考点17 立体几何中的计算问题(解析版)
立体几何(解析版)

立体几何(解析版)立体几何(解析版)立体几何是数学中的一个重要分支,研究物体的空间形状、尺寸以及相互关系。
通过立体几何的学习,我们可以更好地理解并描述物体的形状,并运用相关理论方法解决实际问题。
本文将以解析的方式介绍立体几何的基本概念、性质和定理,并探讨其在实际问题中的应用。
1. 点、线、面的基本概念在立体几何的世界中,点、线、面是最基本的几何元素。
点是没有大小的,只有位置的几何对象。
线由无数个点组成,是长度没有宽度的几何对象。
面是由无数个点和线组成,有着长度和宽度的几何对象。
了解这些基本概念是理解立体几何的第一步。
2. 空间几何关系的性质在立体几何中,物体之间有着各种各样的空间几何关系。
例如,平行是最基本的几何关系之一。
当两条直线或两个平面在空间中永远不相交时,我们称它们为平行。
此外,垂直、相交、共面等几何关系都在立体几何中发挥着重要作用。
通过研究这些几何关系的性质,可以更好地理解物体在空间中的位置和相互关系。
3. 空间几何图形的性质和分类空间几何图形是由点、线、面组成的。
常见的空间几何图形包括球、立方体、锥体等。
每种空间几何图形都有其独特的性质和分类标准。
例如,球是由所有距离圆心相等的点组成的,而立方体则有六个平面和八个顶点等。
通过深入研究这些性质和分类标准,我们能够更好地认识和应用空间几何图形。
4. 空间几何定理及其应用在立体几何中,有许多重要的定理和定律来描述和证明空间几何图形的性质。
例如,欧几里得空间中的平行公设和垂直公设是我们研究空间几何的基础。
此外,勾股定理、皮亚诺定理、欧拉公式等也为我们解决实际问题提供了强大的工具。
在实际问题中,我们可以通过运用这些定理和定律,推导出几何图形之间的关系,解决诸如面积、体积、距离等方面的问题。
5. 立体几何的应用立体几何的应用广泛而重要。
在建筑设计中,我们需要合理利用立体几何理论,确定房屋的尺寸和结构,确保建筑的稳定和美观。
在工程测量中,立体几何被用于计算地表面积和体积,指导建设工程的施工。
专题 立体几何中的计算

立体几何中的计算1、【2019年江苏数】.如图,长方体1111ABCD A B C D 的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.2、【2018年高考江苏数】.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.3、【2019年高考全国Ⅰ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC P 到平面ABC 的距离为___________.4、【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)5、【2019年高考全国Ⅲ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.6、【2019年高考北京卷文数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.7、【2019若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.8、【2018年高考全国II 卷文数】已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为8,则该圆锥的体积为__________.一、柱、锥、台和球的侧面积和体积注意:(1)分的处理.(2)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.二、在求解一些不规则的几何体的体积以及两个几何体的体积之比时,常常需要用到分割法.在求一个几何体被分成两部分的体积之比时,若有一部分为不规则几何体,则可用整个几何体的体积减去规则几何体的体积求出其体积.(1)解决空间几何体表面上的最值问题的根本思路是“展开”,即将空间几何体的“面”展开后铺在一个平面上,将问题转化为平面上的最值问题.(2)如果已知的空间几何体是多面体,则根据问题的具体情况可以将这个多面体沿多面体中某条棱或者两个面的交线展开,把不在一个平面上的问题转化到一个平面上.如果是圆柱、圆锥则可沿母线展开,把曲面上的问题转化为平面上的问题.三、方法与技巧(1)棱柱、棱锥要掌握各部分的结构特征,计算问题往往转化到一个三角形中进行解决.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状.(2)要注意将空间问题转化为平面问题.(3)求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.(4)一些几何体表面上的最短距离问题,常常利用几何体的展开图解决.四、失误与防范(1)几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.(2)与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.题型一 多面体的表面积与体积求多面体的表面积与体积常用方法:1、公式法:可以运用规则的几何体;2、割补法:把不规则的图形分割成规则的图形,或者把几何体补成熟悉的几何体。
立体几何难题解析附有答案详解

立体几何难题解析(附有答案详解)一、解答题1.如图1,直角梯形ABCD 中,//,90AB CD ABC ∠=︒,42==AB CD ,2=BC .//AE BC 交CD 于点E ,点G ,H 分别在线段DA ,DE 上,且//GH AE .将图1中的AED ∆沿AE 翻折,使平面ADE ⊥平面ABCE (如图2所示),连结BD 、CD ,AC 、BE .HEGDCBA图1图2ABCG EHD(Ⅰ)求证:平面⊥DAC 平面DEB ;(Ⅱ)当三棱锥GHE B -的体积最大时,求直线BG 与平面BCD 所成角的正弦值.2.如图,在直三棱柱111ABC A B C -中,点D E 、分别在边11BC B C 、上,1CD B E AC ==,60ACD ∠︒=.求证:(1)BE 平面1AC D ;(2)平面1ADC ⊥平面11BCC B .3.如图,在直角梯形CD AB 中,D//C A B ,DC 90∠A = ,AE ⊥平面CD AB ,F//CD E ,1C CD F D 12B ==AE =E =A =.(1)求证:C //E 平面F AB ;(2)在直线C B 上是否存在点M ,使二面角D E -M -A 的大小为6π?若存在,求出C M 的长;若不存在,说明理由.4.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为直角梯形,90CDA BAD ∠=∠= ,1AD DC ==,2AB =,E 、F 分别为PD 、PB 的中点.(1)求证:平面PCB ⊥平面PAC ;(2)若平面CEF 与底面ABCD 所成的锐二面角为4π,求PA 的长.5.如图,两个相同的正四棱锥底面重合组成一个八面体,可放入棱长为2的正方体中,重合的底面与正方体的某一个面平行,各顶点均在正方体的表面上,将满足上述条件的八面体称为正方体的“正子体”.(1)若正子体的六个顶点分别是正方体各面的中心,求该八面体的表面积.(2)此正子体的表面积S 是否为定值?若是,求出该定值;若不是,求出表面积的取值范围.6.如图1,已知四边形ABCD 满足//AD BC ,12BA AD DC BC a ====,E 是BC 的中点,将BAE 沿着AE 翻折成1B AE △,形成四棱锥1B AECD -,F 为1B D 的中点,M 为AE 的中点,如图2所示.(1)求证:面1B DM ⊥面1B AE ;(2)当平面1B AE 与平面1B DC 所成角的余弦值为5时,求1B D 的长度;(3)当面1B AE ⊥面AECD 时,求平面1ADB 与平面1ECB 所成角的正弦值.7.在棱长均为2的正三棱柱111ABC A B C -中,E 为11B C 的中点.过AE 的截面与棱1BB ,11A C 分别交于点F ,G.(1)若F 为1BB 的中点,求三棱柱被截面AGEF 分成上下两部分的体积比12V V ;(2)若四棱雉1A AGEF -求截面AGEF 与底面ABC 所成二面角的正弦值;(3)设截面AFEG 的面积为0S ,AEG ∆面积为1S ,AEF 面积为2S ,当点F 在棱1BB 上变动时,求2012S S S的取值范围.8.如图,在四棱锥B ACDE -中,平面ABC ⊥平面ACDE ,ABC 是等边三角形,在直角梯形ACDE 中,//AE CD ,AE AC ⊥,1AE =,2AC CD ==,P 是棱BD 的中点.(1)求证:EP ⊥平面BCD ;(2)设点M 在线段AC 上,若平面PEM 与平面EAB求MP 的长.9.如图,ABCD是块矩形硬纸板,其中2AB AD ==E 为DC 中点,将它沿AE 折成直二面角D AE B --.(1)求证:AD ⊥平面BDE ;(2)如果()0AH HB λλ=> ,求二面角H AD E --的余弦值.10.如图1,在边长为2的正方形ABCD 中,P 为CD 中点,分别将△PAD,△PBC 沿PA,PB 所在直线折叠,使点C 与点D 重合于点O,如图2.在三棱锥P-OAB 中,E 为PB 中点.(Ⅰ)求证:PO⊥AB;(II)求直线BP 与平面POA 所成角的正弦值;(Ⅲ)求二面角P-AO-E 的大小.11.如图,在四棱锥P −ABCD 中,PA⊥平面Q 在PB 上,且满足PQ∶QB=1∶3,求直线CQ 与平面PAC 所成角的正弦值.12.已知四棱锥中平面,点在棱上,且,底面为直角梯形,分别是的中点.(1)求证://平面;(2)求截面与底面所成二面角的大小.13.如图,已知四边形ABCD由Rt ABC∆拼接而成,其中∆和Rt BCDBAC BCD∠=∠=︒,3090∆沿着BC折起.=,BC=ABC∠=︒,AB ACDBC(1)若AD=,求异面直线AB与CD所成角的余弦值;(2)当四面体ABCD的表面积的最大时,求二面角A BC D--的余弦值.14.如图,ABCD与ADEF是两个边长为1的正方形,它们所在的平面互相垂直.(1)求异面直线AE 与BD 所成角的大小;(2)在线段BD 上取点M ,在线段AE 上取点N ,且BMx BD=,EN y EA =,试用x ,y 来表示线段MN 的长度;(3)在(2)的条件下,求MN 长度的最小值,并判断当MN 最短时,MN 是否是异面直线AE 与BD 的公垂线段?15.(本题满分14分)如图所示,正方形ABCD 所在的平面与等腰ABE ∆所在的平面互相垂直,其中顶120BAE ∠= ,4AE AB ==,F 为线段AE 的中点.(1)若H 是线段BD 上的中点,求证://FH 平面CDE ;(2)若H 是线段BD 上的一个动点,设直线FH 与平面ABCD 所成角的大小为θ,求tan θ的最大值.16.如图所示,正方体ABCD A B C D -''''的棱长为1,E F 、分别是棱AA CC ''、的中点,过直线EF 的平面分别与棱BB DD ''、交于M N 、,设[]01BM x x =∈,,,求:(1)求EF 与面A B BA ''所成的角的大小;(2)求四棱锥C MENF '-的体积()V h x =,并讨论它的单调性;(3)若点P 是正方体棱上一点,试证:满足'2PA PC +=成立的点的个数为6.17.如图,在斜三棱柱111ABC A B C -中,AC BC =,D 为AB 的中点,1D 为11A B 的中点,平面111A B C ⊥平面11ABB A ,异面直线1BC 与1AB 互相垂直.(1)求证:平面1//A DC 平面11BD C ;(2)若1CC 与平面11ABB A 的距离为x ,116AC AB ==,三棱锥1AACD -的体积为y ,试写出y 关于x 的函数关系式;(3)在(2)的条件下,当1CC 与平面11ABB A 的距离为多少时,三棱锥1A ACD -的体积取得最大值?并求出最大值.18.如图,四棱锥P ABCD -的底面为菱形且∠ABC=120°,PA ⊥底面ABCD,AB=1,PA E 为PC 的中点.(1)求直线DE 与平面PAC 所成角的大小;(2)求二面角E-AD-C 平面角的正切值;(3)在线段PC 上是否存在一点M ,使PC ⊥平面MBD 成立.如果存在,求出MC 的长;如果不存在,请说明理由参考答案1.(Ⅰ)见解析;(Ⅱ)BG 与平面BCD所成角的正弦值为6.【解析】(Ⅰ)由已知CD AB //,︒=∠90ABC ,42==AB CD 及BC AE //交CD 于点E .得到四边形ABCE 是边长为2的正方形.BE AC ⊥,AE DE ⊥.再据平面ADE ABCE ⊥平面,平面ADE ABCE AE ⋂=平面,得到DE ABCE ⊥平面,DE AC ⊥,AC DBE ⊥平面,得证.(Ⅱ)由(Ⅰ)知DE ABCE ⊥平面,EC AE ⊥,以E 为原点,ED EC EA ,,的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.)0,0,2(A ,)0,2,2(B ,(0,2,0)C ,)2,0,0(D 设x EH =,则x DH GH -==2(20<<x )由CE AB //,得到DAE AB 面⊥,从而2)]2(21[3131⨯-=⋅=∆-x x AB S V GHE GHE B ]1)1([31)2(3122+--=+-=x x x ,根据1=x 时,三棱锥GHE B -体积最大,此时,H 为ED 中点.G 也是AD 的中点,求得)1,0,1(G ,)1,2,1(--=BG .设),,(z y x n =是面BCD 的法向量.由⎪⎩⎪⎨⎧=-=-⋅=⋅=-=-⋅=⋅022)2,2,0(),,(02)0,0,2(),,(z y z y x DC n x z y x BC n ,令1=y ,得)1,1,0(=n ,设BG 与面BCD 所成角为θ,由||sin ||||BG n BG n θ⋅=即得.试题解析:(Ⅰ)∵CD AB //,︒=∠90ABC ,42==AB CD 又BC AE //交CD 于点E .∴四边形ABCE 是边长为2的正方形∴BE AC ⊥,AE DE ⊥.又∵平面ADE ABCE ⊥平面平面ADE ABCE AE = 平面∴DE ABCE⊥平面∵AC ABCE ⊂平面,∴DE AC ⊥又E BE DE = ∴AC DBE ⊥平面∵AC DAC ⊂平面∴平面DAC DEB⊥平面(Ⅱ)由(Ⅰ)知DE ABCE ⊥平面,ECAE ⊥以E 为原点,ED EC EA ,,的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.则)0,0,2(A ,)0,2,2(B ,(0,2,0)C ,)2,0,0(D 设x EH =,则x DH GH -==2(20<<x )∵CE AB //,∴DAE AB 面⊥∴2)]2(21[3131⨯-=⋅=∆-x x AB S V GHE GHE B ]1)1([31)2(3122+--=+-=x x x ∵20<<x ,∴1=x 时,三棱锥GHE B -体积最大,此时,H 为ED 中点.∵AE GH //,∴G 也是AD 的中点,∴)1,0,1(G ,)1,2,1(--=BG .设),,(z y x n =是面BCD 的法向量.则(,,)(2,0,0)20(,,)(0,2,2)220n BC x y z x n DC x y z y z ⎧⋅=⋅-=-=⎪⎨⋅=⋅-=-=⎪⎩ 令1=y ,得)1,1,0(=n 设BG 与面BCD 所成角为θ则||sin 6||||BG n BG n θ⋅===∴BG 与平面BCD所成角的正弦值为6.2.(1)见详解;(2)见详解.【分析】(1)通过1BE C D 来证明BE 平面1AC D ;(2)通过AD ⊥平面11BCC B 来证明平面1ADC ⊥平面11BCC B .【详解】证明:(1)由三棱柱111ABC A B C -是直三棱柱,得11BC B C .因为点D E 、分别在边11BC B C 、上,1CD B E =,所以1BD C E =,1BD C E .所以四边形1BDC E 是平行四形,所以1BE C D 因为1C D ⊂平面1AC D ,BE ⊄平面1AC D 所以BE 平面1AC D .(2)由三棱柱111ABC A B C -是直三棱柱,得1CC ⊥平面ABC ,因为AD ⊂平面ABC ,所以1AD CC ⊥,在ACD ∆中,由12CD AC =,60ACD ∠︒=,得32AD AC ==,所以222AD CD AC +=,所以90ADC ∠︒=,即:AD BC ⊥,因为BC ⊂平面11BCC B ,1CC ⊂平面11BCC B ,1BC CC C = ,所以AD ⊥平面11BCC B ,因为AD ⊂平面1ADC ,所以平面1ADC ⊥平面11BCC B .3.(1)详见解析(2)C 3M =【解析】(1)证明线面平行,一般利用线面平行判定定理进行论证,即从平几出发,寻找线线平行:根据题意先将图形补全,再利用平行四边形得线线平行(2)研究二面角,一般方法为利用空间向量:先建立坐标系,利用坐标求二面角两个平面的法向量,因为AE ⊥平面D AM ,所以AE 为平面D AM 的一个法向量,而平面D EM 的一个法向量,则需联立方程组解出,再利用向量数量积求两法向量的夹角的余弦值,最后根据二面角与法向量夹角相等或互补关系,列等量关系确定点M ,同时根据向量的模求出C M 的长.解:(1)如图,作FG//EA ,G//F A E ,连接G E 交F A 于H ,连接BH ,G B ,F//CD E 且F CD E =,∴G//CD A ,即点G 在平面CD AB 内.由AE ⊥平面CD AB ,知G AE ⊥A ,∴四边形FG AE 为正方形,四边形CD G A 为平行四边形,∴H 为G E 的中点,B 为CG 的中点,∴//C BH E .BH ⊂平面F AB ,C E ⊄平面F AB ,∴C //E 平面F AB .(4分)(2)法一:如图,以A 为原点,G A 为x 轴,D A 为y 轴,AE 为z 轴,建立空间直角坐标系xyz A -.则()0,0,0A ,()0,0,1E ,()D 0,2,0,设()01,,0y M ,∴()D 0,2,1E =- ,()0D 1,2,0y M =-,设平面D EM 的一个法向量为(),,n x y z = ,则()0D 20D 20n y z n x y y ⎧⋅E =-=⎪⎨⋅M =+-=⎪⎩,令1y =,得2z =,02x y =-,∴()02,1,2n y =-.(10分)又 AE ⊥平面D AM ,∴()0,0,1AE =为平面D AM 的一个法向量,∴cos ,cos62n πAE ==,解得023y =±,∴在直线C B 上存在点M ,且33C 2233⎛M =-±= ⎝⎭.方法二:作D S A⊥M ,则SA ,由等面积法,得D 3M =,∴C 3M =.【分析】(1)本题首先可根据题意求出AC 、BC 的长度,然后根据222AC BC AB +=得出BC AC ⊥,再然后根据PA ⊥底面ABCD 得出PA BC ⊥,即可得出BC ⊥平面PAC ,最后根据BC ⊂平面PCB 即可证得平面PCB ⊥平面PAC ;(2)本题首先可结合图像构造空间直角坐标系,然后设PA a =,写出平面ABCD的法向量1n u r 以及平面CEF 的法向量2n u u r,最后根据平面CEF 与底面ABCD 所成的锐二面角为4π即可求出PA 的长.【详解】(1)因为1AD DC ==,2AB =,90CDA BAD ∠=∠=,所以AC BC ==因为222AC BC AB +=,所以BC AC ⊥,因为PA ⊥底面ABCD ,BC ⊂平面ABCD ,所以PA BC ⊥,因为AC PA A ⋂=,所以BC ⊥平面PAC ,因为BC ⊂平面PCB ,所以平面PCB ⊥平面PAC .(2)如图,以A 为坐标原点,分别以AD 、AB 、AP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设(0)PA a a =>,则()0,2,0B =,()1,1,0C ,()1,0,0D ,()0,0,P a ,因为E 、F 分别为PD 、PB 的中点,所以1,0,22a E ⎛⎫ ⎪⎝⎭,0,1,2a F ⎛⎫ ⎪⎝⎭,1,1,22a CE ⎛⎫=-- ⎪⎝⎭ ,1,0,2a CF ⎛⎫=- ⎪⎝⎭ ,易知平面ABCD 的一个法向量1(0,0,1)n =,设平面CEF 的法向量为2(,,)n x y z =,则220,0,CE n CF n ⎧⋅=⎪⎨⋅=⎪⎩ ,即10,220,2az x y az x ⎧--+=⎪⎪⎨⎪-+=⎪⎩,不妨取4z =,则2x a =,y a =,即2(2,,4)a a n=,因为平面CEF 与底面ABCD 所成的锐二面角为4π,所以121212cos,nnn nnn⋅=⋅解得a=,即PA【点睛】利用空间向量解决立体几何问题,关键是依托图形建立空间直角坐标系,将相关向量用坐标表示,通过向量运算判断或证明空间元素的位置关系及探究空间角、空间距离问题.建立空间直角坐标系的三种方法:(1)以几何体中共顶点且互相垂直的三条棱所在的直线作为坐标轴建系;(2)利用线面垂直关系找到三条互相垂直的直线建系;(3)利用面面垂直关系找到三条互相垂直的直线建系.5.(1).【分析】(1)根据题意,正子体的所有棱都是正方体相邻两个面中心的连线,则正子体每个面都是正三角形,进而求出表面积;(2)设平面ABCD截正方体所得截面为A B C D'''',设(01)AA x x'=≤≤,进而算出ADE的面积,从而算出正子体的表面积即可判断.【详解】(1)依题意,正子体任一棱都是正方体相邻两个面中心的连线,所以正子体所有棱的长均相等.因为AB=所以242ABES=⨯,故该八面体的表面积8=.(2)正子体的表面积S不是定值.如图1,设平面ABCD截正方体所得截面为A B C D'''',且A B C D''''的中心为O,过点O作OG A B''⊥,垂足为G.设(01)AA x x '=≤≤,则1AG x =-,222222(1)1123AE DE AO OE x x x ==+=-++=-+,()2222(2)224AD x x x x =-+=-+.设AD 的中点为H ,如图2,则()22212122AD AH x x ⎛⎫==-+ ⎪⎝⎭,()22221222EH AE AH x x =-=-+,所以()()()2222211122422442ADE S AD EH x x x x ⎡⎤⎡⎤=⋅=-+-+⎢⎥⎣⎦⎣⎦ ()()2221322242x x x x =-+-+.因为01x ≤≤,所以2120x x -≤-≤,则()()2223132222442x x x x ≤-+-+≤,ADE S ≤≤ S ≤≤,所以此正子体的表面积S 的取值范围为.6.(1)证明见解析;(2)5a ;(3)45.【分析】(1)要证面1B DM ⊥面1B AE ,只需证AE ⊥面1B DM 即可;(2)根据已知条件可知,1MB D ∠即为面1B AE 与面1B DC 所成角的平面角,进而可得1B D 的长度;(3)建立适当的空间直角坐标系进行求解即可.【详解】(1)证明:因为12BA AD DC BC a ====,E 是BC 的中点,所以AD CE a ==,又因为//AD BC ,所以四边形AECD 为菱形,所以ABE △为正三角形,又因为M 为AE 的中点,所以1B M AE ⊥,DM AE ⊥,又因为1B M DM M ⋂=,所以AE ⊥面1B DM ,又因为AE ⊆面1B AE ,所以面1B DM ⊥面1B AE ,(2)由(1)知:DM AE ⊥,1B M AE ⊥,又因为//AE CD ,所以1B M CD ⊥,CD DM ⊥,所以CD ⊥面1B DM ,所以面1B DC ⊥面1B DM ,又因为面1B DM ⊥面1B AE ,所以1MB D ∠即为面1B AE 与面1B DC所成角的平面角,即1cos 5MB D ∠=,在1MB D △中,1B M =,DM =,由余弦定理得:22211111cos 25B M B D DM MB D B M B D +-∠=⋅,解得:15B D =.(3)因为面1B AE ⊥面AECD ,1B M AE ⊥,所以1B M ⊥面AECD ,所以以M 为坐标原点,以向量ME,MD ,1MB 的方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,由题可得:,0,02aA ⎛⎫- ⎪⎝⎭,1B ⎛⎫⎪ ⎪⎝⎭,0,,02D ⎛⎫⎪ ⎪⎝⎭,,0,02aE ⎛⎫⎪⎝⎭,,,02C a ⎛⎫⎪ ⎪⎝⎭,则有:1,0,22a B A ⎛⎫=-- ⎪ ⎪⎝⎭,10,,22B D ⎛⎫=- ⎪ ⎪⎝⎭,1,0,22a B E ⎛⎫=- ⎪ ⎪⎝⎭ ,133,22B C a a a ⎛⎫= ⎪ ⎪⎝⎭,设平面1ADB 与平面1ECB 的法向量分别为()1111,,x n y z =,()2222,,n x y z = ,由111100n B A n B D ⎧⋅=⎪⎨⋅=⎪⎩,得11110220a x z y z ⎧--=⎪⎪=,令11z =,则1x =11y =,所以()1n =,由212100n B E n B C ⎧⋅=⎪⎨⋅=⎪⎩,得222220220ax z ax y z ⎧-=⎪⎪⎨⎪+=⎪⎩,令21z =,则1x =21y =-,所以)21,1n =-,设平面1ADB 与平面1ECB 所成角的平面角为θ,则:12123cos 5n n n n θ⋅==⋅ 所以4sin 5θ=.7.(1)121323V V =;(2)45;(3)94,2⎡⎤⎢⎣⎦.【分析】(1)连结EF ,并延长分别交1CC ,CB 于点M ,N ,连结AM 交11A C 于点G ,连结AN ,GE ,利用比例关系确定G 为11A C 靠近1C 的三等分点,然后先求出棱柱的体积,连结1A E ,1A F ,由11111A EFB G AA E F AA E V V V V ---=++和21V V V =-进行求解,即可得到答案;(2)求出点G 到平面1A AE 的距离,得到点G 为11A C 靠近1C 的四等分点,通过面面垂直的性质定理可得1AGA ∠即为截面AGEF 与底面ABC 所成的二面角,在三角形中利用边角关系求解即可;(3)设1GC m =,则[0m ∈,1],先求出12S S 的关系以及取值范围,然后将2012S S S 转化为1S ,2S 表示,求解取值范围即可.【详解】解:(1)连接EF ,并延长分别交1CC ,CB 延长线于点M ,N ,连接AM 交11A C 于点G ,连接AN ,GE .易得11113GC MC C E AC MC CN ===.故G 为11A C 靠近1C 的三等分点.11MC =,123GC =.下面求三棱柱被截面分成两部分的体积比.三棱柱111ABC A B C -的体积2224V =⨯=连接1A E ,1A F .由1//BB 平面1A AE 知,1F AA E V -为定值.11121323F AA E V -=⨯⨯=.11111A EFB G AA E F AA E V V V V ---=++1111211232323=⨯⨯⨯⨯⨯+=21V V V =-=121323V V =.(2)由111A AGEF G AA E F AA E V V V ---=+及1F AA E V -=1G AA E V -=又1113G AA E AA E V S h -=⨯⨯△,所以34h =.即点G 到1A E 的距离为34,G 为11A C 靠近1C 的四等分点.因为平面111//A B C 平面ABC ,所以截面AGEF 与平面ABC 所成角即为截面AGEF 与平面111A B C 所成角,在1GC E △中,112GC =,11C E =,故1EG GC ⊥.又因为平面11ACC A ⊥平面111A B C ,且平面11ACC A 平面11111A B C AC =,所以EG ⊥平面11ACC A .则1AGA ∠即为截面AGEF 与底面ABC 所成的二面角.在1Rt AGA △中,132A G =,12AA =,52AG =.故114sin 5AA A GA AG ∠==.因此,截面AGEF 与平面ABC 所成二面角的正弦值为45.(3)设1GC m =,则[]0,1m ∈,2MG mGA m=-.设MGE 的面积为S ,所以12S m S m=-.又因为21S S S =+,所以1222S mS -=.且1221,122S m S -⎡⎤=∈⎢⎥⎣⎦.令12S t S =则1,12t ⎡⎤∈⎢⎥⎣⎦故()21201212122212S S SS S S S S S S S +==++.令12S t S =则1,12t ⎡⎤∈⎢⎥⎣⎦,所以()12g t t t =++在1,12t ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()min 14g t g ==,()max 1922g t g ⎛⎫== ⎪⎝⎭,所以()94,2g t ⎡⎤∈⎢⎥⎣⎦,所以20121221924,2S S S S S S S ⎡⎤=++∈⎢⎥⎣⎦8.(1)证明见解析;(2)2M P =.【分析】(1)取BC 的中点Q ,连接PQ 、AQ ,由线面垂直判定定理可证AQ ⊥面BCD ,即可得证;(2)以Q 为原点建立坐标系,利用向量法建立关系可求出.【详解】(1)证明:如图,取BC 的中点Q ,连接PQ 、AQ ,因为ABC 是等边三角形,所以AQ BC ⊥,又平面ABC ⊥平面ACDE ,AE AC ⊥,平面ABC 平面ACDE =AC ,所以AE ⊥面ABC ,又AQ ⊂面ABC ,所以AE AQ ⊥,又//AE CD ,所以CD AQ ⊥,又CD BC C ⋂=,所以AQ ⊥面BCD ,因为2BP PD =,又P 是棱BD 的中点,所以112PQ DC ==,//PQ DC ,又//AE CD ,1AE =,所以//AE PQ ,AE PQ =,即四边形AEPQ 是一个平行四边形,所以//EP AQ ,所以EP ⊥平面BCD ;(2)由(1)得PQ ⊥平面ABC ,所以以点Q 为坐标原点,建立如图所示的空间直角坐标系,则()0,0,0Q ,)A ,()0,1,0B ,)E ,()0,0,1P ,设平面EAB 的法向量为()111,,m x y z =,由()111+00m AB y m m AE z ⎧⋅==⎪⇒=⎨⋅==⎪⎩,因为点M 在线段AC上,设其坐标为),0M t -,其中01t ≤≤,所以(),,1EM t =--,()EP = 设平面PEM 的法向量为()222,,n x y z =,由()222200,1,0n EM ty z n t n EP ⎧⋅=--=⎪⇒=-⎨⋅==⎪⎩,由题意,设平面PEM 与平面EAB 所成的锐二面角为θ,则1cos 2m n t m n θ⋅=⇒=-⋅或12t =,因为01t ≤≤,所以1,02M ⎫-⎪⎪⎝⎭,所以M P =.【点睛】向量法求二面角的步骤:建、设、求、算、取.1、建:建立空间直角坐标系.以三条互相垂直的垂线的交点为原点,没有三垂线时需做辅助线;建立右手直角坐标系,让尽量多的点落在坐标轴上。
立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。
考题难度中等,常结合空间向量知识进行考查。
2024年高考有很大可能延续往年的出题方式。
题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。
2020届高考数学专题:立体几何计算问题(答案不全)

立体几何中的计算问题1.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;2.直观图——是观察着站在某一点观察一个空间几何体而画出的图形。
直观图通常是在平行投影下画出的空间图形。
3斜二测法:1.画直观图时,把它画成对应的轴'',''o x o y ,取'''45(135)x o y o r ∠=︒︒,它们确定的平面表示水平平面;2.在坐标系'''x o y 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。
结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的4倍. 例1.下列命题:①如果一个几何体的三视图是完全相同的,那么这个几何体是正方体;②如果一个几何体的主视图和俯视图都是矩形,那么这个几何体是长方体; ③如果一个几何体的三视图都是矩形,那么这个几何体是长方体;④如果一个几何体的主视图和左视图都是等腰梯形,那么这个几何体是圆台.其中正确的是( )A .①②B .③C .②③D .④ 2、异面直线所成的角(1)定义:a 、b 是两条异面直线,经过空间任意一点O ,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a 和b 所成的角.(2)取值范围:0°<θ≤90°. (3)求解方法①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小.例2.在长方体1111ABCD A B C D -中,11BC CC ==,13AD B π∠=,则直线1AB 与1BC 所成角的余弦值为( )ABCD【答案】D例3.直三棱柱ABC ﹣A 1B 1C 1中,若∠BAC=90°,AB=AC=AA 1,则异面直线 BA 1与AC 1所成的角为( ) A .60°B .90°C .120°D .150°例4.在四面体ABCD 中,AC 与BD 的夹角为30°,2AC =,BD =M ,N 分别是AB ,CD 的中点,则线段MN 的长度为________. 【答案】13.二面角 找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法 (iii)三垂线法(Ⅳ)根据特殊图形的性质 (4)求二面角大小的常见方法先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.例5.已知正三棱锥底面边长为2,侧棱长为3,则它的侧面与底面所成二面角的余弦值为________.【答案】12例6.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,E .F 分别为1A B ,1A C 的中点,D 为11B C 上的点,且11A D B C ⊥.(1)求证://EF 平面ABC . (2)求证:平面1A FD ⊥平面11BCC B .(3)若三棱柱所有棱长都为a ,求二面角111A B C C --的平面角的余弦值.【答案】(1)见解析;(2)见解析;(3)74.空间几何体的表面积、体积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+ 圆锥的表面积:2S rl r ππ=+圆台的表面积:22Srl r Rl Rππππ=+++扇形的面积公式2211=36022n R S lr r πα==扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积 :V S h =⨯底,锥体的体积 :13V S h =⨯底台体的体积 :1)3V S S h =+⨯下上( ,球体的体积:343V R π= 点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法: 1)直接利用定义求①找到(或作出)表示距离的线段; ②抓住线段(所求距离)所在三角形解之.2)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.例8.在长、宽、高分别为a b c ,,的长方体中,以它的各面的中心为顶点可得到一个八面体,则该八面体的体积为________.【答案】16abc例9.如图,在上、下底面对应边的比为1:2的三棱台中,过上底面的一边作一个平行于棱的平面11A B EF ,则这个平面分三棱台成两部分的体积之比为( ).A .1:2B .2:3C .3:4D .4:5【答案】C例10.如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA=AD=4,AB=2,以BD 的中点O 为球心、BD 为直径的球面交PD 于点M.⑴求证:平面ABM ⊥平面PCD ; (2)求点O 到平面ABM 的距离.【答案】(1)见解析(2)3例11.如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,//FD EA,且112FD EA==.(1)求多面体EABCDF的体积;(2)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明.【答案】(1)103V=多面体;(2)见解析.5.与球有关的组合体7-2 球的结构特征⑴球心与截面圆心的连线垂直于截面;⑵截面半径等于球半径与截面和球心的距离的平方差:r2 = R2– d2★7-3 球与其他多面体的组合体的问题球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是:⑴根据题意,确定是内接还是外切,画出立体图形;⑵找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图;⑶将立体问题转化为平面几何中圆与多边形的问题;例11.已知棱长为a的正四面体,其内切球的半径为r,外接球的半径为R,则:r R= ________.【答案】1:3例12.已知棱长为a的正方体,甲球是正方体的内切球,乙球是正方体的外接球,丙球与正方体的各棱都相切,则甲、乙、丙三球的表面积之比为().A.91:3:4B.1:3:2C.D.31:2【答案】B例13.已知,,,S A B C是球O表面上的点,SA⊥平面,,1,ABC AB BC SA AB BC⊥===则球O的体积为__________.例14.已知一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球.求:圆锥内切球的体积.(2)2563Vπ=立体几何中的计算问题一、三视图1.将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.【答案】B2.如图所示,A O B '''∆表示水平放置的AOB ∆的直观图,B '在x '轴上,A O ''与x '轴垂直,且2A O ''=,则AOB ∆的OB 边上的高为______.【答案】二、线线角3.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( ) A.3B.3C.4D.4【答案】D4.如图所示为一个正方体的展开图.对于原正方体,给出下列结论: ①AB 与EF 所在直线平行; ②AB 与CD 所在直线异面; ③MN 与BF 所在直线成60︒角;④MN 与CD 所在直线互相垂直. 其中正确结论的序号是________. 【答案】②④5.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,1AA AB AC ==,AB AC ⊥,M 是1CC 的中点,Q 是BC 的中点,点P 在11A B 上,则直线PQ 与直线AM 所成的角为( ). A .30° B .45︒C .60︒D .90︒【答案】D 三、二面角问题二面角:关键是找出二面角的平面角。
高中几何体试题及答案解析

高中几何体试题及答案解析试题一:立体几何基础题题目:已知一个长方体的长、宽、高分别为a、b、c,求该长方体的体积。
解析:长方体的体积可以通过其三个维度的乘积来计算,即体积V = a × b × c。
答案:V = abc。
试题二:空间向量在立体几何中的应用题目:在空间直角坐标系中,点A(1, 0, 0),点B(0, 1, 0),点C(0, 0, 1),求三角形ABC的面积。
解析:空间直角坐标系中,三角形的面积可以通过向量叉乘来求解。
设向量AB = (-1, 1, 0),向量AC = (-1, 0, 1),向量AB与向量AC 的叉乘结果为向量AB × AC = (1, -1, 1)。
该向量的模即为三角形ABC的面积的两倍。
答案:三角形ABC的面积为√3。
试题三:圆锥体的体积计算题目:已知圆锥的底面半径为r,高为h,求圆锥的体积。
解析:圆锥的体积可以通过公式V = (1/3)πr²h来计算。
答案:V = (1/3)πr²h。
试题四:球体的表面积与体积题目:已知球体的半径为R,求球体的表面积和体积。
解析:球体的表面积可以通过公式A = 4πR²来计算,球体的体积可以通过公式V = (4/3)πR³来计算。
答案:球体的表面积A = 4πR²,球体的体积V = (4/3)πR³。
试题五:旋转体的体积题目:已知圆柱的底面半径为r,高为h,求圆柱的体积。
解析:圆柱的体积可以通过公式V = πr²h来计算。
答案:V = πr²h。
结束语:通过上述试题及答案解析,我们可以看到高中几何体的计算涉及体积、面积和表面积等概念,这些计算在数学和物理等多个领域都有广泛的应用。
掌握这些基础知识对于解决更复杂的几何问题至关重要。
希望这些试题和解析能够帮助学生加深对立体几何概念的理解,并在解题过程中培养空间想象能力。
立体几何解答题汇总及答案

立体几何 1.如图,四边形ABCD 为正方形,PD⊥平面ABCD ,PD∥QA,QA=AB=12PD.(I )证明:平面PQC⊥平面DCQ (II )求二面角Q-BP-C 的余弦值.2.如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B的中心,122AA =,1C H ⊥平面11AA B B ,且1 5.C H =(Ⅰ)求异面直线AC 与A 1B 1所成角的余弦值;(Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面11A B C ,求线段BM 的长.3.在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90︒,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.4.如图5,在椎体P ABCD -中,ABCD 是边长为1的棱形060DAB ∠=,2PA PD ==,2,PB =,E F 分别是,BC PC的中点,(1) 证明:AD DEF ⊥平面(2)求二面角P AD B--的余弦值。
5.如图,ABCDEFG 为多面体,平面ABED 与平面AGFD垂直,点O 在线段AD 上,1,2,OA OD ==OAB ,△OAC ,△ODE ,△ODF 都是正三角形。
(Ⅰ)证明直线BC ∥EF ;(II )求棱锥F-OBED 的体积。
6. 已知三棱柱,底面三角形ABC 为正三角形,侧棱1AA ⊥底面ABC , 4,21==AA AB ,E 为1AA 的中点,F 为BC 中111C B A ABC -点.(Ⅰ) 求证:直线//AF 平面1BEC ;(Ⅱ)求平面1BEC 和平面ABC 所成的锐二面角的余弦值.7. 如图,在矩形ABCD 中,AB =5,BC =3,沿对角线BD 把△ABD折起,使A 移到A 1点,过点A 1作A 1O ⊥平面BCD ,垂足O恰好落在CD 上.(1)求证:BC ⊥A 1D ;(2)求直线A 1B 与平面BCD 所成角的正弦值.8. 如图,PA ⊥平面ABCD ,ABCD 是矩形,PA=AB=1,PD 与平面ABCD 所成角是30°,点F 是PB 的中点,点E 在边BC 上移动.(Ⅰ)点E 为BC的中点时,试判断EF 与平面PAC 的位置关系,并说明理由;(Ⅱ)证明:无论点E 在边BC 的何处,都有PE ⊥AF ; (Ⅲ)当BE 等于何值时,二面角P-DE-A 的大小为45°.9. 如图,在四棱锥S ABCD -中,底面ABCD 为平行四边形,SA ⊥平面ABCD ,2,1,AB AD ==7SB =,120,BAD E ∠=在棱SD上.(I )当3SE ED =时,求证SD ⊥平面;AEC (II )当二面角S AC E --的大小为30时,求直线AE 与平面CDE 所成角的大小.10. 如图,在三棱柱111ABC A B C -中,AB AC ⊥,顶点1A 在底面上的 射影恰为点B ,且12AB AC A B ===.(Ⅰ)证明:平面1A AC ⊥平面1AB B ;(Ⅱ)求棱1AA 与BC 所成的角的大小;(Ⅲ)若点P 为11B C 的中点,并求出二面角1P AB A --的平面角的余弦值. 11. 已知平行四边形ABCD 中,AB =6,AD =10,BD =8,E 是线段AD 的中点.沿直线BD 将△BCD 翻折成△BC D ',使得平面BC D '⊥平面ABD .(Ⅰ)求证:C D '⊥平面ABD ;(Ⅱ)求直线BD 与平面BEC '所成角的正弦值;(Ⅲ)求二面角D BE C '--的余弦值. 12. 如图,四棱锥P ABCD -的底面是直角梯形,//AB CD ,AB AD ⊥,PAB ∆和PAD ∆是两个边长为2的正三角形,4DC =,O 为BD 的中点,E 为PA 的中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求证://OE 平面PDC ;(Ⅲ)求直线CB 与平面PDC 所成角的正弦值. 13. 如图,已知菱形ABCD 的边长为6,60BAD ∠=,AC BD O =.将菱形ABCD 沿对角线AC 折起,使32BD =,得到三棱锥B ACD -.(Ⅰ)若点M 是棱BC 的中点,求证://OM 平面ABD ;(Ⅱ)求二面角A BD O --的余弦值;(Ⅲ)设点N 是线段BD 上一个动点,试确定N 点的位置,使得42CN =,并证明你的结论.CB A 1C 1B 1A A BD E C 'C ADO C P BE MAB C DEA 1B 1C 1 (第11题图) 14. 如图,在多面体ABCDEF 中,四边形ABCD 是矩形,AB ∥EF ,∠EAB=90º,AB=2,AD=AE=EF=1,平面ABFE ⊥平面ABCD 。
专题17立体几何解答题【2023高考】2013-2022十年全国高考数学真题分类汇编(解析版)

2013-2022十年全国高考数学真题分类汇编专题17 立体几何解答题一、解答题1.(2022年全国甲卷理科·第18题)在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥.(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.【答案】(1)证明见解析:; .解析:(1)证明:在四边形ABCD 中,作DE AB ⊥于E ,CF AB ⊥于F ,因为//,1,2CD AB AD CD CB AB ====,所以四边形ABCD 为等腰梯形,所以12AE BF ==,故DE =BD ==,所以222AD BD AB +=,所以AD BD ⊥,因为PD ⊥平面ABCD ,BD ⊂平面ABCD ,所以PD BD ⊥,又PD AD D ⋂=,所以BD ⊥平面PAD ,又因PA ⊂平面PAD ,所以BD PA ⊥;(2)解:如图,以点D 为原点建立空间直角坐标系,BD =,则()()(1,0,0,,A B P ,则(((,0,,AP BP DP =-== ,设平面PAB 的法向量(),,n x y z = ,则有0{0n AP x n BP ⋅=-=⋅=+=,可取)n = ,则cos ,n DP n DP n DP ⋅== ,所以PD 与平面PAB.【题目栏目】立体几何\立体几何的综合问题【题目来源】2022年全国甲卷理科·第18题2.(2022年全国乙卷理科·第18题ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面A B D 所成的角的正弦值.【答案】(1)证明过程见解析(2)CF 与平面A B D所成的角的正弦值为解析:【小问1详解】因为AD CD =,E 为AC 的中点,所以AC DE ⊥;在ABD △和CBD 中,因为,,B A C D CD ADB DB DB D ∠=∠==,所以ABD CBD ≌△△,所以AB CB =,又因为E 为AC 的中点,所以AC BE ⊥;又因为,DE BE ⊂平面BED ,DE BE E ⋂=,所以AC ⊥平面BED ,因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD .【小问2详解】连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED ,所以AC EF ⊥,所以1=2AFC S AC EF ⋅△,当EF BD ⊥时,EF 最小,即AFC △的面积最小.因为ABD CBD ≌△△,所以2CB AB ==,又因为60ACB ∠=︒,所以ABC 是等边三角形,因为E 为AC 的中点,所以1AE EC ==,B E 因为AD CD ⊥,所以112DE AC ==,在DEB 中,222DE BE +=,所以BE DE ⊥.以E 为坐标原点建立如图所示的空间直角坐标系E xyz -,则()()()1,0,0,0,0,0,1A B D ,所以()()1,0,1,1,0AD AB =-=- ,设平面A B D 的一个法向量为(),,n x y z = ,则00n AD x z n AB x ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取y()3n = ,又因为()31,0,0,4C F ⎛⎫- ⎪ ⎪⎝⎭,所以314CF ⎛⎫= ⎪ ⎪⎝⎭,所以cos ,n CF n CF n CF ⋅=== ,设CF 与平面A B D 所成的角的正弦值为02πθθ⎛⎫≤≤ ⎪⎝⎭,所以sin cos ,n CF θ== 所以CF 与平面A B D.【题目栏目】立体几何\立体几何的综合问题【题目来源】2022年全国乙卷理科·第18题3.(2022新高考全国II 卷·第20题)如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 是PB的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --正弦值.【答案】(1)证明见解析 (2)1113解析:(1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥P ABC -的高,所以PO ⊥平面ABC ,,AO BO ⊂平面ABC ,所以PO AO ⊥、PO BO ⊥,又PA PB =,所以POA POB ≅△△,即OA OB =,所以OAB OBA ∠=∠,的又AB AC ⊥,即90BAC ∠=︒,所以90OAB OAD ∠+∠=︒,90OBA ODA ∠+∠=︒,所以ODA OAD∠=∠所以AO DO =,即AO DO OB ==,所以O 为BD 的中点,又E 为PB 的中点,所以//OE PD ,又OE ⊄平面PAC ,PD ⊂平面PAC ,所以//OE 平面PAC(2)解:过点A 作//Az OP ,如图建立平面直角坐标系,因为3PO =,5AP =,所以4OA ==,又30OBA OBC ∠=∠=︒,所以28BD OA ==,则4=AD,AB =所以12AC =,所以()2,0O,()B,()2,3P ,()0,12,0C,所以32E ⎛⎫ ⎪⎝⎭,则32AE ⎛⎫= ⎪⎝⎭,()AB = ,()0,12,0AC =,设平面AEB 的法向量为(),,n x y z =,则3020n AE y z n AB ⎧⋅=++=⎪⎨⎪⋅==⎩ ,令2z =,则3y =-,0x =,所以()0,3,2n =- ;设平面AEC 的法向量为(),,m a b c =,则302120m AE b c m AC b ⎧⋅=++=⎪⎨⎪⋅==⎩,令a =6c =-,0b =,所以)6m =- ;所以cos ,n m n m n m⋅=== 设二面角C AE B --为θ,由图可知二面角C AE B --为钝二面角,所以cos θ=,所以11sin 13θ==故二面角C AE B --的正弦值为1113;【题目栏目】立体几何\立体几何的综合问题【题目来源】2022新高考全国II 卷·第20题4.(2022新高考全国I 卷·第19题)如图,直三棱柱111ABC A B C -的体积为4,1A BC的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【答案】解析:(1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h ,则111111111143333A A BC A A ABC A ABC A B BC C C B V S h V S A A V ---=⋅===⋅== ,解得h = 所以点A 到平面1A BC;(2)取1A B 的中点E ,连接AE ,如图,因为1AA AB =,所以1AE A B ⊥,又平面1A BC ⊥平面11ABB A ,平面1A BC 平面111ABB A A B =,且AE ⊂平面11ABB A ,所以AE ⊥平面1A BC ,在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥,又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE =,所以12AA AB ==,1A B =2BC =,则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1AC 的中点()1,1,1D ,则()1,1,1BD = ,()()0,2,0,2,0,0BA BC == ,设平面ABD 的一个法向量(),,m x y z = ,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩,可取()1,0,1m =- ,设平面BDC 的一个法向量(),,n a b c = ,则020m BD a b c m BC a ⎧⋅=++=⎨⋅==⎩ ,可取()0,1,1n =-r ,则1cos ,2m n m n m n⋅===⋅ ,所以二面角A BD C --=.【题目栏目】立体几何\立体几何的综合问题【题目来源】2022新高考全国I 卷·第19题5.(2021年新高考全国Ⅱ卷·第19题)在四棱锥Q ABCD -中,底面ABCD是正方形,若2,3AD QD QA QC ====.(1)证明:平面QAD ⊥平面;(2)求二面角B QD A --平面角的余弦值.【答案】解析:(1)取AD 的中点为O ,连接,QO CO .因为QA QD =,OA OD =,则QO ⊥AD ,而2,AD QA =2QO ==.在正方形ABCD 中,因为2AD =,故1DO =,故CO =,因为3QC =,故222QC QO OC =+,故QOC 为直角三角形且QO OC ⊥,因为OC AD O = ,故QO⊥的平面ABCD ,因为QO ⊂平面QAD ,故平面QAD ⊥平面ABCD .(2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥,结合(1)中的QO ⊥平面ABCD ,故可建如图所示的空间坐标系.则()()()0,1,0,0,0,2,2,1,0D Q B -,故()()2,1,2,2,2,0BQ BD =-=- .设平面QBD 的法向量(),,n x y z = ,则00n BQ n BD ⎧⋅=⎪⎨⋅=⎪⎩ 即220220x y z x y -++=⎧⎨-+=⎩,取1x =,则11,2y z ==,故11,1,2n ⎛⎫= ⎪⎝⎭ .而平面QAD 的法向量为()1,0,0m = ,故12cos ,3312m n ==⨯ .二面角B QD A --的平面角为锐角,故其余弦值为23.【题目栏目】立体几何\立体几何的综合问题【题目来源】2021年新高考全国Ⅱ卷·第19题6.(2021年新高考Ⅰ卷·第20题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】解析:(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD 因为平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD ,因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD(2)作EF ⊥BD 于F, 作FM ⊥BC 于M,连FM因为AO ⊥平面BCD ,所以AO ⊥BD, AO ⊥CD所以EF ⊥BD, EF ⊥CD, BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FM EF F =I ,所以BC ⊥平面EFM ,即BC ⊥MF 则EMF ∠为二面角E-BC-D 的平面角, 4EMF π∠=因为BO OD =,OCD 为正三角形,所以OCD 为直角三角形因为2BE ED =,1112(1)2233FM BF ∴==+=从而EF=FM=213AO ∴=AO ⊥Q 平面BCD,所以11111332BCD V AO S ∆=⋅=⨯⨯⨯=的【题目栏目】立体几何\立体几何的综合问题【题目来源】2021年新高考Ⅰ卷·第20题7.(2020年新高考I 卷(山东卷)·第20题)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.【答案】(1)证明见解析;.解析:(1)证明: 在正方形ABCD 中,//AD BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC ,又因为AD ⊂平面PAD ,平面PAD 平面PBC l =,所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥因为CD PD D = ,所以l ⊥平面PDC ;(2)如图建立空间直角坐标系D xyz -,因为1PD AD ==,则有(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B ,设(,0,1)Q m ,则有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-,设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩,即00y mx z =⎧⎨+=⎩,令1x =,则z m =-,所以平面QCD 的一个法向量为(1,0,)n m =-,则cos ,n PB n PB n PB ⋅<>==线与平面所成角的正弦值等于|cos ,|n PB <>=r u ur==≤≤=1m =时取等号,所以直线PB 与平面QCD.【题目栏目】立体几何\立体几何的综合问题【题目来源】2020年新高考I 卷(山东卷)·第20题8.(2020新高考II 卷(海南卷)·第20题)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l.(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB ,求PB 与平面QCD 所成角的正弦值.【答案】(1)证明见解析;.解析:(1)证明: 在正方形ABCD 中,//AD BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC ,又因为AD ⊂平面PAD ,平面PAD 平面PBC l =,所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥因为CD PD D = ,所以l PDC ;(2)如图建立空间直角坐标系D xyz -,因为1PD AD ==,则有(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B ,设(,0,1)Q m ,则有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-,设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩ ,即00y mx z =⎧⎨+=⎩,令1x =,则z m =-,所以平面QCD 的一个法向量为(1,0,)n m =-,则cos ,n PB n PB n PB ⋅<>==根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于|cos ,|n PB <>=r u ur==≤≤=1m =时取等号,所以直线PB 与平面QCD.【题目栏目】立体几何\立体几何的综合问题【题目来源】2020新高考II 卷(海南卷)·第20题9.(2021年高考全国乙卷理科·第18题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.【答案】;解析:(1)PD ⊥ 平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a ,则()2,1,1PB a =- ,(),1,0AM a =-,PB AM ⊥ ,则2210PB AM a ⋅=-+=,解得a =2BC a ==;(2)设平面PAM 的法向量为()111,,m x y z =,则AM ⎛⎫= ⎪ ⎪⎝⎭,()AP = ,由11110m AM x y m AP z ⎧⋅=+=⎪⎨⎪⋅=+=⎩,取1x =,可得)2m = ,设平面PBM 的法向量为()222,,n x y z =,BM ⎛⎫= ⎪ ⎪⎝⎭,()1,1BP =- ,由222200n BM x nBP y z ⎧⋅==⎪⎨⎪⋅=-+=⎩ ,取21y =,可得()0,1,1n =r,cos ,m n m n m n⋅<>===⋅,所以,sin ,m n <>==因此,二面角A PM B --【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标;(2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值.【题目栏目】立体几何\立体几何的综合问题【题目来源】2021年高考全国乙卷理科·第18题10.(2021年高考全国甲卷理科·第19题)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)见解析;(2)112B D =解析:因为三棱柱111ABC A B C -是直三棱柱,所以1BB ⊥底面ABC ,所以1BB AB ⊥因为11//A B AB ,11BF A B ⊥,所以BF AB ⊥,又1BB BF B ⋂=,所以AB ⊥平面11BCC B .所以1,,BA BC BB 两两垂直.的以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2B A C B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).(1)因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-= ,所以BF DE ⊥.(2)设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩ ,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅===⋅ .当12a =时,2224a a -+取最小值为272,此时cos θ=所以()minsin θ==,此时112B D =.【点睛】本题考查空间向量的相关计算,能够根据题意设出(),0,2D a (02a ≤≤),在第二问中通过余弦值最大,找到正弦值最小是关键一步.【题目栏目】立体几何\立体几何的综合问题【题目来源】2021年高考全国甲卷理科·第19题11.(2020年高考数学课标Ⅰ卷理科·第18题)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC 是底面的内接正三角形,P 为DO上一点,PO .(1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.【答案】(1)证明见解析;.【解析】(1)由题设,知DAE △为等边三角形,设1AE =,则DO =,1122CO BO AE ===,所以PO ==PC PB ====又ABC 为等边三角形,则2sin 60BA OA =,所以BA =,22234PA PB AB +==,则90APB ∠= ,所以PA PB ⊥,同理PA PC ⊥,又PC PB P = ,所以PA ⊥平面PBC ;(2)过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,则111(,0,0),((,244E P B C ---,1(,4PC =-,1(4PB =-,1(,0,2PE =- ,设平面PCB 的一个法向量为111(,,)n x y z =,由00n PC n PB ⎧⋅=⎨⋅=⎩,得11111100x x ⎧-=⎪⎨-=⎪⎩,令1x =,得111,0z y =-=,所以1)n =-,设平面PCE 的一个法向量为222(,,)m x y z =由00m PC m PE ⎧⋅=⎨⋅=⎩,得22222020x x ⎧-=⎪⎨--=⎪⎩,令21x =,得22z y ==,所以m =故cos ,||||n m m n n m ⋅<>===⋅设二面角B PC E --的大小为θ,则cos θ=【点晴】本题主要考查线面垂直的证明以及利用向量求二面角的大小,考查学生空间想象能力,数学运算能力,是一道容易题.【题目栏目】立体几何\立体几何的综合问题【题目来源】2020年高考数学课标Ⅰ卷理科·第18题12.(2020年高考数学课标Ⅱ卷理科·第20题)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【答案】(1)证明见解析;解析:(1) ,M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB 1//MN AA∴在ABC 中,M 为BC 中点,则BC AM ⊥又 侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BB MN BC⊥由MN AM M ⋂=,,MN AM ⊂平面1A AMN∴BC ⊥平面1A AMN又 11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC又 11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF=11//B C EF ∴//EF BC∴又BC ⊥ 平面1A AMN∴EF ⊥平面1A AMNEF ⊂ 平面11EB C F ∴平面11EB C F ⊥平面1A AMN(2)连接NP//AO 平面11EB C F ,平面AONP ⋂平面11EB C F NP =∴//AO NP根据三棱柱上下底面平行,其面1A NMA ⋂平面ABC AM =,面1A NMA ⋂平面1111A B C A N=∴//ON AP故:四边形ONPA 是平行四边形设ABC 边长是6m (0m >)可得:ON AP =,6NP AB m== O 为111A B C △的中心,且111A B C △边长为6m∴16sin 603ON =⨯⨯︒=故:ON AP ==//EF BC ∴AP EPAM BM =∴3EP =解得:EP m=在11B C 截取1B Q EP m ==,故2QN m= 1B Q EP =且1//B Q EP∴四边形1B QPE 是平行四边形,∴1//B E PQ由(1)11B C ⊥平面1A AMN故QPN ∠为1B E 与平面1A AMN 所成角在Rt QPN △,根据勾股定理可得:PQ ===sin QN QPN PQ ∴∠===∴直线1B E 与平面1A AMN 【点睛】本题主要考查了证明线线平行和面面垂直,及其线面角,解题关键是掌握面面垂直转为求证线面垂直的证法和线面角的定义,考查了分析能力和空间想象能力,属于难题.【题目栏目】立体几何\立体几何的综合问题【题目来源】2020年高考数学课标Ⅱ卷理科·第20题13.(2020年高考数学课标Ⅲ卷理科·第19题)如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【答案】(1)证明见解析;.解析:(1)在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG、1C E 、1C F ,在在长方体1111ABCD A B C D -中,//AD BC 且AD BC =,11//BB CC 且11BB CC =,112C G CG = ,12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG =,同理可证四边形1DEC G 为平行四边形,1//C E DG ∴且1C E DG =,1//C E AF ∴且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F ,()0,1,1AE =-- ,()2,0,2AF =--,()10,1,2A E =- ,()12,0,1A F =- ,设平面AEF 的法向量为()111,,m x y z =,由00m AE m AF ⎧⋅=⎪⎨⋅=⎪⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =- ,设平面1A EF 的法向量为()222,,n x y z =,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,cos,m nm nm n⋅<>===⋅设二面角1A EF A--的平面角为θ,则cosθ=,sinθ∴==因此,二面角1A EF A--.【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.【题目栏目】立体几何\立体几何的综合问题【题目来源】2020年高考数学课标Ⅲ卷理科·第19题14.(2019年高考数学课标Ⅲ卷理科·第19题)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A 的大小.【答案】(1)见详解;(2)30 .【官方解析】(1)由已知得//AD DE ,//CG BE ,所以//AD CG ,故,AD CG 确定一个平面.从而,,,A C G D 四点共面.由已知得,AB BE AB BC ⊥⊥,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH BC ⊥,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,60EBC ∠=︒,可求得1,BH EH ==.以H 为坐标原点,HC的方向为x 轴的的正方向,建立如图所示的空间直角坐标系H xyz -,则(1,1,0),(1,0,0),(2,1,0)A C G CG AC -==-.设平面ACGD 的法向量为(,,)n x y z =,则CG n AC n ⎧=⎪⎨=⎪⎩即0,20.x x y ⎧=⎪⎨-=⎪⎩所以可取(3,6,n =- .图2图1AA又平面BCGE 的法向量可取为(0,1,0)m =,所以cos ,n mn m |n||m|〈〉=因此二面角B - CG - A 的大小为30︒.【点评】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,建系的向量解法在本题中略显麻烦,突出考查几何方法.最后将求二面角转化为求二面角的平面角问题考查考生的空间想象能力.【题目栏目】立体几何\立体几何的综合问题【题目来源】2019年高考数学课标Ⅲ卷理科·第19题15.(2019年高考数学课标全国Ⅱ卷理科·第17题)如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,点E 在棱1AA 上,1BE EC ⊥.()1证明:BE ⊥平面11EB C ;()2若1AE A E =,求二面角1B EC C --的正弦值.【答案】()1证明见解析;(2.【官方解析】证明:()1由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .()2由()1知190BEB ∠=︒.由题设知11Rt ABE Rt A B E ≅△△,所以45AEB ∠=︒,故AE AB =,12AA AB =.以D 为坐标原点,DA的方向为x 轴正方向,DA 为单位长,建立如图所示的空间直角坐标系D xyz -,则()0,1,0C ,()1,1,0B ,()10,1,2C ,()1,0,1E ,()1,0,0CB = ,()1,1,1CE =- ,()10,0,2CC =.设平面EBC 的法向量为()111,,n x y z =,则00CB n CE n ⎧⋅=⎪⎨⋅=⎪⎩,即11110,0,x x y z =⎧⎨-+=⎩所以可取()0,1,1n =-- .设平面1ECC 的法向量为()222,,m x y z =,则100CC m CE m ⎧⋅=⎪⎨⋅=⎪⎩即222220,0z x y z =⎧⎨-+=⎩所以可取()1,1,0m = .于是1cos ,2n m n m n m⋅==-⋅.所以,二面角1B EC C --.【分析】()1利用长方体的性质,可以知道11B C ⊥侧面11A B BA ,利用线面垂直的性质可以证明出11B C EB ⊥,这样可以利用线面垂直的判定定理,证明出BE ⊥平面11EB C ;()2以点D 坐标原点,以1,,DA DC DD分别为,,x y z 轴,建立空间直角坐标系,设正方形ABCD 的边长为a ,1B B b =,求出相应点的坐标,利用1BE EC ⊥,可以求出,a b 之间的关系,分别求出平面EBC 、平面1ECC 的法向量,利用空间向量的数量积公式求出二面角1B EC C --的余弦值的绝对值,最后利用同角的三角函数关系,求出二面角1B EC C --的正弦值.【解析】()1因为1111ABCD A B C D -是长方体,所以11B C ⊥侧面11A B BA ,而BE ⊂平面11A B BA ,所以11BE B C ⊥,又1BE EC ⊥,1111B C EC C = ,111,B C EC ⊂平面11EB C ,因此BE ⊥平面11EB C ;()2以点B坐标原点,以1,,BA BC BB分别为,,x y z 轴,建立如下图所示的空间直角坐标系,1(0,0,0),(0,,0),(0,,),(,0,)2b B C a C a b E a ,因为1BE EC ⊥,所以2210(,0,(,,002224b b b BE EC a a a a b a ⋅=⇒⋅-=⇒-+=⇒= ,所以(,0,)E a a ,1(,,),(0,0,2),(,0,)EC a a a CC a BE a a =--==,设111(,,)m x y z =是平面BEC 的法向量,所以111110,0,(1,0,1)0.0.ax az m BE m ax ay az m EC +=⎧⎧⋅=⇒⇒=-⎨⎨-+-=⋅=⎩⎩,设222(,,)n x y z =是平面1ECC 的法向量,所以2122220,0,(1,1,0)0.0.az n CC n ax ay az n EC =⎧⎧⋅=⇒⇒=⎨⎨-+-=⋅=⎩⎩,二面角1B EC C --12,所以二面角1B EC C --=【点评】本题考查了利用线面垂直的性质定理证明线线垂直,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.【题目栏目】立体几何\立体几何的综合问题【题目来源】2019年高考数学课标全国Ⅱ卷理科·第17题16.(2019年高考数学课标全国Ⅰ卷理科·第18题)如图,直四棱柱1111ABCD A B C D -的底面是菱形,14,2,60,,,AA AB BAD E M N ==∠=︒分别是BC ,1BB ,1A D的中点.D 1C 111(1)证明://MN 平面1C DE ;(2)求二面角1A MA N --的正弦值.【答案】解:(1)连结1,B C ME .因为,M E 分别为1,BB BC 的中点,所以1//ME B C ,且112ME B C =.又因为N 为1A D 的中点,所以112ND A D =.由题设知11A B ,可得11B C A D ,故ME ND ,因此四边形MNDE 为平行四边形,//MN ED .又MN ⊄平面1C DE ,所以//MN 平面1C DE .(2)由已知可得DE DA ⊥.以D 为坐标原点,DA的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz -,则1(2,0,0),(2,0,4),2),(1,0,2)A A M N ,1(0,0,4)A A =-,1(2)A M =-- ,1(1,0,2)A N =-,(0,MN =.设(,,)m x y z = 为平面1A MA 的法向量,则1100m A M m A A ⎧⋅=⎪⎨⋅=⎪⎩ ,所以2040x z z ⎧-+-=⎪⎨-=⎪⎩,.可取m =.设(,,)n p q r = 为平面1A MN 的法向量,则100n MN n A N ⎧⋅=⎪⎨⋅=⎪⎩ ,.所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)n =- .于是cos ,m n m n m n ⋅===⋅,所以二面角1A MA N --.【题目栏目】立体几何\立体几何的综合问题【题目来源】2019年高考数学课标全国Ⅰ卷理科·第18题17.(2018年高考数学课标Ⅲ卷(理)·第19题)(12分)如图,边长为2的正方形ABCD 所在平面与半圆弧CD所在的平面垂直,M 是弧CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.【答案】【官方解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD因为BC CD ⊥,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC DM⊥因为M 为 CD上异于,C D 的点,且DC 为直径,所以DM CM ⊥又BC CM C = ,所以DM ⊥平面BMC而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz-当三棱锥M ABC -体积最大时,M 为 CD的中点,由题设得()0,0,0D ,()2,0,0A ,()2,2,0B ,()0,2,0C ,()0,1,1M ()2,1,1AM =- ,()0,2,0AB = ,()2,0,0DA = 设(),,n x y z = 是平面MAB 的法向量,则00n AM n AB ⎧⋅=⎪⎨⋅=⎪⎩ ,即2020x y z y -++=⎧⎨=⎩可取()1,0,2n = 易知DA 是平面MCD的法向量,因此cos ,n DA n DA n DA⋅<>==⋅所以sin ,n DA <>== 所以面MAB 与面MCD【民间解析】(1)证明:因为面ABCD ⊥半圆面CMD ,且面ABCD 半圆面CMD CD=而四边形ABCD 为正方形,所以AD CD ⊥,所以AD ⊥平面MCD又CM ⊂平面MCD ,所以AD CM ⊥①又因为点M 在以CD 为直径的半圆上,所以CM MD ⊥②又MD 、AD ⊂面MAD ,且MD AD D = ③由①②③可得CM ⊥面MAD ,而CM ⊂平面BMC所以平面AMD ⊥平面BMC(2)如图,以DC 所在直线作为y 轴,以DC 中点为坐标原点O ,过点O 作DA 的平行线,作为x 轴,过点O 作面ABCD 的垂线,作为z轴,建立空间直角坐标系因为13M ABC ABC M ABC V S d --=⋅△,而12222ABC S =⨯⨯=△所以当点M 到平面ABCD 的距离最大时,三棱锥M ABC -的体积最大,此时MO CD⊥所以()0,0,1M ,()2,1,0AA -,()2,1,0B ;()0,1,0C ,()0,1,0D -设面MAB 的法向量为()111,,m x y z = ,易知面MCD 的法向量为()2,0,0n DA == 所以()2,1,1MA =-- ,()2,1,1MB =- 由00m MA m MB ⎧⋅=⎪⎨⋅=⎪⎩ 即1111112020x y z x y z --=⎧⎨+-=⎩,解得11102y z x =⎧⎨=⎩,可取()1,0,2m =所以cos ,m n m n m n ⋅<>=== 故所求面MAB 与面MCD==.【题目栏目】立体几何\空间角\二面角【题目来源】2018年高考数学课标Ⅲ卷(理)·第19题18.(2018年高考数学课标Ⅱ卷(理)·第20题)(12分)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM所成角的正弦值.【答案】解析:(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =.连接OB.因为AB BC AC ==,所以ABC ∆为等腰直角三角形,且OB AC ⊥,122OB AC ==.由222OP OB PB +=知PO OB ⊥.由OP OB ⊥,OP AC ⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB u u u r 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0)O ,(2,0,0)B ,(0,2,0)A -,(0,2,0)C,P,AP =u u u r .取平面PAC 的法向量为(2,0,0)OB =u u u r .设(,2,0)(02)≤M a a a -<,则(,4,0)AM a a =-u u u r .设平面PAM 的法向量为(,,)x y z =n ,由0AP ⋅=u u u r n ,0AM ⋅=u u u r n得20(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩,可取,)a a =--n ,所以cos ,OB <>=u u u r n,由已知可得cos ,OB <>=u u u r n PAB M COA=,解得4a =-(舍去),43a =.所以4()3n =-.又(0,2,PC =- ,所以cos ,n PC <>=u u u r .所以PC 与平面PAM .【题目栏目】立体几何\空间角\二面角【题目来源】2018年高考数学课标Ⅱ卷(理)·第20题19.(2018年高考数学课标卷Ⅰ(理)·第18题)(12分)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DCF ∆折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【答案】解析:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH EF ⊥,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,||BF 为单位长,建立如图所示的空间直角坐标系H xyz -.由(1)可得,DE PE ⊥.又2DP =,1DE =,所以PE =.又1PF =,2EF =,故PE PF ⊥.可得32PH EH ==.则33(0,0,0),(1,,0),(1,22H P D DP --= 32HP = 为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则sin ||||||HP DP HP DP θ⋅===⋅ .所以DP 与平面ABFD.【题目栏目】立体几何\空间角\直线与平面所成的角【题目来源】2018年高考数学课标卷Ⅰ(理)·第18题20.(2017年高考数学新课标Ⅰ卷理科·第18题)如图,在四棱锥中,,且.(1)证明:平面平面;(2)若,,求二面角的余弦值.【答案】(1)详见解析;(2)二面角的余弦值为. 【分析】(1)根据题设条件可以得出,,而,就可证明出平面.进而证明平面平面;(2)先找出的中点,找出相互垂直的线,建立以为坐标原点,的方向为轴的正方向,为单位长的空间直角坐标系,列出所需要的点的坐标,设是平面的法向量,是平面的法向量,根据垂直关系,求出和,利用数量积公式可求出二面角的平面角. 【解析】(1)由已知,得,由于,故,从而平面又平面,所以平面平面(2)在平面内做,垂足为,由(1)可知,平面,故,可得平面. P ABCD -//AB CD 90BAP CDP ∠=∠=︒PAB ⊥PAD PA PD AB DC ===90APD ∠=︒A PB C --A PB C --AB AP ⊥CD PD ⊥//AB CD AB ⊥ PAD PAB ⊥PAD AD F FA x AB (),,n x y z = PCB (),,m x y z = PAB (0,1,n =- ()1,0,1m = 90BAP CDP ∠=∠=︒AB AP ⊥CD PD ⊥//AB CD AB PD ⊥AB ⊥PAD AB ⊂PAB PAB ⊥PAD PAD PF AD ⊥F AB ⊥PAD AB PF ⊥PF ⊥ABCD以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)及已知可得,,,. 所以,,,. 设是平面的法向量,则,即,可取. 设是平面的法向量,则,即,可取. 则,所以二面角的余弦值为. 【考点】面面垂直的证明,二面角平面角的求解.【点评】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.【题目栏目】立体几何\空间角\二面角【题目来源】2017年高考数学新课标Ⅰ卷理科·第18题21.(2017年高考数学课标Ⅲ卷理科·第19题)如图,四面体中,是正三角形,是直角三角形,,.F FA x ||AB F xyz-APB (C(PC =CB =PA = (0,1,0)AB = (,,)x y z =n PCB 00PC CB ⎧⋅=⎪⎨⋅=⎪⎩ nn 00x y z ⎧+=⎪=(0,1,=-n (,,)x y z =m PAB 00PA AB ⎧⋅=⎪⎨⋅=⎪⎩ mm 00z y =⎪=⎩(1,0,1)=n cos ,||||⋅==<>n m n m n m A PB C --ABCD ABC ∆ACD ∆ABD CBD ∠=∠AB BD =(1)证明:平面平面;(2)过的平面交于点,若平面把四面体分成体积相等的两部分,求二面角的余弦值.【答案】(Ⅰ)证明略. 【解析】证明:(1)取的中点为,连接为等边三角形∴∴.∴,即为等腰直角三角形,为直角又为底边中点ACD ⊥ABC AC BD E AEC ABCD D AE C --AC O ,BO DO ABC ∆ BO AC ⊥AB BC =AB BC BD BDABD DBC =⎧⎪=⎨⎪∠=∠⎩ABD CBD ∴∆≅∆AD CD =ACD ∆ADC ∠O AC∴ 令,则 易得:,∴由勾股定理的逆定理可得即又∵ 由面面垂直的判定定理可得(2)由题意可知即,到平面的距离相等即为中点以为原点,为轴正方向,为轴正方向,为轴正方向,设,建立空间直角坐标系则,,,,DO AC ⊥AB a =AB AC BC BD a ====OD a=OB =222OD OB BD +=2DOB π∠=OD OB ⊥OD AC OD OB AC OB OAC ABC OB ABC ⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩ 平面平面OD ABC ∴⊥平面OD ADC ⊂平面ADC ABC ⊥平面平面V V D ACE B ACE --=B D ACE E BD O OA x OB y OD z AC a =()0,0,0O ,0,02a A ⎛⎫ ⎪⎝⎭0,0,2a D ⎛⎫ ⎪⎝⎭,0B ⎛⎫ ⎪ ⎪⎝⎭,4a E ⎛⎫ ⎪ ⎪⎝⎭易得:,, 设平面的法向量为,平面的法向量为, 则,解得 ,解得 若二面角为,易知为锐角,则.【考点】二面角的平面角;面面角的向量求法【点评】(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设m ,n 分别为平面α,β的法向量,则二面角θ与<m ,n >互补或相等,故有|cos θ|=|cos<m ,n>|=.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.【题目栏目】立体几何\空间角\二面角【题目来源】2017年高考数学课标Ⅲ卷理科·第19题22.(2017年高考数学课标Ⅱ卷理科·第19题)如图,四棱锥 中,侧面 为等比三角形且垂直于底面 , 是 的中点.(1)证明:直线 平面;(2)点 在棱上,且直线 与底面 所成锐角为 ,求二面角 的余弦值.【答案】(1)证明略;,24a a AE ⎛⎫=- ⎪ ⎪⎝⎭ ,0,22a a AD ⎛⎫=- ⎪⎝⎭ ,0,02a OA ⎛⎫= ⎪⎝⎭ AED 1n AEC 2n 1100AE n AD n ⎧⋅=⎪⎨⋅=⎪⎩ 1n = 2200AE n OA n ⎧⋅=⎪⎨⋅=⎪⎩ (20,1,n = D AE C --θθ1212cos n n n n θ⋅==⋅ ⋅m n m n P ABCD -PAD ABCD o 1,90,2AB BC AD BAD ABC =∠=∠=E PD //CE PAB M PC BM ABCD o 45M AB D --【基本解法1】(1)证明:取中点为,连接、因为,所以因为是的中点,所以,所以所以四边形为平行四边形,所以因为平面,平面所以直线平面(2)取中点为,连接因为△为等边三角形,所以因为平面平面,平面平面,平面所以平面因为,所以四边形为平行四边形,所以所以以分别为轴建立空间直角坐标系,如图设,则,所以设,则,因为点在棱上,所以,即所以,所以平面的法向量为因为直线与底面所成角为,所以解得设平面的法向量为,则令,则PA F EF AF90BADABC ∠=∠=︒12BC AD =BC 12AD E PD EF 12AD EF BCEFBC //EC BFBF ⊂PABEC ⊄PAB//CEPABAD O OC OP、PAD PO ⊥ADPAD ⊥ABCD PAD ABCD AD =PO ⊂PADPO ⊥ABCDAO BC OABC //AB OCOC AD⊥,,OC OD OP ,,x yz 1BC =(0,1,0),(1,1,0),(1,0,0)P A B C --(1,0,PC = (,,)M x y z (,,PM x y z =-(1,0,0)AB = M PC (01)PM PC λλ=≤≤ (,,(1,0,x y z λ=()M λ()BM λ=- ABCD (0,0,1)n = BM ABCD 45︒|||sin 45||cos ,|||||BM n BM n BM n ⋅︒=<>=== 1λ=-(BM = MAB (,,)m x y z = 00AB m x BM m x y z ⎧⋅==⎪⎨⋅=+=⎪⎩ 1z =m =所以所以求二面角【基本解法2】(1)证明:取中点为,连接因为,所以,即所以四边形为平行四边形,所以因为平面,平面所以直线平面因为是的中点,所以因为平面,平面所以直线平面因为,所以平面平面因为平面所以直线平面(2)同上【命题意图】线面平行的判定,线面垂直的判定,面面垂直的性质,线面角、二面角的求解【知识拓展】线面平行的证明一般有两个方向,线面平行的判定或面面平行的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点17 立体几何中的计算问题【知识框图】【自主热身,归纳总结】1、(2019扬州期末) 底面半径为1,母线长为3的圆锥的体积是________. 【答案】 22π3【解析】圆锥的高为h =32-12=22,圆锥的体积V =13×π×12×22=22π3.2、(2019镇江期末)已知一个圆锥的底面积为π,侧面积为2π,则该圆锥的体积为________. 【答案】3π3【解析】思路分析 先求出圆锥的底面半径和高.设圆锥的底面半径、高、母线长分别为r ,h ,l ,则⎩⎪⎨⎪⎧πr 2=π,πrl =2π,解得⎩⎪⎨⎪⎧r =1,l =2.所以h = 3.圆锥的体积V =13Sh =3π3. 3、(2019宿迁期末)设圆锥的轴截面是一个边长为2 cm 的正三角形,则该圆锥的体积为________ cm 3. 【答案】33π 【解析】 圆锥的底面半径R =1,高h =22-12=3,故圆锥的体积为V =13×π×12×3=33π.4、(2019南通、泰州、扬州一调)已知正四棱柱的底面长是3 cm ,侧面的对角线长是3 5 cm ,则这个正四棱柱的体积为________cm 3. 【答案】 54【解析】由题意知,正四棱柱的高为(35)2-32=6,所以它的体积V =32×6=54,故答案为54. 5、(2019南京学情调研) 如图,在正三棱柱ABCA 1B 1C 1中,AB =2,AA 1=3,则四棱锥A 1B 1C 1CB 的体积是________.【答案】2 3【解析】如图,取B 1C 1的中点E ,连结A 1E ,易证A 1E ⊥平面BB 1C 1C ,所以A 1E 为四棱锥A 1B 1C 1CB 的高,所以V 四棱锥A 1B 1C 1CB =13S 矩形BB 1C 1C ×A 1E =13×(2×3)×3=2 3.6、(2018盐城三模)若一圆锥的底面半径为1,其侧面积是底面积的3倍,则该圆锥的体积为 .【答案】3【解析】设圆锥的高为h ,母线为l ,由2=,=S rl S r ππ侧底得,21=31l ππ⨯⨯⨯,即=3l ,h ==故该圆锥的体积为2113π⨯⨯⨯=.7、(2017无锡期末) 已知圆锥的侧面展开图是一个圆心角为120°且面积为3π的扇形,则该圆锥的体积等于________. 【答案】223π【解析】设圆锥的底面半径为r ,高为h ,母线长为l .则⎩⎪⎨⎪⎧2πr =l ×2π3,3π=12×2πr ×l ,解得⎩⎪⎨⎪⎧r =1,l =3,故h =l 2-r 2=22,所以圆锥的体积V =13×πr 2×h =13×π×12×22=223π. 解后反思 解决立体几何问题的基本思想是将空间问题转化为平面问题,在解题过程中要注意明确展开图中各个元素和几何体中元素的对应关系.8、(2016南京、盐城、连云港、徐州二模)如图,正三棱柱ABCA 1B 1C 1中,AB =4,AA 1=6.若E ,F 分别是棱BB 1,CC 1上的点,则三棱锥AA 1EF 的体积是________.【答案】 8 3【解析】 因为在正三棱柱ABCA 1B 1C 1中,AA 1∥BB 1,AA 1⊂平面AA 1C 1C ,BB 1⊄平面AA 1C 1C ,所以BB 1∥平面AA 1C 1C ,从而点E 到平面AA 1C 1C 的距离就是点B 到平面AA 1C 1C 的距离,作BH ⊥AC ,垂足为点H ,由于△ABC 是正三角形且边长为4,所以BH =23,从而三棱锥AA 1EF 的体积VAA 1EF =VEA 1AF =13S △A 1AF ·BH =13×12×6×4×23=8 3.解题反思 一般地,三棱锥的体积求解都需要通过换底来求解,基本原则是换底以后的三棱锥的底面积和高均容易求解.9、(2016无锡期末) 如图,在圆锥VO 中,O 为底面圆心,半径OA ⊥OB ,且OA =VO =1,则O 到平面VAB 的距离为________.【答案】33【解析】思路分析 在立体几何求点到平面的距离问题中,往往有两种途径:(1) 利用等体积法,这种方法一般不需要作出高线;(2) 利用面面垂直的性质作出高线,再进行计算.解法1 因为VO ⊥平面AOB ,OA ⊂平面AOB ,所以VO ⊥OA ,同理VO ⊥OB ,又因为OA ⊥OB ,OA =VO =OB =1,所以VA =VB =AB =2,所以S △VAB =12VA ×AB sin60°=32.设O 到平面VAB 的距离为h ,由V VAOB =V OVAB ,得13S △AOB ×VO =13S △VAB ×h ,得12OA ×OB ×VO =32h ,解得h =33. 解法2 取AB 中点M ,连结VM ,过点O 作OH ⊥VM 于H .因为OA =OB ,M 是AB 中点,所以OM ⊥AB ,因为VO ⊥平面AOB ,AB ⊂平面AOB ,所以VO ⊥AB ,又因为OM ⊥AB ,VO ∩OM =O ,所以AB ⊥平面VOM ,又因为AB ⊂平面VAB ,所以面VAB ⊥平面VOM ,又因为OH ⊥VM ,OH ⊂平面VOM ,平面VAB ∩平面VOM =VH ,所以OH ⊥平面VAB ,所以OH 为点O 到平面VAB 的距离,且OH =VO ×OM VM =33.【问题探究,变式训练】 题型一 柱、锥的面积与体积知识点拨: 求空间几何体的体积的本质就是找几何体的高(即找线面垂直),常见的空间几何体体积的求法有:作高法、转换顶点法、割补法.例1、(2019南京、盐城一模)如图,PA ⊥平面ABC ,AC ⊥BC ,PA =4,AC =3,BC =1,E ,F 分别为AB ,PC 的中点,则三棱锥BEFC 的体积为________.【答案】36【解析】V BEFC =V FBEC =12V PBEC =12·(13·S △BEC ·PA)=12×13×34×4=36.【变式1】(2019泰州期末)如图,在直三棱柱ABCA 1B 1C 1中,点M 为棱AA 1的中点,记三棱锥A 1MBC 的体积V 1,四棱锥A 1BB 1C 1C 的体积为V 2,则V 1V 2的值是________.【答案】 14【解析】解法1(割补法) 设△ABC 的面积为S ,三棱柱的高为h ,则V 1=VA 1ABC -V MABC =13Sh -13S ×12h =16Sh ,V 2=VABCA 1B 1C 1-VA 1ABC =Sh -13Sh =23Sh ,所以V 1V 2=Sh 6·32Sh =14.解法2(等积转换) V 1=VBA 1MC =12VBA 1AC =12VA 1ABC ,V 2=2VA 1BC 1B 1=2VBA 1B 1C 1=2VA 1ABC ,所以V 1V 2=14.【变式2】(2018常州期末) 已知圆锥的高为6,体积为8.用平行于圆锥底面的平面截圆锥,得到的圆台体积是7,则该圆台的高为________. 【答案】 3【解析】设截得的小圆锥的高为h 1,底面半径为r 1,体积为V 1=13πr 21h 1;大圆锥的高为h =6,底面半径为r ,体积为V =13πr 2h =8.依题意有r 1r =h 1h ,V 1=1,V 1V =13πr 21h 113πr 2h =⎝ ⎛⎭⎪⎫h 1h 3=18,得h 1=12h =3,所以圆台的高为h-h 1=3.【变式3】(2018镇江期末) 已知正四棱锥的底面边长为2,侧棱长为6,则该正四棱锥的体积为________. 【答案】 83【解析】正四棱锥的底面边长为 2,可知底面正方形对角线长为22,所以正四棱锥的高为(6)2-(2)2=2,所以正四棱锥的体积V =13×4×2=83.【变式4】(2018扬州期末) 若圆锥的侧面展开图是面积为3π且圆心角为2π3的扇形,则此圆锥的体积为________. 【答案】 223π【解析】设圆锥的底面半径为r ,高为h ,母线为l ,则由12·2π3·l 2=3π,得l =3,又由2π3·l =2πr ,得r =1,从而有h =l 2-r 2=22,所以V =13·πr 2·h =223π.【变式5】(2018南京、盐城、连云港二模)在边长为4的正方形ABCD 内剪去四个全等的等腰三角形(如图1中阴影部分),折叠成底面边长为2的正四棱锥SEFGH(如图2),则正四棱锥SEFGH 的体积为________.(图1)(图2)【答案】 43【解析】连结EG ,HF ,交点为O ,正方形EFGH 的对角线EG =2,EO =1,则点E 到线段AB 的距离为1,EB =12+22= 5.SO =SE 2-OE 2=5-1=2,故正四棱锥SEFGH 的体积为13×(2)2×2=43.【变式6】(2018苏锡常镇调研(二)) 在棱长为2的正四面体P ABC -中,M ,N 分别为PA ,BC 的中点,点D 是线段PN 上一点,且2PD DN =,则三棱锥D MBC -的体积为 .【答案】【解析】思路分析:解决空间几何体的体积计算问题常常有两个途径:一是直接利用体积公式求解,另一种是利用等体积转化的思想进行计算.解题过程:连结MB ,MC ,MN ,过点D 作MN DH ⊥于H ,因为BP BA =,M 为PA 的中点,所以BM PA ⊥,同理CM PA ⊥,又因为M CM BM = ,所以MBC PA 面⊥,又因为MBC MN 面⊂,所以MN PA ⊥,又因为MN DH ⊥,所以PA DH //,从而MBC DH 面⊥,故DH 为点D 到平面MBC 的高.在MBC ∆中,MC MB =,N 为BC 的中点,则222=-=NB MB MN ,MBC ∆的面积2222121=⨯⨯=⨯=MN BC S ,在NPM ∆中,因为PM DH //,2PD DN =,所以3131==PM DH ,从而三棱锥D MBC -的体积923123131=⨯⨯=⨯=∆-DH S V MBC MBCD .【变式7】(2017徐州、连云港、宿迁三检)如图,在正三棱柱111ABC A B C -中,已知13AB AA ==,点P在棱1CC 上,则三棱锥1P ABA -的体积为 .【答案】439 【解析】 因为正三棱柱111C B A ABC -中,11//CC AA ,因为B B AA AA 111面⊂,B B AA CC 111面⊄, 所以B B AA CC 111//面,因为点P 在棱1CC 上,所以点C 到平面B B AA 11的距离就是点P 到平面B B AA 11的距离.作AB CD ⊥,垂直为点D ,因为正三棱柱111C B A ABC -中,⊥1AA 面ABC ,⊂CD 面ABC ,所以1AA CD ⊥,而B B AA AB 11面⊂,B B AA AA 111面⊂,11A AA AB = ,所以B B AA CD 11面⊥.因为正三棱柱111C B A ABC -中,31==AA AB ,所以233=CD ,1ABA ∆的面积293321=⨯⨯=S ,所以三棱锥1ABA P -的体积439233293131=⨯⨯=⋅⋅=CD S V . 【变式8】(2017南京三模)如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,BB 1=3,∠ABC =90°,点D 为侧棱BB 1上的动点.当AD +DC 1最小时,三棱锥D -ABC 1的体积为 .ABC PA 1B 1C 1(第10题)【答案】13【解析】将侧面展开如下图,所以由平面几何性质可得:11AD DC AC +≥,当且仅当1,,A D C 三点共线取到.此时1BD =,所以1122ABDSAB BD =⨯⨯=.在直三棱柱ABC -A 1B 1C 1中有1BB CB ⊥,又AB CB ⊥,易得CB ⊥平面ABD ,所以11C B ⊥平面ABD ,即11C B 是三棱锥1C ABD-的高,所以1111111123323D ABC C ABD ABDV V C B S --==⨯⨯=⨯⨯=【解后反思】对于求空间几何体中在两个侧面上两个有公共点距离之和最小值的问题,一般都可以转化为同一个平面上问题.本题也是数学中最有名的“将军饮马”的问题,有兴趣的同科可以用网络搜索查阅这个问题. 题型二 球的面积与体积知识点拨:解决空间几何体的外接球问题的关键是确定球心的位置,求得球半径.多数试题中几何体的外接球通常可以考虑转化为相应长方体的外接球模型,这一类题在各类考题中常有出现,同学们一定要掌握其方法.例1、(2019苏州期末)如图,某种螺帽是由一个半径为2的半球体挖去一个正三棱锥构成的几何体,该正三棱锥的底面三角形内接于半球底面大圆,顶点在半球面上,则被挖去的正三棱锥体积为________.ACB A 1B 1C 1D【答案】 2 3【解析】正三棱锥的底面正三角形的边长为a=23,面积S=34a2=33,高h=2.所以正三椎锥的体积V=13Sh=2 3.【变式1】(2019苏州三市、苏北四市二调)设P,A,B,C为球O表面上的四个点,PA,PB,PC两两垂直,且PA=2 m,PB=3 m,PC=4 m,则球O的表面积为________m2.【答案】 29π【解析】根据题意,可知三棱锥PABC是长方体的一个角,如图所示,该长方体的外接球就是经过P,A,B,C四点的球,因为PA=2,PB=3,PC=4,所以长方体的体对角线的长为PA2+PB2+PC2=29,即外接球的直径2R=29,可得R=292,因此外接球的表面积为S=4πR2=4π×⎝⎛⎭⎪⎫2922=29π,【变式2】(2018无锡期末)直三棱柱ABCA 1B 1C 1中,已知AB⊥BC,AB =3,BC =4,AA 1=5,若三棱柱的所有顶点都在同一球面上,则该球的表面积为________. 【答案】 50π【解析】 根据条件可知该直三棱柱的外接球即三棱锥B 1ABC 的外接球,也就是以BA ,BC ,BB 1为棱的长方体的外接球,设其半径为R ,则2R =BA 2+BC 2+BB 21=32+42+52,得R =522,故该球的表面积为S =4πR 2=50π.【变式3】(2017南通、扬州、淮安、宿迁、泰州、徐州六市二调) 现有一个底面半径为3 cm ,母线长为5 cm 的圆锥状实心铁器,将其高温融化后铸造成一个实心铁球(不计损耗),则该铁球的半径是________cm. 【答案】 39【解析】思路分析 圆锥的体积等于球的体积.圆锥的高为4 cm ,体积为V 圆锥=13π×32×4=12π(cm 3).设球的半径为r cm ,则43πr 3=12π,即r 3=9,所以r =39.题型三、立体几何中的综合问题知识点拨:立体几何中的综合问题往往涉及到求体积的最值问题或者涉及到复杂的几何体的问题,常用的方法是涉及复杂的几何体进行简化,最值问题运用不等式或者求导进行解决。