高二数学不等式的解法

合集下载

高二数学含参数不等式的解法

高二数学含参数不等式的解法
含参数不等式的解法
例1.解关于x的不等式 ax b 0
分析: 参变数可分为三种情况,即 a 0, a 0和a 0 ,
分别解出当 a 0, a 0和a 0时的解集即可。
解: 原不等式可化为:ax b
当 a 0 时,则 x b a

a

0
时,则
x

b a
当 a 0 时,则原不等式变为: 0 b
解: 原不等式可化为:
(x a)( x a2 ) 0
当a 0时,则a a2,原不等式的解集为 {x | x a或x a2}
当a 0时,则a a2 0,原不等式的解集为 {x | x 0}
当0 a 1时,则a2 a,原不等式的解集为 {x | x a2或x a, 则原不等式的解集为R
综上所述原不等式的解集为:
当a 0时, 解集为{x | x b}
a 当a 0时, 解集为{x | x b}
a
当a 0且b 0时, 解集为
当a 0且b 0时, 解集为R
例2.解关于x的不等式
x2 (a a2 )x a3 0(a R)
; https:// 女性生理期计算器

(4分) 答:? ? 17.文中画线的句子使用了什么修辞方法?请结合文章内容,具体分析其表达作用。(3分) 雪花簌簌地落着,风安静地睡去,远山近水被夜色围拢而来,婴孩一般安卧在村庄阔大的臂弯里。 答:? ? 18.下面对文章的理解分析,不正确的两项是( )(? ) A.文章以“冰 窗花”为线索,回顾作者早年的故园生活,着力描写了盛开在冬日窗棂上的冰窗花。 B.第①自然段“尤其是在久居乡下的那些日子里”一句起强调作用,并自然地引起下文。 C.第②自然段中,作

不等式的解法步骤

不等式的解法步骤

解不等式的步骤如下:
1. 将不等式转化为“小于等于”或“大于等于”的形式。

例如,将 $x<2$ 转化为 $x-2<0$。

2. 对不等式两边进行同等的加减、乘除运算,直到将未知量(通常是 $x$)单独放在一边。

注意,如果对不等式两边进行乘除运算,需要注意正负号的变化。

3. 判断不等式的解集,即确定 $x$ 的取值范围。

如果不等式中存在分数或绝对值,需
要对不等式进行分类讨论。

4. 将解集用数轴表示出来,可以用一个实心点或开口方向表示。

需要注意的是,当不等式的左右两边都有未知量时,不能简单地移项,必须根据不等
式的性质和具体情况进行分类讨论。

此外,在解不等式时,需要注意不能对不等式两
边同时乘以未知量的情况,因为未知量可能为零或负数,导致不等式的方向发生改变。

高二数学一元二次不等式的解法2

高二数学一元二次不等式的解法2

一元二次方程ax2 bx c 0(a 0)的解实
际上就是二次函数 y ax2 bx c(a 0)
与x轴交点的横坐标。
下面我们来研究如何应用二次函数的图象 来解一元二次不等式。
首先,我们可以把任何一个一元二次 不等式转化为下列四种形式中的一种:
(1)ax2 bx c 0(a 0) (2)ax2 bx c 0(a 0) (3)ax2 bx c 0(a 0) (4)ax2 bx c 0(a 0)
y
R
Байду номын сангаас
x
x


b 2a

y
△<0
R
R
y
y=f(x)的图象
x O x1 x2
x O x=-b/2a
O
x
由此我们可以得出解一元二次不等式的一般 步骤:
(1)把所给不等式化为四种标准形式之一; (2)判断所对应二次方程的根的情况;若
有根,则求出其根。 (3)画出所对应的二次函数的图象; (4)根据图象写出不等式的解集。
3.3 一元二次不等式的解法 课件
问题:
(1)如何解一元二次方程ax2 bx c 0(a 0) (2)二次函数y ax2 bx c(a 0) 的图象是
什么曲线? (3)一元二次方程 ax2 bx c 0(a 0) 的
解与二次函数y ax2 bx c(a 0) 的图象 有什么联系?
下面我们一起来完成下表:
△=b2-4ac f(x)>0的解集 f(x)<0的解集 f(x) ≥0的解集 f(x) ≤0的解集
△>0
△=0
x x x2或x x1

高二数学一元二次不等式及其解法

高二数学一元二次不等式及其解法

因为△=12-4×4×(-1)>0,
方程4x2+x-1=0的根是 所以不等式的解集是
1 17 1 17 {x | x } 8 8
1 17 1 17 x1 , x2 8 8
例3.解不等式x2+4x+4>0. 解:因为△=42-4×1×4=0,
原不等式化为(x+2)2>0,
x 2 0 x 3 0
x 2 0 或 , x 3 பைடு நூலகம்0
解这两个不等式组得x>3或x<-2.
(2)因为x2-x-6=(x+2)(x-3),所以解
x2-x-6<0,就是解(x+2)(x-3)<0,
x 2 0 x 2 0 相对于解不等式组 或 , x 3 0 x 3 0
一元二次不等式f(x)>0,或f(x)<0 (a≠0)的
解集,就是分别使二次函数f(x)的函数值为
正值或负值时自变量x的取值的集合。
一元二次方程f(x)=0 (a≠0)的解集,就是使 二次函数f(x)为零时自变量x的取值的集合。 因此二次函数,一元二次方程,一元二 次不等式之间有非常密切的联系。
下面我们通过实例,研究一元二次不等 式的解法,以及它与相应的方程、函数之 间的关系。 例如解不等式: (1)x2-x-6>0;(2)x2-x-6<0.
3.3 一元二次不等式及其 解法
考察下面含未知数x的不等式:
15x2+30x-1>0 和 3x2+6x-1≤0. 这两个不等式有两个共同特点: (1)含有一个未知数x; (2)未知数的最高次数为2.
一般地,含有一个未知数,且未知 数的最高次数为2的整式不等式,叫做一

不等式的解法、应用习题课

不等式的解法、应用习题课

不等式的解法、应用习题课预习案一、 自学教材,思考下列问题 1.不等式的解法解不等式是求定义域、值域、参数的取值范围时的重要手段,与“等式变形”并列的“不等式的变形”,是研究数学的基本手段之一。

高考试题中,对解不等式有较高的要求,近两年不等式知识占相当大的比例。

(1)同解不等式((1)f x g x ()()>与f x F x g x F x ()()()()+>+同解;(2)m f x g x >>0,()()与mf x mg x ()()>同解,m f x g x <>0,()()与mf x mg x ()()<同解;(3)f xg x ()()>0与f x g x g x ()()(()⋅>≠00同解); 2.一元一次不等式解一元一次不等式(组)及一元二次不等式(组)是解其他各类不等式的基础,必须熟练掌握,灵活应用。

ax b a a a >⇒>=<⎧⎨⎪⎩⎪分()()()102030情况分别解之。

3.一元二次不等式ax bx c a 200++>≠()或ax bx c a 200++<≠⇒()分a >0及a <0情况分别解之,还要注意∆=-b ac 24的三种情况,即∆>0或∆=0或∆<0,最好联系二次函数的图象。

二、 一试身手1.下列结论正确的是 . ①不等式x 2≥4的解集为{x |x ≥±2} ②不等式x 2-9<0的解集为{x |x <3}③不等式(x -1)2<2的解集为{x |1-2<x <1+2}④设x 1,x 2为ax 2+bx +c =0的两个实根,且x 1<x 2,则不等式ax 2+bx +c <0的解集为{x |x 1<x <x 2} 2.(2007·湖南理)不等式12+-x x ≤0的解集是 . 3.(2008·天津理)已知函数f (x )=⎩⎨⎧≥-<+-,0,1,0,1x x x x 则不等式x +(x +1)·f (x +1)≤1的解集是 .4.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 成立,则a 的取值范围是 .5.(2008·江苏,4)A ={x |(x -1)2<3x -7},则A ∩Z 的元素的个数为 .导学案一、 学习目标1. 掌握有理不等式的解法。

高二上学期数学教学课件ppt--第一节 (新)绝对值不等式

高二上学期数学教学课件ppt--第一节 (新)绝对值不等式
主要方法有: ⑴同解变形法:运用解法公式直接转化; ⑵定义法:分类讨论去绝对值符号; ①含一个绝对值符号直接分类;②含两个或两 个以上绝对值符号:零点分段法确定. ⑶数形结合(运用绝对值的几何意义); ⑷利用函数图象来分析.
①利用绝对值不等式的几何意义 ②零点分区间法 ③构造函数法
例1; 解不等式1 3x 4 6
解 : 原不等式等价于下列不等式组 3x 4 1 3x 4 6
即3x643x
1或3x 46
4
1
x
1或x 10 x 3
2 3
5 3
解得 10 x 5 或 1 x 2
3
3
3

原不
解:
(Ⅰ) 或
(Ⅱ)
5x-6<6-x
-(5x-6)<6-x
解(Ⅰ)得:6/5≤x<2 解(Ⅱ) 得:0<x<6/5
取它们的并集得:(0,2)
解不等式 | 5x-6 | < 6 – x
分析:对6-x 符号讨论,
当6进-x≦一0时步,反显然思无:不解等;式组 当6中-x6>-0x时>0,转是化否为可-(以6-x去)<掉5x-6<(6-x)
解:由绝对值的意义,原不等式转化为:
6-x有>0更一般的结论:X<6
|f(x|)f|(>xg-)(|(6<x-g)x()x<5) x-6f(<x(6)->-gxg()x(x)<) f或(xf)5(-<x(x6g-)-6<(xx<-)g(<)65(-xxx)-)6
0<x<2
2.型如|ax+b|≤c,|ax+b|≥c(c∈R)不等式解法

高二数学含参数不等式的解法

高二数学含参数不等式的解法

(2) ax (2a 1) x 2 0
2
1 当a 0时, 解集为 x | x 2 a 当a 0时, 解集为x | x | x 2 1 1 当0 a 时, 解集为 x | x 或x 2 2 a 1 当a 时, 解集为x | x 2 2 1 1 当a 时, 解集为 x | x 2或x 2 a
含参数不等式的解法
例1.解关于x的不等式
分析:
ax b 0
参变数可分为三种情况,即 a 0, a 0和a 0 , 分别解出当 a 0, a 0和a 0 时的解集即可。 原不等式可化为:ax b
解:
b 当 a 0 时,则 x a
b 当 a 0 时,则 x a
当0 a 1时, 有a 2 a 2 当a 0、a 1时, 有a a
解: 原不等式可化为:
( x a)(x a ) 0
2
当a 0时, 则a a 2 , 原不等式的解集为 {x | x a或x a 2 }
当a 0时, 则a a 2 0, 原不等式的解集为 {x | x 0}
1 1 0 1 1 x ,因为 1 a 0, 所以x 1, 故有1 x x 1 a 1 1 a x
综上所述,当a 1时,不等式的解集为:
1 x 0 x | 1 a
当 0 a 1 时,不等式的解为:
石器时代 http://www.shiqi.co/m/ 石器时代
wkd27xny
一个紧张的汇报着这一星期的成果。夜北冥安静的听完后,点了点头,顿时跪着的十三个人就齐齐松了一口气。夜北冥从朝凰大陆带来的 十二个人,都是月如跟月媚亲自在暗门挑的,每一个都是暗门中的精英,都有各自的特长。在这次夜北冥给的为期一个星期的任务中,她 们互相合作,已经在距离青龙王朝不远处的郊外买下了一间面积特大的客栈,打算在未央大陆再开一家梦之境和凤栖楼。这处山洞是十二 属下挖的,是专门给这两天在青龙王朝各地找到的天赋、经脉不错且无家可归的人或奴隶市场的人提供修炼的地方。这一星期以来梦瑶跟 濯清炼制的丹药和武器也算是有了用武之地,这些东西交给十二属下分发给几千个修炼的人。得到了丹药和武器的人们,顿时对那位高座 上戴银色面具穿黑袍的女子产生了再生之情,一个个看着夜北冥的眼光都是如同小孩子看着自己最仰慕的父母的眼神。夜北冥感觉到精神 海中有什么又开始增长了,连带着身体非常的舒爽,好像这浑浊的空气更加的清新了。这就是信仰之力,从小的时候,夜北冥就感受到这 种信仰的力量了,尤其在六年前自己十二岁的时候结束了未央大陆的战乱,将魔兽都赶到落叶森林让人类得以解放。从那时候起,夜北冥 尤其感觉到了精神海中的信仰之力的疯涨,这也是夜北冥境界升的这么快的原因。等到了傍晚,夜北冥就让濯清梦瑶等人都留在这里和月 如十二属下一起创建势力,自己独身一人往自己的行宫中赶去。在路过一汪池塘的时候,精神力‘看到’一男一女正在欺负一个躺在地上 蜷缩的人,那男的在拿鞭子抽地上蜷缩成一团的人,抽的很用力,好像有什么深仇大恨似的不抽死鞭子下的人誓不罢休似的,夜北冥站在 离他们十米左右的树枝上都能清晰的听到鞭子破空抽入皮肉的声音。不一会,夜北冥就感觉到地上的人已经断气了,于是就摇摇头准备离 开。忽然间,夜北冥浩瀚的精神力察觉到原本在地上蜷缩起来已经断气的人突然就开始呼吸,而且在夜北冥精神力的查看下,能敏锐的感 觉到,这死了又复活的人与没死之前的气息大不一样。那人没死之前带给夜北冥的气息是绵软的,很懦弱没胆子还很好欺负的样子,可是 现在复活过来的人给夜北冥的气息是强悍的,就好像是尖锐的箭破空刺入敌人的身体一样带着很浓郁的血腥味。果然,夜北冥精神力‘看 到’那人站起来,接住了马上就要降落在自己身上的鞭子,反手一拽一拉,鞭子就到了自己手里。手一扬就狠狠的落在鞭子之前的主人身 上,那两人好像被突然站起身反击的人吓了一跳,接着就被鞭子抽的哇哇大叫,跑的比兔子还快,几秒钟的时间就已经消失的无影无踪。 看到周围没有危险了,那人原本躬身战斗的姿势瞬间崩塌,手中的鞭子掉落在地上,人也紧跟着要倒

高二数学知识点:不等式的解法

高二数学知识点:不等式的解法

高二数学知识点:不等式的解法不等式的解法:(1)一元二次不等式:一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对进行讨论:(2)绝对值不等式:若,则;;注意:(1)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;(2).通过两边平方去绝对值;需要注意的是不等号两边为非负值。

(3).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。

(4)分式不等式的解法:通解变形为整式不等式;(5)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。

(6)解含有参数的不等式:解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为(或更多)但含参数,要讨论几种常见不等式的解法:1.一元一次不等式的解法任何一个一元一次不等式经过变形后都可以化为axb或axb而言,当a0时,其解集为(ab,+),当a0时,其解集为(-,ba),当a=0时,b0时,期解集为R,当a=0,b0时,其解集为空集。

例1:解关于x的不等式ax-2b+2x解:原不等式化为(a-2)xb+2①当a2时,其解集为(b+2a-2,+)②当a2时,其解集为(-,b+2a-2)③当a=2,b-2时,其解集为④当a=2且b-2时,其解集为R.2.一元二次不等式的解法任何一个一元二次不等式都可化为ax?2+bx+c0或ax?2+bx+c0(a0)的形式,然后用判别式法来判断解集的各种情形(空集,全体实数,部分实数),如果是空集或实数集,那么不等式已经解出,如果是部分实数,则根据“大于号取两根之外,小于号取两根中间”分别写出解集就可以了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学不等式的解法
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z)(其中不等号也可以为<,≤,≥,>中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。

不等式的解法:
(1)一元二次不等式:一元二次不等式二次项系数小于零的,同
解变形为二次项系数大于零;注:要对进行讨论:
(2)绝对值不等式:若,则;;
注意:
1、解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:
(1)对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;
(2)通过两边平方去绝对值;需要注意的是不等号两边为非负值。

(3)含有多个绝对值符号的不等式可用“按零点分区间讨论”的
方法来解。

(4)分式不等式的解法:通解变形为整式不等式;
(5)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每
个不等式的解集画在同一条数轴上,取它们的公共部分。

(6)解含有参数的不等式:
解含参数的不等式时,首先应注意考察是否需要进行分类讨论.
如果遇到下述情况则一般需要讨论:
①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.
②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.
③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为(或更多)但含参数,要讨论。

相关文档
最新文档