概率论与数理统计课后习题答案 第八章

合集下载

概率论与数理统计(茆诗松)第二版课后第八章习题参考答案

概率论与数理统计(茆诗松)第二版课后第八章习题参考答案

⎧Yij = µ + a i + ε ij , i = 1, 2, L , r , j = 1, 2, L , m; ⎪ r ⎪ ⎨∑ a i = 0; ⎪ i =1 2 ⎪ ⎩ε ij 相互独立,且都服从N (0, σ ).
检验的原假设与备择假设为 H0:a 1 = a 2 = … = a r = 0 8.1.3 平方和分解 vs H1:a 1 , a 2 , …, a r 不全等于 0.
i =1 j =1 i =1 j =1 r m r m r m r m r m
= ∑∑ (Yij − Yi⋅ ) 2 + ∑∑ (Yi⋅ − Y ) 2 + 2∑∑ (Yij − Yi⋅ )(Yi⋅ − Y )
i =1 j =1 i =1 j =1 i =1 j =1
= S e + S A + 2∑ [(Yi⋅ − Y )∑ (Yij − Yi⋅ )] = S e + S A + 2∑ [(Yi⋅ − Y ) × 0] = S e + S A + 0 = S e + S A ,
ε i⋅ =
1 m ∑ ε ij , i = 1, 2, …, r, m j =1
ε=
1 r m 1 r ε = ε i⋅ . ∑∑ ij r ∑ n i =1 j =1 i =1
显然有 Yi⋅ = µ i + ε i⋅ , Y = µ + ε . 在单因子方差分析中通常将试验数据及基本计算结果写成表格形式 因子水平 A1 A2 ┆ Ar Y11 Y21 ┆ Yr1 Y12 Y22 ┆ Yr2 试验数据 … … ┆ … Y 1m Y 2m ┆ Yrm 和 T1 T2 ┆ Tr 和的平方 平方和

概率论与数理统计第八章习题答案

概率论与数理统计第八章习题答案

第八章 假设检验部分习题解答2~(32.05,1.1)6cm 32.5629.6631.6430.0031.8731.0332.050.050.01.N ξαα==已知某种零件的长度,现从中抽查件,测得它们的长度(单位:)为:,,,,,试问这批零件的平均长度是否就是厘米?检查使用两个不同的显著性水平:,0011:32.05.~(0,1)1,.6,31.03)31.127.H N n U u µµξα==<−=+=解:()提出假设,),计算将以上数据代入得观察值/20.02510/20.005102.056.(5)0.05 1.96,|| 2.056 1.96,0.05;0.01 2.58,|| 2.58,0.01u u u H u u u H αααααα=−====>====<=作出判断。

当时,因而时,拒绝当时,因而时,接受。

0(,1)100 5.32:50.01N H µξµα===从正态总体中抽取个样品,计算得,试检验是否成立(显著性水平)?00/2/201/20.01: 5.(2)(3),(||)1.(4) 5.32.3.250.01H u P U u U u u u αααµµξαµα==<=−=======解:()提出假设,使求观察值。

已知将以上数据代入得观察值()作出判断。

当时,0510 2.58,|| 2.58,0.01u H α=>=因而时,拒绝。

26.~(100,1.2)999.3 98.7 100.5 101.2 98.3 99.7 102.1 100.5 99.5.0.05(1)2N g ξα=某公司用自动灌装机灌装营养液,设自动灌装机的正常灌装量,现测量支灌装样品的灌装量(单位:)为,,,,,,,,问在显著性水平下,灌装量是否符合标准?()灌装精度是否在标准范围内?001/20.0251():100.()~(0,1)()1,.()9,0.05.0.05 1.i H ii N iii iv n u v u u αµµξααα==−<−==−===解:()提出假设,)()作出判断。

概率论与数理统计课后习题答案 第八章

概率论与数理统计课后习题答案 第八章

有无显著差异(
).
解:检验假设
经计算
查表知
由于
故接受
即甲,乙两台车床加工的产品直径无显著差异.
8. 从甲地发送一个信号到乙地.设乙地接受到的信号值是一个服从正态分布
的随机变量,其
中 为甲地发送的真实信号值.现甲地重复发送同一信号 5 次,乙地接受到的信号值为
8.05
8.15
8.2
8.1
8.25
设接收方有理由猜测甲地发送的信号值为 8.问能否接受这一猜测? (

该机正常工作与否的标志是检验 是否成立.一日
试问:在检验水平
下,该日自动机工作是否正
查表知
,由于
故拒绝 ,即该日自动机工作不正常.
2. 假定考生成绩服从正态分布,在某地一次数学统考中,随机抽取了 36 位考生的成绩,算的平均成绩为 分,标准差 S=15 分,问在显著性水平 0.05 下,是否可以认为这次考试全体考生的平均成绩为
问这两台机床的加工精度是否一致?
解:该题无 值,故省略.(用 F 检验)
4. 对两批同类电子元件的电阻进行测试,各抽 6 件,测得结果如下(单位:Ω )
A 批 0.140 0.138 0.143 0.141 0.144 0.137
B 批 0.135 0.140 0.142 0.136 0.138 0.141
态分布
(单位:公斤).现抽测了 9 包,其重量为:
99.3
98.7
100.5 101.2 98.3
99.7
99.5
102.0 100.5
问这天包装机工作是否正常?
将这一问题化为一个假设检验问题,写出假设检验的步骤,设
解: (1)作假设

概率论与数理统计第八章习题答案

概率论与数理统计第八章习题答案

第八章 假设检验部分习题解答2~(32.05,1.1)6cm 32.5629.6631.6430.0031.8731.0332.050.050.01.N ξαα==已知某种零件的长度,现从中抽查件,测得它们的长度(单位:)为:,,,,,试问这批零件的平均长度是否就是厘米?检查使用两个不同的显著性水平:,0011:32.05.~(0,1)1,.6,31.03)31.127.H N n U u µµξα==<−=+=解:()提出假设,),计算将以上数据代入得观察值/20.02510/20.005102.056.(5)0.05 1.96,|| 2.056 1.96,0.05;0.01 2.58,|| 2.58,0.01u u u H u u u H αααααα=−====>====<=作出判断。

当时,因而时,拒绝当时,因而时,接受。

0(,1)100 5.32:50.01N H µξµα===从正态总体中抽取个样品,计算得,试检验是否成立(显著性水平)?00/2/201/20.01: 5.(2)(3),(||)1.(4) 5.32.3.250.01H u P U u U u u u αααµµξαµα==<=−=======解:()提出假设,使求观察值。

已知将以上数据代入得观察值()作出判断。

当时,0510 2.58,|| 2.58,0.01u H α=>=因而时,拒绝。

26.~(100,1.2)999.3 98.7 100.5 101.2 98.3 99.7 102.1 100.5 99.5.0.05(1)2N g ξα=某公司用自动灌装机灌装营养液,设自动灌装机的正常灌装量,现测量支灌装样品的灌装量(单位:)为,,,,,,,,问在显著性水平下,灌装量是否符合标准?()灌装精度是否在标准范围内?001/20.0251():100.()~(0,1)()1,.()9,0.05.0.05 1.i H ii N iii iv n u v u u αµµξααα==−<−==−===解:()提出假设,)()作出判断。

《概率论与数理统计》习题及答案第八章

《概率论与数理统计》习题及答案第八章

《概率论与数理统计》习题及答案第⼋章《概率论与数理统计》习题及答案第⼋章1. 设x.,x2,,%…是从总体X中抽岀的样本,假设X服从参数为兄的指数分布,⼏未知,给泄⼊〉0和显著性⽔平a(Ovavl),试求假设H o的⼒$检验统计量及否建域.解选统汁量*=2⼈⼯⼄=2如庆则Z2 -Z2(2n) ?对于给宦的显著性⽔平a,査z'分布表求出临界值加⑵",使加⑵2))=Q因z2 > z2 > 所以(F": (2/1)) => (/2 > /; (2n)),从⽽a = P{X2 > 加⑵“} n P{r > Za(2/0)可见仏:2>^的否定域为Z2>Z;(2?).2. 某种零件的尺⼨⽅差为O-2=1.21,对⼀批这类零件检查6件得尺⼨数据(毫⽶):,,,,,。

设零件尺⼨服从正态分布,问这批零件的平均尺⼨能否认为是毫⽶(a = O.O5).解问题是在/已知的条件下检验假设:“ = 32.50Ho的否定域为1“ l> u af2u0(n5 = 1.96 ,因1“ 1=6.77 >1.96,所以否泄弘,即不能认为平均尺⼨是亳⽶。

3. 设某产品的指标服从正态分布,它的标准差为b = 100,今抽了⼀个容量为26的样本,计算平均值1580,问在显著性⽔平a = 0.05下,能否认为这批产品的指标的期望值“不低于1600。

解问题是在b?已知的条件下检验假设://>1600的否定域为u < -u a/2,其中X-1600 r-r 1580-1600 c , “11 = ------------ V26 = ------------------- x 5.1 = —1.02.100 100⼀叫05 =—1.64.因为// =-1.02>-1.64 =-M005,所以接受H(>,即可以认为这批产品的指标的期望值“不低于1600.4. ⼀种元件,要求其使⽤寿命不低于1000⼩时,现在从这批元件中任取25件,测得其寿命平均值为950⼩时,已知该元件寿命服从标准差为o-=100 ⼩时的正态分布,问这批元件是否合格(<7=0.05)解设元件寿命为X,则X~N(“,IO。

概率论与数理统计8习题八参考答案

概率论与数理统计8习题八参考答案

概率统计——习题八参考答案8.1 设t (单位:公斤)表示进货数,],[21t t t ∈,进货t 所获利润记为Y ,则有:⎩⎨⎧<<≤<--=21,,)(t X t at t X t b X t aX Y 又X 的密度函数为 ⎪⎩⎪⎨⎧<<-=其它,0,1)(2112t x t t t x f所以 ⎰⎰-+---=21121211])([)(t t t t dx t t at dx t t b x t ax Y E 1221212]2)(2[t t t b a t at bt t b a -+-+++-= 令 dt Y dE )(0])([1221=-+++-=t t at bt t b a ,得驻点b a bt at t ++=12。

所以该店应该进ba bt at ++12公斤商品,才可使利润的数学期望最大。

8.2 设⎩⎨⎧=,,,0,1否则只球与盒配对第i X i n i ,,2,1 = 则.1∑==n i i X X ∑===∴===n i i i i X E X E n X P X E 1.1)()(,1}1{)( 8.3 ∑∑∞=∞=--=--⋅-=--=-=0121,1)]1(1[1)1()1()1()1()(k k k k p p p p p p k p p p kp X E )()]1([])1([)(2X E X X E X X X E X E +-=+-=∑∑∞=∞=--+---=-+--=02221)1)(1()1(1)1()1(k k k k p p p k k p p p p p p k k ,)2)(1(])1(2[11)]1(1[2)1(2232p p p p p p p p p p p p --=+--=-+---= .11)2)(1()]([)()(22222p p p p p p p X E X E X D -=⎪⎪⎭⎫ ⎝⎛----=-=∴ 8.4 μ+μ-===⎰⎰⎰+∞∞-μ--+∞∞-μ--+∞∞-dx e x dx e x dx x xf X E x x 21)(21)()(μ=μ+=⎰+∞∞--dt e t t 21 ⎰⎰⎰+∞∞--+∞∞-μ--+∞∞-=μ-=-=dy e y dx e x dx x f X E x X D y x 2222121)()()]([)(202==⎰+∞-dy e y y 8.5 用切比雪夫不等式即得,2)(1}2|)({|}2|{|212X D X E X P X P -≥<-=<= 故 .2)211(4)(=-≥X D 8.6 (1)1=ρXY ; (2)73.0)(=+Y X D ;(3))()(),(y F x F y x F Y X Y X =⇔相互独立与;0=ρ⇔XY Y X 不相关与;=⋂⇔B A B A 互不相容与事件∅; =⋂Ω=⋃⇔B A B A B A 且互为对立事件与事件∅或A B =;)()()(B P A P AB P B A =⇔相互独立与事件。

概率论与数理统计第八章假设检验习题解答

概率论与数理统计第八章假设检验习题解答

1.[一]某批矿砂的5个样品中的镍含量,经测定为(%)3.25 3.27 3.24 3.26 3.24。

设测定值总体服从正态分布,问在α = 0.01下能否接受假设:这批矿砂的含镍量的均值为3.25.解:设测定值总体X~N (μ,σ 2),μ,σ 2均未知步骤:(1)提出假设检验H 0:μ=3.25; H 1:μ≠3.25 (2)选取检验统计量为)1(~25.3--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α(4)n=5, α = 0.01,由计算知01304.0)(11,252.3512=--==å=i iX Xn S x查表t 0.005(4)=4.6041, )1(343.0501304.025.3252.3||2-<=-=n t t α(5)故在α = 0.01下,接受假设H 02.[二] 如果一个矩形的宽度ω与长度l 的比618.0)15(21»-=l ω,这样的矩形称为黄金矩形。

这种尺寸的矩形使人们看上去有良好的感觉。

现代建筑构件(如窗架)、工艺品(如图片镜框)、甚至司机的执照、商业的信用卡等常常都是采用黄金矩型。

下面列出某工艺品工厂随机取的20个矩形的宽度与长度的比值。

设这一工厂生产的矩形的宽度与长短的比值总体服从正态分布,其均值为μ,试检验假设(取α = 0.05)H 0:μ = 0.618H 1:μ≠0.6180.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628 0.668 0.611 0.606 0.609 0.601 0.553 0.570 0.844 0.576 0.933. 解:步骤:(1)H 0:μ = 0.618; H 1:μ≠0.618 (2)选取检验统计量为)1(~618.0--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α (4)n=20 α = 0.05,计算知0925.0)(11,6605.01121=--===åå==ni ini ix xn S xnx ,)1(055.2200925.0618.06605.0||,0930.2)1(22-<=-==-n t t n t αα(5)故在α = 0.05下,接受H 0,认为这批矩形的宽度和长度的比值为0.6183.[三] 要求一种元件使用寿命不得低于1000小时,今从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时,已知这种元件寿命服从标准差为σ =100小时的正态分布。

概率论与数理统计(经管类)第八章课后习题答案word-推荐下载

概率论与数理统计(经管类)第八章课后习题答案word-推荐下载
������ = ������ ‒ ������0~������(������ ‒ 1) 选取检验统计量 ������ ������
| | |������| =
拒绝域为
������ ‒ 70 ������ ������
≥ ������������(������ ‒ 1) = ������0.025(35) = 2.0301
| | ������������ = ������0.025 = 1.96
(3)查表知 2
,
拒绝域为|������| =
������ ‒ 100 ������ ������
≥ 1.96
(4)由样本观测值有������ = 99.97
| | | | ������ ‒ 100 99.97 ‒ 100
∴ |������| =
将这一问题化为一个假设检验问题,写出假设检验的步骤,设������ = 0.05. 解: (1)作假设������0:������ = 100,������1:������ ≠ 100
(2)选取检验统计量������
=
������ ‒ ������
100~������(0,1)
������
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术0艺料不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试22下卷,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看2度并22工且22作尽22下可22都能2可地护1以缩关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编5试要写、卷求重电保技要气护术设设装交备备4置底高调、动。中试电作管资高气,线料中课并3敷试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 甲,乙两台机床加工某种零件,零件的直径服从正态分布,总体方差反映了加工精度.为比较两台机床
的加工精度有无差别,现从各自加工的零件中分别抽取 7 件产品和 8 件产品,测得其直径为
X(机床甲) 16.2 16.4 15.8 15.5 16.7 15.6 15.8
Y(机床乙) 15.9 16.0 16.4 16.1 16.5 15.8 15.7 15.0
(kg),样
本标准差
(kg).设产品质量服从正态分布,这两个样本相互独立.问能否认为使用 B 原料生产的
产品平均质量较使用原料 A 显著大?(取显著性水平
).
解:检验假设
选取检验统计量
查表知
由于
故接受
即使用 B 原料生产的产品平均质量于使用原料 A 生产的产品平均质量无显著大.
自测题 8
一、,选择题
已知元件电阻服从正态分布,设

(1) 两批电子元件电阻的方差是否相等;
(2) 两批元件的平均电阻是否有差异.
解: (1)检验假设
经计算

查表得
无法查
对应值,故无法做.
习题 8.4
某厂使用两种不同的原料生产同一类产品,随机选取使用原料 A 生产的产品 22 件,测得平均质量为
(kg),样本标准差
(kg).取使用原料 B 生产的样品 24 件,测得平均质量为
在假设检验问题中,显著性水平 的意义是 A .
A. 在 成立的条件下,经检验 被拒绝的概率
B. 在 成立的条件下,经检验 被接受的概率
C. 在 不成立的条件下,经检验 被拒绝的概率
D. 在 不成立的条件下,经检验 被接受的概率
二、,填空题
1. 设总体 X 服从正态分布
其中 未知
为其样本 若假设检验问题为
问这两台机床的加工精度是否一致?
解:该题无 值,故省略.(用 F 检验)
4. 对两批同类电子元件的电阻进行测试,各抽 6 件,测得结果如下(单位:Ω )
A 批 0.140 0.138 0.143 0.141 0.144 0.137
B 批 0.135 0.140 0.142 0.136 0.138 0.141
70 分? 解: 检验假设
选取检验统计量
拒绝域为

代入得
.故接受
即在显著性水平 0.05 下, 可以认为这次考试全体考生的平均成绩为 70 分.
3. 某种产品的重量
(单位:克).更新设备后,从新生产的产品中,随机地抽取 100 个,测得样本
均值
(克).如果方差没有变化,问设备更新后,产品的平均重量是否有显著变化(
)
解: 检验假设

又因
,
故拒绝 ,即使用新工艺后,维生素 C 的含量有显著变化.
做本章题前的几点注意事项: 1. 确定问题是要对总体均值(用 u 检验 & t 检验)还是对总体方差( 2. 根据题意判断出假设检验的原假设 备择假设 . 3. 熟记并能灵活运用 page 181 表 8-4.
检验 & F 检验)做假设检验.
于是得出拒绝域为
经计算
代入
, 故拒绝 .即总体 X 的方差有显著变化.
2. 设有来自正态总体
,容量为 100 的样本,样本均值

下 检验下列假设
(1)
(2)
解: (1) 检验假设
均未知,而
因此可用大样本情况的 u 检验
查表知
,由于
故拒绝 .(同课后答案有争议)
(2)该题无法查到
值故省略.(用 检验)
习题 8.1
1. 某天开工时,需检验自动装包机工作是否正常.根据以往的经验,其装包的重量在正常情况下服从正
态分布
(单位:公斤).现抽测了 9 包,其重量为:
99.3
98.7
100.5 101.2 98.3
99.7
99.5
102.0 100.5
问这天包装机工作是否正常?
将这一问题化为一个假设检验问题,写出假设检验的步骤,设

查表知
,由于
故接受 .
即可以认为新油的辛烷平均等级比原燃料平均等级偏低.
5. 从一批灯泡中随机抽取 50 个,分别测量其寿命,算得其平均值
(小时),标准差 S=490(小时).
问能否认为这批灯泡的平均寿命为 2000(小时)(
).(用大样本情况下的 u 检验)
解: 检验假设

查表知
,由于
故接受 .
解: (1)作假设
(2)选取检验统计量
(3)查表知 (4)由样本观测值有
, 拒绝域为
不属于拒绝域,所以接受原假设 ,即认为这天包装机工作正常.
2. 设 分别是假设检验中犯第一,第二类错误的概率且
分别为原假设和备择驾驶,则
(1) 接受
不真
(2) 拒绝 (3) 拒绝
真 不真
(4) 接受

习题 8.2
1. 某自动机生产一种铆钉,尺寸误差
,则采用的检验统计量应为
.
2. 设某假设检验问题的拒绝域为 W,且当原假设 成立时,样本值
则犯第一类错误的概率为 0.15 .(参考 page 169)
3. 设样本
来自正态分布
,假设检验问题为
落入 W 的概率为 0.15, ,则在 成立的条件
下,对显著性水平 ,拒绝域 W 应为
其中
.(参考 page 181 表 8-4)
)
解: 检验假设

查表知
,由于
故接受 .即可以接受这一猜测.
习题 8.3
1. 某纺织厂生产的某种产品的纤度用 X 表示,在稳定生产时,可假定
现在随机抽取 5 跟纤维,测得其纤度为
1.32
1.55
1.36
1.40
1.44
试问总体 X 的方差有无显著变化. (
)
解: 检验假设
检验统计量
,其中标准差
.

查表得
有无显著差异(
).
解:检验假设
经计算
查表知
由于
故接受
即甲,乙两台车床加工的产品直径无显著差异.
8. 从甲地发送一个信号到乙地.设乙地接受到的信号值是一个服从正态分布
的随机变量,其
中 为甲地发送的真实信号值.现甲地重复发送同一信号 5 次,乙地接受到的信号值为
8.05
8.15
8.2
8.1
8.25
设接收方有理由猜测甲地发送的信号值为 8.问能否接受这一猜测? (
7. 有甲,乙两台机床加工同样产品,从这两台机床中随机抽取若干件,测得产品直径(单位:毫米)为:
机床甲 20.5
19.8
19.7
20.4
20.1
20.0
19.0
19.9
机床乙 19.7
20.8
20.5
19.8
19.4
20.6
19.2
假定两台机床加工的产品直径都服从正态分布,且总体方差相等.问甲,乙两台车床加工的产品直径
四、用传统工艺加工的某种水果罐头中,每瓶的平均维生素 C 的含量为 19(单位:mg).现改变了加工工艺,
抽查了 16 瓶罐头,测得维生素 C 的含量的平均值
,样本标准差 S=1.617.假定水果罐头中维
生素 C 的含量服从正态分布.问在使用新工艺后,维生素 C 的含量是否有显著变化(显著性水平
)? (附
)?
解: 检验假设

查表知
,由于
故拒绝 .
即设备更新后,产品的平均重量有显著变化.
4. 一种燃料的辛烷等级服从正态分布,其平均等级为 98.0,标准差为 0.8,现从一批新油中抽 25 桶,算得
样本均值为 97.7.假定标准差与原来一样,问新油的辛烷平均等级是否比原燃料平均等级偏低
(
).
解: 检验假设
即可以认为这批灯泡的平均寿命为 2000(小时).
6. 某批矿砂的五个样品中镍含量经测定为(%):
3.25
3.27
3.24
3.26
3.24
设测定值服从正态分布,问能否认为这批矿砂的镍含量为 3.25%(
).
解: 检验假设
选取检验统计量
经计算
拒绝域为

代入得
即可以认为这批矿砂的镍含量为 3.25%.
.故接受
抽检容量 n=10 的样本,测得样本均值
常?
解:检验假设

该机正常工作与否的标志是检验 是否成立.一日
试问:在检验水平
下,该日自动机工作是否正
查表知
,由于
故拒绝 ,即该日自动机工作不正常.
2. 假定考生成绩服从正态分布,在某地一次数学统考中,随机抽取了 36 位考生的成绩,算的平均成绩为 分,标准差 S=15 分,问在显著性水平 0.05 下,是否可以认为这次考试全体考生的平均成绩为
三、某型号元件的尺寸 X 服从正态分布,其均值为 3.278cm,标准差为 0.002cm.现用一种新工艺生产此
类元件,从中随机取 9 个元件,测量其尺寸,算得均值
,问用新工艺生产的元件尺寸均
值与以往有无显著差异.(显著发生性水平
)(附
)
解: 检验假设

又因
,
故拒绝 ,即用新工艺生产的元件尺寸均值与以往有差异.
相关文档
最新文档