质谱确定化合物分子式..
质谱分析1

方向聚焦:相同质
荷比,入射方向不 同的离子会聚; 分辨率不高,适合 于能量分散较小的 离子源。
24
单聚焦分析器:假定离子的初始能量为零。实际初始能量不 为零且各不相同。具有相同质荷比的离子,其初始能量不同 通过质量分析器后也不能完全聚焦在一起。
离子能量分散对分辨率的影响
25
2. 双聚焦质量分析器
22
1. 单聚焦质量分析器
依据离子在磁场的运动行为,将不同质量的离子分开 进入分析器前,加速离子的动能为:
1 2 mv zV 2
进入分析器后,在磁场H作用下,改作圆周运动,只有离心力与
向心力相等时,离子才能飞出弯曲区,即按曲线轨迹飞行。
f离 = f向
m v2 Hzv R
2 2
23
m H r 质谱方程式: z 2V
常用离子源:电子轰击电离源(EI)、化学电离源(CI)、场致 电离源( FI )、场解析电离源( FD )、快原子轰击电离源( FA
B)、激光解析电离源(LD)、电喷雾电离源(ESI)等。
硬源:离子化能量高,伴有化学键的断裂,谱图复杂,可得到 分子官能团的信息; 软源:离子化能量低,产生的碎片少,谱图简单,可得到分子 离子峰,即得到分子量信息。
12
水平方向:灯丝与阳极间 (70V 电压 )
—高能电子 — 冲击样品—正离子 垂直方向: G3-G4 加速电极 ( 低电压 )
— 较小动能 — 狭缝准直 G4-G5 加速电
极 ( 高电压 )— 较高动能 — 狭缝进一步 准直—离子进入质量分析器。
加速 聚焦 加速
特 点:
使用最广泛,谱库最完整;电离效率 高;结构简单,操作方便;但分子离 子峰强度较弱或不出现 ( 因电离能量 最高)。
质谱分析课件用低分辨质谱推测可能分子式

常见有机化合物的质谱裂解
1.肪醚
脂肪醚的分子离子峰较小; 断裂 脂肪醚的断裂可形成两种RO+=CH2,以失去较大烷基碎片占优势; i断裂 脂肪醚的i断裂形成碎片离子R+和R’+,当R和R’较大时i断裂占优势。
常见有机化合物的质谱裂解
1.环醚
脂环醚有较明显的分子离子峰; 容易失去OCH2,得到M30峰,该离子可进一步失去乙烯或甲基。 会发生断裂而开环,并进一步发生氢重排和i断裂得到[CH2=O+CH3]离子(m/z:45)。
常见有机化合物的质谱裂解
支链烷烃
分子离子峰的丰度随支化程度的增加而降低; 断裂发生在支链处,且失去的烷基越大反应趋势越强,生成稳定的仲碳或叔碳正离子,[CnH2n+1]+系列碎片离子的丰度分布也和直链烷烃不同,往往支链断裂形成的离子的丰度较大。
环烷烃
环烷烃的分子离子峰的丰度相对较大; 开环裂解时失去两个碳的碎片出现[M-C2H4]+和[CnH2n]+离子(m/z:42,56,70……),还伴随失去一个氢原子,出现[CnH2n-1]+碎片离子; 当环上有烷基取代时,较容易失去烷基取代基,生成丰度较大的碎片离子。
硫和硅元素的识别
硫的同位素 34S的相对丰度约为4.4%,硅的同位素30Si的相对丰度为3.35%,在没有氯、溴元素存在的情况下,当M+2处的相对丰度大于4.4%时可考虑有硫元素的存在,大于3.35%时可考虑有硅的存在。但由于硫和硅的同位素相对丰度相差不大且还存在测量误差,因此,要确定是硫还是硅需通过其他性质和信息来帮助判断。
mz
161.1
162.1
163.1
相对强度
100
高分辨质谱 计算分子式

高分辨质谱计算分子式
高分辨质谱是一种通过测量分子的离子质荷比(m/z)和相对丰度来分析化合物的方法。
根据高分辨质谱的分析结果,可以计算出化合物的分子式。
计算分子式的步骤如下:
1. 根据高分辨质谱的分析结果,确定化合物的主要峰(即相对丰度最高的峰)的m/z值。
2. 计算主要峰的分子离子质量(即主要峰的m/z减去氢原子的质量)。
一般情况下,主要峰的m/z减去1即可得到分子离子的质量。
3. 根据分子离子的质量,可以确定分子式的可能性。
根据化合物中的原子种类和数目,计算出分子离子可能对应的分子式。
4. 进一步通过其他分析方法(例如质谱碎片的分析)来确认分子式的准确性。
这些方法可以提供关于分子中各个原子之间的连接方式和相对位置的信息。
需要注意的是,高分辨质谱仅提供化合物分子式的初步推测,最终的确认需要结合其他分析方法和实验结果。
能够确定化合物的分子量和分子式的方法

能够确定化合物的分子量和分子式的方法研究化合物的分子量和分子式对于化学家来说是非常重要的。
有不同的方法可以用来确定化合物的分子量和分子式,比如精确的量化分析方法和质谱分析方法。
今天,我们将深入介绍这些方法,以帮助我们更好地侦测化合物的分子量和分子式。
首先,精确的量化分析方法是一种有效的方法,可以用来确定化合物的分子量和分子式。
该方法包括比色法、容量法、光谱法和电化学法等。
比色法可以测定物质的浓度,然后计算出所测样品的质量,从而确定其分子量。
容量法是一种物质的溶质积析定法,可以用于测定溶质的分子量。
光谱法可以利用物质的光谱性质来测定其分子量,而电化学法则可以在相应的静电场中进行测量,以确定样品的分子量。
此外,质谱分析也是一种常用的方法,用于确定化合物的分子量和分子式。
质谱分析是一种利用质谱数据测定化学物质结构的分析方法。
它利用激发基底物质时产生的质子数据,来确定化合物的原子质量和分子式。
主要有三种质谱技术,分别是单离子质谱法、双离子质谱法和碎裂质谱法。
单离子质谱法可以用来测定化合物的精确分子量,而双离子质谱法和碎裂质谱法则可以用来确定化合物的分子式。
最后,热重分析也是一种常用的确定化合物的分子量的方法。
热重分析是一种根据物质受热时质量变化的变化规律,来确定分子量的分析方法。
根据样品放置在不同温度和压力下的重量变化,可以判断出样品的分子量大小。
以上就是确定化合物的分子量和分子式的主要方法。
总之,要准确确定化合物的分子量和分子式,应该根据物质的性质,从多方面考虑,使用不同的分析手段,如精确的量化分析方法和质谱分析方法,以及热重分析方法。
在使用这些方法时,应当注意优化试验条件,以获得最准确的结果。
质谱数据解析

质谱数据解析
质谱数据解析是质谱分析中的一个重要步骤,它把得到的质谱数据转化为有用的信息,帮助分析师确定样品中存在的物质成分,鉴定分子结构和确定化合物的数量。
总的来说,质谱数据解析主要包括以下几个方面:
1. 分离峰的提取:在质谱图中,通常会出现多个峰,表示样品中可能存在多种物质。
分离峰的提取是把这些峰分开,以便分别进行分析。
2. 确定化合物的分子式:分离出的质谱图上的峰通常可以通过测定分子离子峰、裂解峰等特征峰来确定化合物的基本分子式。
3. 确定化合物的结构:分析样品的质谱数据,根据裂解片段、离子对和其他特征峰等信息确定化合物的分子结构和功能基团。
4. 确定化合物的浓度:质谱分析通常可以确定化合物的浓度,这对于定量分析非常重要。
上述过程中,质谱仪是不可或缺的工具。
质谱仪通过对物质分子进行电离、加速、分离和检测等过程,得到物质在质谱上的分布情况。
不同质谱仪的检测灵敏度、分辨率和分析速度都有差别,因此,合理选择、使用质谱仪是确保数据解析准确的关键。
用质谱如何确定化合物分子式

汇报人: 2023-12-13
目录
• 质谱基本原理 • 分子离子峰确定 • 碎片离子峰解析 • 同位素峰解析与元素组成推断 • 化合物分子式推断策略与技巧 • 实际案例分析与应用前景展望
01
质谱基本原理
质谱仪工作原理
离子源
通过电子轰击、化学电离或激 光解析等方法,使样品分子电
02
分子离子峰确定
分子离子峰识别
分子离子峰
在质谱图中,最大的峰通常被认 为是最稳定的分子离子峰,它代 表着分子的分子量。
碎片离子峰
除了分子离子峰外,质谱图中还 会出现其他较小的峰,这些峰被 称为碎片离子峰,它们代表着分 子被破碎后的片段。
分子离子峰计算方法
根据分子离子峰计算分子量
通过测量分子离子峰的质荷比(m/z),可以计算出分子的分子量。
推测分子结构
结合碎片离子峰和化合物 的其他信息,可以推测出 化合物的可能分子结构。
验证分子式
通过对比实验结果和理论 计算,可以验证化合物的 分子式是否正确。
04
同位素峰解析与元素组成推断
同位素峰识别与计算方法
同位素峰识别
通过比较实验测定的分子离子峰与理 论计算得到的同位素峰,确定同位素 峰的存在。
自由基碎片
自由基碎片是由于分子中某个键断裂而产生的, 可以通过其质量数和电荷数来确定其结构。
加合碎片
加合碎片是由两个或多个分子结合而形成的,可 以通过其质量数和电荷数来确定其结构。
重排碎片
重排碎片是由于分子重排而形成的,可以通过其 质量数和电荷数来确定其结构。
碎片离子峰与分子结构关系
确定官能团
通过分析碎片离子峰,可 以确定化合物中存在的官 能团类型。
刘辉——质谱分析中分子式的确定

3.判断分子式的合理性
(1)该式的式量等于分子量 (2)符合氮率 (3)不饱和度要合理
四.例子与练习
例1:化合物的质谱图如下,推导其分子式
m/z RI
85
49
86
3.2
87
0.11
164:166=1:1, 164-85 = 79 (Br) 分子中含有1个Br, 不含氮或含偶数氮
m/z: 85(49), 86(3.2), 87(0.11) x = 3.2/49×100/1.1≈6 设x = 6, 则 y =13, 可能的分子式 C6H13Br, Ω =0 合理
H2O HF
(3)判断其是否符合氮规则
2.分子离子峰不出现的情况
改用其它离解方式, 如: CI, FAB, ESI 等
(1)不同的电离方式, 其分子离子的RI不等 (2)不稳定的分子, 大分子, 其分子离子的RI较弱 (3)稳定的分子, 大共轭分子, 其分子离子的RI较强
二.分子式的推导
1.低分辨质谱数据(同位素相对丰度)
(3)含重同位素(如 Cl, Br)的样品 35Cl : 37Cl = 100 : 32.5 ≈3 : 1; 79Br : 81Br = 100 : 98≈1 : 1
当分子中含有两种或两种以上的不同的具有同位素 的元素时,可以用二项式展开的乘积来计算,(a + b)n
2.分子式的不饱和度 计算式为:
(1)对于C, H, N, O组成的化合物, 其通式:CxHyNzOw RI(M+1) / RI(M) ×100 = 1.1x + 0.37z ( 2H 0.016, 17O 0.04忽略 ) RI(M+2) / RI(M) ×100 = (1.1x)2 / 200 + 0.2w
能够确定化合物的分子量和分子式的方法

能够确定化合物的分子量和分子式的方法确定化合物的分子量和分子式是化学分析中的重要内容之一、在化学实验和研究中,分子量和分子式往往是开始研究或分析化合物性质的基础。
下面将详细介绍几种常用的方法。
一、元素分析法元素分析法是一种经典的确定化合物分子量和分子式的方法。
该方法将待测化合物进行燃烧或者与氧化剂反应,使化合物中的元素转化成相应化合物进行计量。
然后通过得到的元素质量与摩尔比值来确定分子式和分子量。
例如,对于一个有机化合物,可以通过将其与氧化剂如铜氧化剂或铬酸钾等反应,并测定生成的相应氧化产物质量,然后通过质量比计算出原始有机化合物中各元素的摩尔比,从而确定分子式和分子量。
二、质谱法质谱法是一种基于质谱仪进行化合物分析的方法。
利用质谱仪对化合物进行离子化和碎片化,然后测量产生的离子质谱图,从而确定化合物的分子离子峰和基团质谱峰,进而确定分子式和分子量。
质谱法的优点在于可以提供分子离子峰的相关信息,可以直接确定分子离子峰的质量,并通过质谱峰的位置和强度来确定分子组成。
三、红外光谱法红外光谱法是一种通过测定化合物在特定波长范围内对红外辐射的吸收,从而确定化合物分子中存在的基团和它们之间的连接方式的方法。
通过红外光谱仪对化合物进行红外光谱分析,可以确定振动频率和强度,从而确定化合物中的基团种类,排除一些可能的分子结构,进而确定化合物的分子式和分子量。
四、核磁共振谱法核磁共振谱法是一种通过测量化合物中核自旋在磁场中的行为来确定化合物结构的方法。
通过核磁共振仪对化合物进行核磁共振谱分析,可以得到化合物中各种核自旋的有效峰和相应的化学位移,进而确定各种基团的存在和它们之间的相对位置。
利用核磁共振谱法可以确定分子中各种原子之间的连接方式,并通过其峰形和峰强的特征来确定化合物的分子式和分子量。
以上几种方法是常用的确定化合物分子量和分子式的方法。
在实际应用中,可以根据待测化合物的性质和实验条件选择合适的方法进行分析,以获得准确的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)纵坐标表示离子强度,在质谱中可以看到几个高低不同
的峰,纵坐标峰高代表了各种不同质荷比的离子丰度-离子流 强度。
5
质谱离子的多少用丰度表示(abundance)表示,即具有某质 荷比离子的数量。由于某个具体离子的“数量”无法测定, 故一般用相对丰度表示其强度,即最强的峰叫基峰(base
peak),其他离子的丰度用相对于基峰的百分数表示。在质
有机质谱提供分子结构的信息包括:分子量,元素组成以 及由裂解碎片检测官能团、辨认化合物的类型、推导碳骨 架。
有机质谱仪按其性能可分为低分辩和高分辩两种14数据处理-质谱定性分析
低分辩质谱可以确定分子和碎片离子的整数质量,同时显
示出相应同位素离子的相对丰度。在分子离子峰相当强的
情况下,根据同位素的相对丰度能够估计可能的分子式。 同理,也可以估计某些碎片的离子的元素组成,结合对分 子断裂规律的分析,可以得到有机化合物骨架结构的启示 和官能团存在的信息。
质谱如何确定化合物分子式
主讲人:孙启慧 学号:201302063
1
首先明确质谱的定义、组成和意义。 确定化合物分子式的一般思路。
HPLC-TOF/MS数据处理举例。
2
质谱的定义和作用
Ⅰ质谱法:是将被测物质离子化,按离子的质荷比分离,测量 各种离子谱峰的强度而实现分析目的的一种分析方法。 Ⅱ质量是物质的固有特征之一,不同的物质有不同的质量,利 用这一性质,可以进行定性分析(包括分子质量和相关结构信 息)。
例如,某化合物,根据其质谱图,已知其相对分子质量为
6
离子流强度有两种不同的表示方法:
(1)绝对强度 是将所有离子峰的离子流强度相加作为总离子流,用各 离子峰的离子强度除以总离子流,得出各离子流占总离子流 的百分数 (2)相对强度 以质谱峰中最强峰作为100%,称为基峰(该离子的丰度
最大、最稳定),然后用各种峰的离子流强度除以基峰的离
子流强度,所得的百分数就是相对强度。
12
(2) 综合分析以上得到的全部信息,结合分子式及不 饱和度,提出化合物的可能结构。 (3) 分析所推导的可能结构的裂解机理,看其是否与
质谱图相符,确定其结构,并进一步解释质谱,或与
标准谱图比较,或与其它谱(1H NMR、13C NMR、IR) 配合,确证结构。
13
数据处理-2种质谱定性分析方法
子峰的相对强度由分子的结构所决定,结构稳定性大,相对
强度较大。对于分子量约200的化合物,若分子离子峰为基峰 或强蜂,谱图中碎片离子较少、表明该化合物是高稳定性分 子,可能为芳烃或稠环化合物。
10
例如:萘分子离子峰m/z 128为基峰,蒽醌分子离子峰m/z
208也是基峰。 分子离子峰弱或不出现,化合物可能为多支链烃类、醇类、 酸类等。
7
解析质谱图,一般流程
1.解析分子离子区 (1) 标出各峰的质荷比数,尤其注意高质荷比区的峰。
(2) 识别分子离子峰。首先在高质荷比区假定分子离子峰,
判断该假定分子离子峰与相邻碎片离子峰关系是否合理,然 后判断其是否符合氮律。若二者均相符,可认为是分子离子 峰。 (3) 分析同位素峰簇的相对强度比及峰与峰间的Dm值,判断
谱仪测定的质量范围内,由离子的质荷比和其相对丰度构成 质谱图。 在LC/MS和GC/MS中,常用各分析物质的色谱保留时间和由质 谱得到其离子的相对强度组成色谱总离子流图。也可确定某 固定的质荷比,对整个色谱流出物进行选择离子检测 (selected ion monitoring, SIM),得到选择离子流图
化合物是否含有C1、Br、S、Si等元素及F、P、I等无同位素
的元素。
8
解析质谱图,一般流程
氮规律: 含有偶数N时,其分子离子峰的m/z一定是偶数。 含有奇数N原子时,其分子离子峰的m/z一定是奇数。凡 不符合氮规律的离子峰一定不是分子离子峰 特殊元素: 当化合物中含S、Br、Cl时,可利用M与M+2峰的比例来确 定分子离子峰35Cl、79Br、32S的同位素37Cl、81Br、34S相对丰 度较大分别为:75.77,50.537,95.00; 24.33,49.463,
再由高分辩质谱给出的精确相对分子质量和碎片离子质量,
可以计算出该化合物的分子式和碎片离子的元素组成,为
结构式的推断提供很大方便。
15
低分辨质谱确定分子式
各元素具有一定的同位素天然丰度,因此不同的分子式,
其M+1/M和M+2/M的百分比都将不同。
若以质谱法测定分子离子峰及其分子离子的同位素峰(M+ 1,M+2)的相对强度,就能根据M+1/M和M+2/M的百分比确 定分子式。为此,J. H. Beynon等计算了含碳、氢、氧的 各种组合的质量和同位素丰度比。
11
2.解析碎片离子 (1) 由特征离子峰及丢失的中性碎片了解可能的结构信息。 若质谱图中出现系列CnH2n+1峰,则化合物可能含长链烷基。 若出现或部分出现m/z 77,66,65,51,40,39等弱的碎片
离子蜂,表明化合物含有苯基。若m/z 91或105为基峰或强
峰,表明化合物含有苄基或苯甲酰基。若质谱图中基峰或强 峰出现在质荷比的中部,而其它碎片离子峰少,则化合物可 能由两部分结构较稳定,其间由容易断裂的弱键相连。
4.22。M+2的同位素峰十分明显。通过M和M+2峰的比例来确认。 例:若分子中含一个氯原子,M和M+2强度比为3︰1;若 分子中含一个溴原子,M和M+2强度比为1︰1 9
(4) 推导分子式,计算不饱和度。由高分辨质谱仪测得的精
确分子量或由同位素峰簇的相对强度计算分子式。若二者均 难以实现时,则由分子离子峰丢失的碎片及主要碎片离子推 导,或与其它方法配合。 (5) 由分子离子峰的相对强度了解分子结构的信息。分子离
3
质谱仪的组成 Components of any Mass Spectrometer
4
质谱的数据采集
检测器:通常为光电倍增器或电子倍增器,所采集的信号经 放大并转化为数字信号,计算机进行处理后得到质谱图。 (1)横坐标表示 m/z,由于分子离子或碎片离子在大多数情 况下只带一个正电荷,所以通常称m/z为质量数,对于低分辨 率的仪器,离子的质荷比在数值上就等于它的质量数。