图:stem x1,line(2)(做x1的茎叶图,每一个十分位的树茎都被拆分成两段来显示,前半段为0~ 4,后半段为5~ 9)stem x1,width(2)(做x1的茎叶图,每一个十分位的树茎都被拆分成五段来显示,每个小树茎的组stem x1,round(100)(将x1除以100后再做x1的茎叶图)直方图采用 auto 数据库histogram mpg, discrete frequency normal xlabel(1(1)5)(discrete表示变量不连续,frequency表示显示频数,normal加入正太分布曲线,xlabel设定x轴,1和5为极端值, (1) 为单位)histogram price, fraction norm(fraction表示y轴显示小数,除了frequency和fraction这两个选择之外,该命令可替换为“ percent”百分比,和“ density ”密度;未加上discrete就表示将price当作连续变量来绘图)histogram price, percent by(foreign)(按照变量“ foreign ”的分类,将不同类样本的“price ”绘制出来,两个图分左右排布)histogram mpg, discrete by(foreign, col(1))(按照变量“ foreign ”的分类,将不同类样本的“mpg”绘制出来,两个图分上下排布)histogram mpg, discrete percent by(foreign, total) norm(按照变量“ foreign ”的分类,将不同类样本的“mpg”绘制出来,同时绘出样本整体的“总”直方图)二变量图:graph twoway lfit price weight || scatter price weight(作出 price和weight的回归线图——“ lfit”,然后与price和weight的散点图相叠加)twoway scatter price weight,mlabel(make)(做 price和weight的散点图,并在每个点上标注“make”,即厂商的取值)twoway scatter price weight || lfit price weight,by(foreign)(按照变量foreign的分类,分别对不同类样本的price和weight做散点图和回归线图的叠加,两图呈左右分布)twoway scatter price weight || lfit price weight,by(foreign,col(1))(按照变量foreign的分类,分别对不同类样本的price和weight做散点图和回归线图的叠加,两图呈上下分布)twoway scatter price weight [fweight= displacement],msymbol(oh)(画出 price和weight的散点图,“ msybol(oh)”表示每个点均为中空的圆圈,[fweight=displacement]表示每个点的大小与displacement的取值大小成比例)twoway connected y1 time,yaxis(1) || y2 time,yaxis(2)(画出 y1 和 y2 这两个变量的时间点线图,并将它们叠加在一个图中,左边“yaxis(1) ”为y1 的度量,右边“yaxis(2) ”为y2 的)twoway line y1 time,yaxis(1) || y2 time,yaxis(2)(与上图基本相同,就是没有点,只显示曲线)graph twoway scatter var1 var4 || scatter var2 var4 || scatter var3 var4(做三个点图的叠加)graph twoway line var1 var4 || line var2 var4 || line var3 var4(做三个线图的叠加)graph twoway connected var1 var4 || connected var2 var4 || connected var3 var4(叠加三个点线相连图)更多变量:graph matrix a b c y(画出一个散点图矩阵,显示各变量之间所有可能的两两相互散点图)graph matrix a b c d,half(生成散点图矩阵,只显示下半部分的三角形区域)用 auto 数据集:graph matrix price mpg weight length,half by(foreign,total col(1) )(根据 foreign变量的不同类型绘制price等四个变量的散点图矩阵,要求绘出总图,并上下排列】=具)其他图形:graph box y,over(x) yline(.22)(对应 x 的每一个取值构建y 的箱型图,并在y 轴的 0.22 处划一条水平线)graph bar (mean) y,over(x)对应 x 的每一个取值,显示y 的平均数的条形图。

括号中的“mean”也可换成median 、 sum、sd 、 p25、 p75 等graph bar a1 a2,over(b) stack(对应在 b 的每一个取值,显示a1 和 a2 的条形图, a1 和 a2 是叠放成一根条形柱。

若不写入“stack ”,则a1和 a2 显示为两个并排的条形柱)graph dot (median)y,over(x)(画点图,沿着水平刻度,在x 的每一个取值水平所对应的y 的中位数上打点)qnorm x(画出一幅分位- 正态标绘图)rchart a1 a2 a2(画出质量控制R 图,显示a1 到 a3 的取值范围)简单统计量的计算:ameans x(计算变量x 的算术平均值、几何平均值和简单调和平均值,均显示样本量和置信区间)mean var1 [pweight = var2](求取分组数据的平均值和标准误,var1 为各组的赋值,var2 为每组的频数)summarize y x1 x2,detail(可以获得各个变量的百分比数、最大最小值、样本量、平均数、标准差、方差、峰度、偏度)*** 注意 ***stata中summarize所计算出来的峰度skewness 和偏度 kurtosis有问题,与ECELL和SPSS有较大差异,建议不采用 stata的结果。

summarize var1 [aweight = var2], detail(求取分组数据的统计量,var1 为各组的赋值,var2 为每组的频数)tabstat X1,stats(mean n q max min sd var cv)(计算变量X1 的算术平均值、样本量、四分位线、最大最小值、标准差、方差和变异系数)概率分布的计算:(1 )贝努利概率分布测试:webuse quickbitest quick==0.3,detail(假设每次得到成功案例‘1’的概率等于0.3 ,计算在变量quick 所显示的二项分布情况下,各种累计概率和单个概率是多少)bitesti 10,3,0.5,detail(计算当每次成功的概率为0.5 时,十次抽样中抽到三次成功案例的概率:低于或高于三次成功的累计概率和恰好三次成功概率)(2 )泊松分布概率:display poisson(7,6).44971106(计算均值为7 ,成功案例小于等于 6 个的泊松概率)display poissonp(7,6).14900278(计算均值为7 ,成功案例恰好等于 6 个的泊松概率)display poissontail(7,6).69929172(计算均值为7 ,成功案例大于等于 6 个的泊松概率)(3 )超几何分布概率:display hypergeometricp(10,3,4,2).3(计算在样本总量为10,成功案例为 3 的样本总体中,不重置地抽取 4 个样本,其中恰好有 2 个为成功案例的概率)display hypergeometric(10,3,4,2).96666667(计算在样本总量为10,成功案例为 3 的样本总体中,不重置地抽取 4 个样本,其中有小于或等于 2 个为成功案例的概率)检验极端值的步骤:常见命令: tabulate、stem、codebook、summarize、list、histogram、graph box、gragh matrixstep1. 用 codebook 、 summarize 、 histogram 、 graph boxs、graph matrix、stem看检验数据的总体情况:codebook y x1 x2summarize y x1 x2,detailhistogram x1,norm(正态直方图)graph box x1(箱图)graph matrix y x1 x2,half(画出各个变量的两两x-y 图)stem x1 (做 x1 的茎叶图)可以看出数据分布状况,尤其是最大、最小值step2. 用 tabulate、list细致寻找极端值tabulate code if x1==极端值(作出x1 等于极端值时code 的频数分布表,code 表示地区、年份等序列变量,这样便可找出那些地区的数值出现了错误)list code if x1==极端值(直接列出x1 等于极端值时code 的值,当x1 的错误过多时,不建议使用该命令)list in -20/l(l表示last one,-20表示倒数第20 个样本,该命令列出了从倒数第20 个到倒数第一个样本的各变量值)step3. 用 replace命令替换极端值replace x1=? if x1==极端值去除极端值:keep if y<1000drop if y>1000对数据排序:sort xgsort +x(对数据按x 进行升序排列)gsort -x(对数据按x 进行降序排列)gsort -x, generate(id) mfirst(对数据按x 进行降序排列,缺失值排最前,生成反映位次的变量id )对变量进行排序:order y x3 x1 x2(将变量按照y 、x3 、 x1 、 x2 的顺序排列)生成新变量:gen logx1=log(x1)(得出x1的对数)gen x1`=exp(logx1)(将logx1反对数化)gen r61_100=1 if rank>=61&rank<=100 (若 rank 在 61 与 100 之间,则新变量r61_100 的取值为1,其他为缺失值)replace r61_100 if r61_100!=1(“!=”表示不等于,若r61_100 取值不为 1,则将 r61_100 替换为 0 ,就是将上式中的缺失值替换为0)gen abs(x)(取x的绝对值)gen ceil(x)(取大于或等于x 的最小整数)gen trunc(x)(取x的整数部分)gen round(x)(对x进行四舍五入)gen round(x,y)(以y为单位,对x 进行四舍五入)gen sqrt(x)(取x的平方根)gen mod(x,y)(取x/y的余数)gen reldif(x,y)(取x与y的相对差异,即|x-y|/(|y|+1))gen logit(x)(取ln[x/(1-x)])gen x=autocode(x,n,xmin,xmax)(将x的值域,即xmax-xmin ,分为等距的n 份)gen x=cond(x1>x2,x1,x2)(若x1>x2成立,则取x1 ,若 x1>x2 不成立,则取x2 )sort xgen gx=group(n)(将经过排序的变量x 分为尽量等规模的n 个组)egen zx1=std(x1) (得出 x1的标准值,就是用 (x1-avgx1)/sdx1 )egen zx1=std(x1),m(0) s(1)(得出 x1 的标准分,标准分的平均值为0,标准差为 1 )egen sdx1=sd(x1)(得出x1的标准差)egen meanx1=mean(x1) (得出 x1 的平均值)egen maxx1=max(x1) (最大值)egen minx1=min(x1)(最小值)egen medx1=med(x1) (中数)egen modex1=mode(x1) (众数)egen totalx1=total(x1)(得出x1的总数)egen rowsd=sd(x1 x2 x3)(得出 x1、 x2和 x3 联合的标准差)egen rowmean=mean(x1 x2 x3) (得出 x1、 x2 和 x3 联合的平均值)egen rowmax=max(x1 x2 x3)(联合最大值)egen rowmin=min(x1 x2 x3)(联合最小值)egen rowmed=med(x1 x2 x3)(联合中数)egen rowmode=mode(x1 x2 x3)(联合众数)egen rowtotal=total(x1 x2 x3)(联合总数)egen xrank=rank(x)(在不改变变量x 各个值排序的情况下,获得反映x 值大小排序的xrank )数据计算器 display命令:display x[12](显示 x 的第十二个观察值)display chi2(n,x)(自由度为 n 的累计卡方分布)display chi2tail(n,x)(自由度为 n 的反向累计卡方分布,chi2tail(n,x)=1-chi2(n,x))display invchi2(n,p)(卡方分布的逆运算,若chi2(n,x)=p,那么 invchi2(n,p)=x)display invchi2tail(n,p)(chi2tail的逆运算)display F(n1,n2,f)(分子、分母自由度分别为n1 和 n2 的累计 F 分布)display Ftail(n1,n2,f)(分子、分母自由度分别为n1 和 n2 的反向累计 F 分布)display invF(n1,n2,P)(F 分布的逆运算,若F(n1,n2,f)=p,那么 invF(n1,n2,p)=f)display invFtail(n1,n2,p)(Ftail的逆运算)display tden(n,t)(自由度为n 的 t 分布)display ttail(n,t)(自由度为n 的反向累计t 分布)display invttail(n,p)(ttail的逆运算)给数据库和变量做标记:label data "~~~"(对现用的数据库做标记,"~~~" 就是标记,可自行填写)label variable x "~~~"(对变量 x 做标记)label values x label1(赋予变量 x 一组标签 :label1 )label define label1 1 "a1" 2 "a2"(定义标签的具体内容:当x=1 时,标记为a1,当 x=2 时,标记为a2)频数表:tabulate x1,sorttab1 x1-x7,sort(做x1到x7的频数表,并按照频数以降序显示行)table c1,c(n x1 mean x1 sd x1)(在分类变量c1 的不同水平上列出x1 的样本量和平均值)二维交互表:auto 数据库:table rep78 foreign, c(n mpg mean mpg sd mpg median mpg) center row col(rep78 ,foreign均为分类变量,rep78 为行变量, foreign为列变量,center表示结果显示在单元格中间,row 表示计算行变量整体的统计量,col表示计算列变量整体的统计量)tabulate x1 x2,all(做 x1 和 x2 的二维交互表,要求显示独立性检验chi2 、似然比卡方独立性检验lrchi2、对定序变量适用的等级相关系数gamma和 taub 、以及对名义变量适用的V)tabulate x1 x2,column chi2 (做 x1 和 x2 的二维交互表,要求显示列百分比和行变量和列变量的独立性检验——零假设为变量之间独立无统计关系)tab2 x1-x7,all nofreq(对x1到x7这七个变量两两地做二维交互表,不显示频数:nofreq )三维交互表:by x3,sort:tabulate x1 x2,nofreq col chi2(同时进行x3 的每一个取值内的x1 和 x2 的二维交互表,不显示频数、显示列百分比和独立性检验)四维交互表:table x1 x2 x3,c(ferq mean x1 mean x2 mean x3) by(x4)tabstat X1 X2,by(X3) stats(mean n q max min sd var cv) col(stats)tabstat X1 X2,by(X3) stats(mean range q sd var cv p5 p95 median),[aw=X4](以X4为权重求X1、X2 的均值,标准差、方差等)ttest X1=1count if X1==0count if X1>=0gen X2=1 if X1>=0corr x1 x2 x3(做x1、x2、x3的相关系数表)swilk x1 x2 x3(用Shapiro-Wilk W test对x1、x2、x3进行正太性分析)sktest x1 x2 x3(对x1、x2、x3进行正太性分析,可以求出峰度和偏度)ttest x1=x2(对x1、x2的均值是否相等进行T 检验)ttest x1,by(x2) unequal(按x2的分组方式对x1 进行 T 检验,假设方差不齐性)sdtest x1=x2(方差齐性检验)sdtest x1,by(x2)(按x2的分组方式对x1 进行方差齐性检验)聚分析:cluster kmeans y x1 x2 x3, k(3)——依据y、 x1 、x2 、 x3 ,将本分n ,聚的核随机取cluster kmeans y x1 x2 x3, k(3) measure(L1) start(everykth)—— "start"用于确定聚的核,"everykth"表示将通构造三本得聚核:构造方法将本id 1 、1+3、1+3×2、1+3×3⋯⋯分一、将本id2、2+3、2+3×2、2+3×3⋯⋯分第二,以此推,将三的均作聚的核;"measure" 用于算相似性和相异性的方法,"L1" 表示采用欧式距离的,也直接可采用欧式距离(L2)和欧式距离的平方(L2squared )。

相关文档
最新文档