高一数学经典错题回顾(含答案)
第一章 集合易错题(1)(含答案及解析)-苏教版人教版必修1高一数学上册同步培优训练

专题03 集合中的易错题(1)(满分120分时间:60分钟)班级姓名得分一、选择题:1.下列五个写法,其中错误..写法的个数为()①{0}∈{0,2,3};②⌀≠⊂{0};③{0,1,2}⊆{1,2,0};④N∈R;⑤0∩⌀=⌀;A. 1B. 2C. 3D. 42.已知集合A=(1,3),集合B={x|2m<x<1−m}.若A∩B=⌀,则实数m的取值范围是()A. 13⩽m<32B. m⩾0C. m⩾32D. 13<m<323.若集合A={x∈N|x≤√2020},a=2√2,则下列结论正确的是()A. {a}⊆AB. a⊆AC. {a}∈AD. a∉A4.已知集合A={x||x|<3,x∈N},集合B={−1,0,1,2},则图中阴影部分所表示的集合为()A. {1,2}B. {0,1,2}C. {−1,1,2}D. {−1,0,1,2}5.已知集合{1,2}⊆A⊆{1,2,3,4,5,6},则满足条件的A的个数为()A. 16B. 15C. 8D. 76.下列所给的关系式正确的个数是()①0⊆N;②π∈Q;③{a}⊆{a,b,c,d};④⌀∈R.A. 1B. 2C. 3D. 4二、多选题7.给定数集M,若对于任意a,b∈M,有a+b∈M,且a−b∈M,则称集合M为闭集合,则下列说法中不正确的是A. 集合M={−4,−2,0,2,4}为闭集合B. 正整数集是闭集合C. 集合M={n|n=3k,k∈Z}为闭集合D. 若集合A1,A2为闭集合,则A1∪A2为闭集合8.已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+|xyz|xyz的值所组成的集合是M,则下列判断正确的是()A. 0∉MB. 2∈MC. −4∈MD. 4∈M三、单空题9.已知集合A={x|−2<x<5},B={x|p+1<x<2p−1},A∪B=A,则实数p的取值范围是______.10.A={x|x2=1},B={x|mx=1},若A∪B=A,则m的取值集合为_____.11.下列表示正确的是①{0}=⌀,②{2}∈{x2−3x+2=0}③0∈{0}④C U(A⋂B)=(C U A)⋂(C U B)12.已知全集U=R,集合A={x|y=√−x},B={y|y=1−x2},那么集合(∁U A)∩B=____________.四、解答题13.已知全集U={x∈N|x<6},集合A={1,2,3},B={2,4}.求:(1)A∩B,C U(A⋃B);(2)设集合C=x{|−a⩽x⩽2a−1}且C U(A⋃B)⊆C,求a的取值范围;14.已知A={x|3⩽x⩽5},B={x|2a⩽x⩽a+3},全集U=R.(1)当a=1时,求A∩B和A∪B;(2)若B⊆(C U A),求实数a的取值范围.15.设A={x|x2+2(a+1)x+a2−1=0},B={x|x(x+4)(x−12)=0,x∈Z}.若A⊆A∩B,求a的取值范围.专题03 集合中的易错题(1)(满分120分时间:60分钟)班级姓名得分一、选择题:16.下列五个写法,其中错误..写法的个数为()①{0}∈{0,2,3};②⌀≠⊂{0};③{0,1,2}⊆{1,2,0};④N∈R;⑤0∩⌀=⌀;A. 1B. 2C. 3D. 4【答案】C【解析】【分析】本题考查集合部分的一些特定符号、一些特殊的集合、集合中元素的三要素.据“∈”于元素与集合;“∩”用于集合与集合间;判断出①④⑤错,集合是它本身的子集,⌀是非空集合的真子集判断出②④的对错.【解答】解:对于①,“∈”是用于元素与集合的关系,故①错,对于②,⌀是任意非空集合的真子集,故②对,对于③,集合是它本身的子集,故③对,对于④,“∈”是用于元素与集合的关系,故④错,对于⑤,因为∩是用于集合与集合的关系的,故⑤错,故选C.17.已知集合A=(1,3),集合B={x|2m<x<1−m}.若A∩B=⌀,则实数m的取值范围是()A. 13⩽m<32B. m⩾0C. m⩾32D. 13<m<32【答案】B 【解析】【分析】本题考查集合的包含关系判断与应用,交集及其运算等基础知识, 分类讨论m 的取值,得出使A ∩B =Ø成立时m 的取值范围. 【解答】解:由A ∩B =Ø,得:①若2m ≥1−m ,即m ≥13时,B =Ø,符合题意; ②若2m <1−m ,即m <13时,需{m <131−m ≤1或{m <132m ≥3, 解得0≤m <13, 综合可得m ≥0,∴实数m 的取值范围是m ≥0. 故选B .18. 若集合A ={x ∈N|x ≤√2020},a =2√2,则下列结论正确的是( )A. {a}⊆AB. a ⊆AC. {a}∈AD. a ∉A【答案】D 【解析】 【分析】本题考查元素和集合的关系,集合和集合的关系. 【解答】解:因为a =2√2不是自然数,而集合A 是不大于√2020的自然数构成的集合, 所以a ∉A . 故选D .19. 已知集合A ={x||x|<3,x ∈N},集合B ={−1,0,1,2},则图中阴影部分所表示的集合为( )A. {1,2}B. {0,1,2}C. {−1,1,2}D. {−1,0,1,2}【答案】B【解析】【分析】本题主要考查用venn图表示集合的交集运算,易知图中阴影部分对应的集合为A∩B.【解答】解:A={x||x|<3,x∈N}={x|−3<x<3,x∈N}={0,1,2},易知图中阴影部分对应的集合为A∩B,A∩B={0,1,2},故选B.20.已知集合{1,2}⊆A⊆{1,2,3,4,5,6},则满足条件的A的个数为()A. 16B. 15C. 8D. 7【答案】A【解析】【分析】根据题意A中必须有1,2这两个元素,因此A的个数应为集合{3,4,5,6}的子集的个数.【解答】解:∵{1,2}⊆A⊆{1,2,3,4,5},∴集合A中必须含有1,2两个元素,可以含有3,4,5,6.因此满足条件的集合A为{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,6},{1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,4,5},{1,2,4,6},{1,2,5,6},{1,2,3,4,5},{1,2,3,4,6},{1,2,3,5,6},{1,2,4,5,6},{1,2,3,4,5,6}共16个.故选A.21.下列所给的关系式正确的个数是()①0⊆N;②π∈Q;③{a}⊆{a,b,c,d};④⌀∈R.A. 1B. 2C. 3D. 4【答案】A【解析】【分析】本题考查了集合与元素、集合与集合的关系,【解答】解:①0⊆N,0为集合N的一个元素,0∈N,故①错误,②π∈Q,因为π为无理数,π∉Q,故②错误,③{a}⊆{a,b,c,d},因为集合{a}是集合{a,b,c,d}的子集,故③正确,④⌀∈R,因为ϕ为R 的子集,故④错误.故选A.二、多选题22.给定数集M,若对于任意a,b∈M,有a+b∈M,且a−b∈M,则称集合M为闭集合,则下列说法中不正确的是A. 集合M={−4,−2,0,2,4}为闭集合B. 正整数集是闭集合C. 集合M={n|n=3k,k∈Z}为闭集合D. 若集合A1,A2为闭集合,则A1∪A2为闭集合【答案】ABD【解析】【分析】本题考查集合中的新定义问题,考查分析问题、解决问题的能力,根据闭集合定义逐一判断即可.【解答】解:A.当集合M={−4,−2,0,2,4}时,2,4∈M,而2+4∉M,所以集合M不为闭集合.B.设a,b是任意的两个正整数,则a+b∈M,但a−b不一定属于M,所以正整数集不为闭集合.C.当M={n|n=3k,k∈Z}时,设a=3k1,b=3k2,k1,k2∈Z,则a+b=3(k1+k2)∈M,a−b=3(k1−k2)∈M,所以集合M是闭集合.D.设A1={n|n=3k,k∈Z},A2={n|n=2k,k∈Z}由C可知,集合A1,A2为闭集合,2,3∈(A1∪A2),而(2+3)∉(A1∪A2),此时A1∪A2不为闭集合.所以说法中不正确的是ABD.故选ABD.23.已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+|xyz|xyz的值所组成的集合是M,则下列判断正确的是()A. 0∉MB. 2∈MC. −4∈MD. 4∈M 【答案】CD【解析】【分析】本题考查集合中元素的性质、集合与元素的关系,注意题意中x、y、z的位置有对称性,即代数式的值只与x、y、z中有几个为负数有关,与具体x、y、z中谁为负无关.根据题意,分析可得代数式x|x|+y|y|+z|z|+|xyz|xyz的值与x、y、z的符号有关;按其符号的不同分4种情况讨论,分别求出代数式在各种情况下的值,即可得M,分析选项可得答案.【解答】解:根据题意,分4种情况讨论;①x、y、z全部为负数时,则xyz也为负数,则x|x|+y|y|+z|z|+|xyz|xyz=−4,②x、y、z中有一个为负数时,则xyz为负数,则x|x|+y|y|+z|z|+|xyz|xyz=0,③x、y、z中有两个为负数时,则xyz为正数,则x|x|+y|y|+z|z|+|xyz|xyz=0,④x、y、z全部为正数时,则xyz也正数,则x|x|+y|y|+z|z|+|xyz|xyz=4;则M={4,−4,0},分析选项可得CD符合.故选CD.三、单空题24.已知集合A={x|−2<x<5},B={x|p+1<x<2p−1},A∪B=A,则实数p的取值范围是______.【答案】(−∞,3]【解析】【分析】本题考查了集合的并集以及集合中的参数取值问题,集合的包含关系,考查了分类讨论的思想及转化的思想,解题的关键是根据题设条件对集体B分类讨论,解出参数p的取值范围.由题意,由A∪B=A,可得B⊆A,再由A={x|−2<x<5},B={x|p+1<x<2p−1},分B=⌀,B≠⌀两类解出参数p的取值范围即可得到答案.【解答】解:由A∪B=A,可得B⊆A,又A={x|−2<x<5},B={x|p+1<x<2p−1},若B=⌀,即p+1≥2p−1得p≤2,显然符合题意;若B ≠⌀,即有p +1<2p −1,得p >2时, 有{p +1≥−22p −1≤5,解得−3≤p ≤3, 故有2<p ≤3,综上可知,实数p 的取值范围是(−∞,3]. 故答案为(−∞,3].25. A ={x|x 2=1},B ={x|mx =1},若A ∪B =A ,则m 的取值集合为_____.【答案】{−1,0,1} 【解析】 【分析】本题考查集合的求法,考查并集、子集等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,当m =0时,B =⌀,A ∪B =A 成立;当m ≠0,B ={1m },由A ∪B =A ,得B ⊂A ,从而1m =−1或1m =1,由此能求出m 的取值的集合. 【解答】解:∵集合A ={x|x 2=1}={−1,1},B ={x|mx =1},且A ∪B =A , ∴当m =0时,B =⌀,A ∪B =A 成立; 当m ≠0,B ={1m },由A ∪B =A ,得B ⊂A , ∴1m =−1或1m =1, 解得m =−1或m =1.综上,m 的取值的集合为{−1,0,1}. 故答案为{−1,0,1}.26. 下列表示正确的是①{0}=⌀,②{2}∈{x 2−3x +2=0} ③0∈{0}④C U (A⋂B)=(C U A)⋂(C U B) 【答案】③ 【解析】 【分析】本题考查集合与集合之间的关系、元素与集合之间的关系的应用,由集合与集合之间的关系、元素与集合之间的关系进行判断即可.【解答】解:①{0}⫌⌀,所以错误;②{2}∈{x2−3x+2=0}集合之间关系,首先符号错误,其次{x2−3x+2=0}中就一个元素x2−3x+ 2=0,所以错误;③0∈{0},正确;④取U={1,2,3},A={1,2},B={1},则C U(A∩B)={2,3},(C U A)∩(C U B)={3},所以错误.故答案为③.27.已知全集U=R,集合A={x|y=√−x},B={y|y=1−x2},那么集合(∁U A)∩B=____________.【答案】(0,1]【解析】【分析】本题考查了函数的定义域,指数函数的值域,以及交集的运算,先化简集合A和B,然后求集合A的补集,再根据两个集合的交集的意义求解.【解答】解:∵A={x|y=√−x},B={y|y=1−x2},∴A={x|x≤0},B={y|y≤1}∴∁U A={x|x>0},(∁U A)∩B={y|0<y≤1}(∁U A)∩B=(0,1].故答案为(0,1].四、解答题28.已知全集U={x∈N|x<6},集合A={1,2,3},B={2,4}.求:(1)A∩B,C U(A⋃B);(2)设集合C=x{|−a⩽x⩽2a−1}且C U(A⋃B)⊆C,求a的取值范围;【答案】解:(1)因为A={1,2,3},B={2,4},所以A ∩B ={2},A ∪B ={1,2,3,4}, 因为U ={x ∈N|x <6}={0,1,2,3,4,5} ∴C U (A ∪B)={0,5}; (2)∵C U (A ∪B)⊆C , ∴{−a <02a −1⩾52a −1>−a , 解得a ≥3. 故a ≥3. 【解析】略29. 已知A ={x|3⩽x ⩽5},B ={x|2a ⩽x ⩽a +3},全集U =R .(1)当a =1时,求A ∩B 和A ∪B ; (2)若B ⊆(C U A),求实数a 的取值范围. 【答案】 解:(1)当a =1时,B ={x|2⩽x ⩽4}, A ∩B ={x|3⩽x ⩽4} A ∪B ={x|2⩽x ⩽5}, (2)C U A ={x|x <3或x >5}当B =⌀时,2a >a +3,a >3符合题意, 当B ≠⌀时,{2a ≤a +3a +3<3,或{2a ≤a +32a >5, 解得a <0或52<a ≤3, 所以a ∈(−∞,0)∪(52,+∞).【解析】本题考查集合中的参数取值问题,属于集合包含关系的运用,求解本题关键是理解包含关系的意义,本题中有一易错点,在第二小问中空集容易因为忘记讨论B 是空集导到失分,这是一个很容易失分的失分点,切记.(1)当a =1时,先求出集合B ,再根据交集的定义求集合A ∩B 和A ∪B 即可;(2)若B ⊆(C U A),求实数a 的取值范围进要注意B 是空集的情况,故此题分为两类求,是空集时,不是空集时,比较两个集合的端点即可.)=0,x∈Z}.若A⊆A∩B,求a的取值30.设A={x|x2+2(a+1)x+a2−1=0},B={x|x(x+4)(x−12范围.【答案】解:B={−4,0},由A⊆A∩B知:A=A∩B,即:A⊆B,①当A=⌀时,方程x2+2(a+1)x+a2−1=0无解,即Δ=4(a+1)2−4(a2−1)<0,解得:a<−1;②当A为单元素集时,Δ=4(a+1)2−4(a2−1)=0,即a=−1,此时A={0}满足题意;③当A={−4,0}时,−4和0是关于x的方程x2+2(a+1)x+a2−1=0的两根,∴a=1.综上所述:a≤−1或a=1.【解析】本题考查了子集、交集的定义及其运算,考查了分类讨论思想.先求得集合B,由A⊆A∩B知:A=A∩B,即:A⊆B,利用分类讨论方法分别求得集合A=⌀,集合A为单元素集和A={−4,0}时a的范围,再综合即可.11。
中职高一上学期瑞职高一数学上学期作业本常见错题摘抄(偏难)

一、集合1.已知集合A 含有两个元素3a -和21a -,且3A -∈求实数a 的值.2.已知集合A 中含有三个元素2,4,6,且当a A ∈时,有6a A -∈,求a 的值.3.若,a b ∈R ,且0,0a b ≠≠,求a b a b +的可能取值组成的集合中元素的个数。
4.若{}1,2,3A =,{}3,5B =,则用列举法表示{}2,A B a b a A b B *=-∈∈。
5.已知集合M 满足{}{}2,31,2,3,4,5M ⊆⊆,求满足条件的集合M 。
6.集合{}1,3,A x =,{}2,1B x =,且B A ⊆,求满足条件的实数x 的值。
7.集合{}2,A a =,{}2,2B a =,且A B =,求a 的值。
8.设集合{}{}22,1,A x N x B y y x x A =∈<==-∈,{}C x x A x B =∈∈或,求集合C 的真子集个数。
9.方程组20x y x y +=⎧⎨-=⎩的解构成的集合是。
10.已知集合126A x ZN x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法表示集合A 为。
11.已知集合{}2210M x ax x =++=,求:(1)若M 中只有一个元素,求实数a 的值,并求出相应的集合M 。
(2)若M 中最多有一个元素,求实数a 的取值范围。
12.若集合(){},210A x y x y =+=集合(){},35B x y x y =-=,则A B =13.集合{}1,0,2A =-,集合{}21,B x x n n Z ==-∈,求A B 。
14.已知集合{}0M =,写出满足{}0,2,4MN =的所有集合N 。
15. 集合{}2,1A =-,集合{}2,B x ax n Z ==∈,求AB A =,求实数a 的值。
16.已知集合{}{}22120,0A x x ax B x x bx c =++==++=,且A B ={}2, {}2,6A B =,求,,a b c 的值。
(完整)高一数学必修一易错题集锦答案

高一数学必修一易错题集锦答案1. 已知集合M={y |y =x 2+1,x∈R },N={y|y =x +1,x∈R },则M∩N=( )解:M={y |y =x 2+1,x∈R }={y |y ≥1}, N={y|y=x +1,x∈R }={y|y∈R }.∴M∩N={y |y ≥1}∩{y|(y∈R)}={y |y ≥1},注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x |y =x 2+1}、{y |y =x 2+1,x ∈R }、{(x ,y )|y =x 2+1,x ∈R },这三个集合是不同的.2 .已知A={x |x 2-3x +2=0},B={x |ax -2=0}且A∪B=A,求实数a 组成的集合C . 解:∵A∪B=A ∴B A 又A={x |x 2-3x +2=0}={1,2}∴B=或{}{}21或∴C={0,1,2}3 。
已知m ∈A,n ∈B, 且集合A={}Z a a x x ∈=,2|,B={}Z a a x x ∈+=,12|,又C={}Z a a x x ∈+=,14|,则有:m +n ∈ (填A,B,C 中的一个)解:∵m ∈A, ∴设m =2a 1,a 1∈Z , 又∵n B ∈,∴n =2a 2+1,a 2∈ Z ,∴m +n =2(a 1+a 2)+1,而a 1+a 2∈ Z , ∴m +n ∈B 。
4 已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p-1}.若B A ,求实数p 的取值范围.解:①当B≠时,即p +1≤2p-1p≥2.由B A 得:-2≤p+1且2p -1≤5. 由-3≤p≤3.∴ 2≤p≤3②当B=时,即p +1>2p -1p <2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.5 已知集合A={a,a +b,a +2b},B={a,ac,ac 2}.若A=B ,求c 的值.分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a +b=ac 且a +2b=ac 2,消去b 得:a +ac 2-2ac=0,a=0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c 2-2c +1=0,即c=1,但c=1时,B 中的三元素又相同,此时无解.(2)若a +b=ac 2且a +2b=ac ,消去b 得:2ac 2-ac -a=0,∵a≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0,又c≠1,故c=-21.点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验. 6 设A 是实数集,满足若a∈A,则a -11∈A ,1≠a 且1∉A.⑴若2∈A,则A 中至少还有几个元素?求出这几个元素⑵A 能否为单元素集合?请说明理由.⑶若a∈A,证明:1-a 1∈A.⑷求证:集合A 中至少含有三个不同的元素.解:⑴2∈A ⇒ -1∈A ⇒ 21∈A ⇒ 2∈A∴ A 中至少还有两个元素:-1和21⑵如果A 为单元素集合,则a =a -11即12+-a a =0该方程无实数解,故在实数范围内,A 不可能是单元素集⑶a∈A ⇒ a -11∈A ⇒ a--1111∈A ⇒111---a a∈A ,即1-a 1∈A⑷由⑶知a∈A 时,a -11∈A, 1-a 1∈A .现在证明a,1-a 1, a -11三数互不相等.①若a=a -11,即a2-a+1=0 ,方程无解,∴a ≠a -11②若a=1-a 1,即a 2-a+1=0,方程无解∴a ≠1-a 1③若1-a 1 =a -11,即a2-a+1=0,方程无解∴1-a 1≠a -11.综上所述,集合A 中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨.7 设M ={a ,b ,c },N ={-2,0,2},求(1)从M 到N 的映射种数;(2)从M 到N 的映射满足 f (a)>f (b)≥f(c),试确定这样的映射f 的种数. 解:(1)由于M ={a ,b ,c },N ={-2,0,2},结合映射的概念,有一共有27个映射(2)符合条件的映射共有4个0222,2,2,0,0,2220a a a ab b b bc c c c →→→→⎧⎧⎧⎧⎪⎪⎪⎪→-→-→→⎨⎨⎨⎨⎪⎪⎪⎪→-→-→-→⎩⎩⎩⎩8.已知函数()f x 的定义域为[0,1],求函数(1)f x +的定义域解:由于函数()f x 的定义域为[0,1],即01x ≤≤∴(1)f x +满足011x ∴≤+≤ 10x -≤≤,∴(1)f x +的定义域是[-1,0]9根据条件求下列各函数的解析式:(1)已知()f x 是二次函数,若(0)0,(1)()1f f x f x x =+=++,求()f x .(2)已知1)f x x x =+,求()f x(3)若()f x 满足1()2(),f x f ax x +=求()f x解:(1)本题知道函数的类型,可采用待定系数法求解设()f x =2(0)ax bx c a ++≠由于(0)0f =得2()f x ax bx =+,又由(1)()1f x f x x +=++,∴22(1)(1)1a x b x ax bx x +++=+++即 22(2)(1)1ax a b x a b ax b x ++++=+++211021a b b a a b a b +=+⎧⎪∴≠∴==⎨⎪+=⎩ 因此:()f x =21122x x +(2)本题属于复合函数解析式问题,可采用换元法求解设22()(1)2(1)1(1)f u u u u u ∴=-+-=-≥∴()f x =21x - (1x ≥)(3)由于()f x 为抽象函数,可以用消参法求解用1x 代x 可得:11()2(),f f x a x x +=与 1()2()f x f ax x +=联列可消去1()f x 得:()f x =233a axx -.点评:求函数解析式(1)若已知函数()f x 的类型,常采用待定系数法;(2)若已知[()]f g x 表达式,常采用换元法或采用凑合法;(3)若为抽象函数,常采用代换后消参法. 10 已知x y x 62322=+,试求22y x +的最大值.分析:要求22y x +的最大值,由已知条件很快将22y x +变为一元二次函数,29)3(21)(2+--=x x f 然后求极值点的x 值,联系到02≥y ,这一条件,既快又准地求出最大值.解 由 x y x 62322=+得.20,0323,0.3232222≤≤∴≥+-∴≥+-=x x x y xx y 又,29)3(2132322222+--=+-=+x x x x y x∴当2=x 时,22y x +有最大值,最大值为.429)32(212=+--点评:上述解法观察到了隐蔽条件,体现了思维的深刻性.大部分学生的作法如下:由 x y x 62322=+得 ,32322x x y +-=1(0),1(1)u x x x u u =+≥=-≥,29)3(2132322222+--=+-=+∴x x x x y x ∴当3=x 时,22y x +取最大值,最大值为29 这种解法由于忽略了02≥y 这一条件,致使计算结果出现错误.因此,要注意审题,不仅能从表面形式上发现特点,而且还能从已知条件中发现其隐蔽条件,既要注意主要的已知条件,又要注意次要条件,甚至有些问题的观察要从相应的图像着手,这样才能正确地解题.. 11设()f x 是R 上的函数,且满足(0)1,f =并且对任意的实数,x y 都有()()(21)f x y f x y x y -=--+,求()f x 的表达式.解法一:由(0)1,f =()()(21)f x y f x y x y -=--+,设x y =,得(0)()(21)f f x x x x =--+,所以()f x =21x x ++解法二:令0x =,得(0)(0)(1)f y f y y -=--+即()1(1)f y y y -=--+又将y -用x 代换到上式中得()f x =21x x ++点评:所给函数中含有两个变量时,可对这两个变量交替用特殊值代入,或使这两个变量相等代入,再用已知条件,可求出未知的函数.具体取什么特殊值,根据题目特征而定. 12判断函数1()(1)1xf x x x -=++.解:1()(1)1x f x x x -=++有意义时必须满足10111xx x -≥⇒-<≤+即函数的定义域是{x |11x -<≤},由于定义域不关于原点对称,所以该函数既不是奇函数也不是偶函数13 判断22()log (1)f x x x =++的奇偶性.正解:方法一:∵)1(log )1)((log )(2222++-=+-+-=-x x x x x f =11log 22++x x =)1(log22++-x x =-)(x f ∴)(x f 是奇函数方法二:∵)1(log )1(log )()(2222++-+++=-+x x x x x f x f =01log )1()1[(log 2222==++-⋅++x x x x)()(x f x f -=- ∴)(x f 是奇函数14函数y=245x x --的单调增区间是_________. 解:y=245x x --的定义域是[5,1]-,又2()54g x x x =--在区间[5,2]--上增函数,在区间[2,1]-是减函数,所以y=245x x --的增区间是[5,2]--15已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,求x 的取值范围.解:由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得,故0<x<6,又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数,∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6}, 16 作出下列函数的图像(1)y=|x-2|(x +1);(2)|lg |10x y =.分析:显然直接用已知函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对已知解析式进行等价变形.在变换函数解析式中运用了转化变换和分类讨论的思想.解:(1)当x ≥2时,即x-2≥0时,当x <2时,即x-2<0时,所以⎪⎪⎩⎪⎪⎨⎧<+--≥--=)2(49)21()2(49)21(22x x x x y这是分段函数,每段函数图像可根据二次函数图像作出(见图)(2)当x ≥1时,lgx ≥0,y =10lgx=x ;当0<x <1时,lgx <0,所以这是分段函数,每段函数可根据正比例函数或反比例函数作出.(见图)点评:作不熟悉的函数图像,可以变形成基本函数再作图,但要注意变形过程是否等价,要特别注意x ,y 的变化范围.因此必须熟记基本函数的图像.例如:一次函数、反比例函数、二次函数、指数函数、对数函数,及三角函数、反三角函数的图像.17若f(x)= 21++x ax 在区间(-2,+∞)上是增函数,求a 的取值范围解:设12121212112,()()22ax ax x x f x f x x x ++-<<-=-++12211212121221121122121212(1)(2)(1)(2)(2)(2)(22)(22)(2)(2)22(21)()(2)(2)(2)(2)ax x ax x x x ax x ax x ax x ax x x x ax x ax x a x xx x x x ++-++=+++++-+++=++--+--==++++由f (x )=21++x ax 在区间(-2,+∞)上是增函数得12()()0f x f x -<210a ∴-> ∴a >21点评:有关于单调性的问题,当我们感觉陌生,不熟悉或走投无路时,回到单调性的定义上去,往往给我们带来“柳暗花明又一村”的感觉.18已知函数f (x )在(-1,1)上有定义,f (21)=-1,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f (xy yx ++1),试证明:(1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减解:证明:(1)由f (x )+f (y )=f (xy yx ++1),令x =y =0,得f (0)=0,令y =-x ,得f (x )+f (-x )=f (21x xx --)=f (0)=0.∴f (x )=-f (-x ).∴f (x )为奇函数.(2)先证f (x )在(0,1)上单调递减.令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (21121x x x x --)∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴21121x x x x -->0,又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0∴x 2-x 1<1-x 2x 1,∴0<12121x x x x --<1,由题意知f (21121x x x x --)<0,即f (x 2)<f (x 1).∴f (x )在(0,1)上为减函数,又f (x )为奇函数且f (0)=0.∴f (x )在(-1,1)上为减函数.点评:本题知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.对函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力要求较高. 如果“赋值”不够准确,运算技能不过关,结果很难获得. 对于(1),获得f (0)的值进而取x =-y 是解题关键;对于(2),判定21121x x x x --的范围是解题的焦点.19已知18log 9,185,ba ==求36log 45解:∵185,b =∴18log 5b =∴1818183621818181818log 45log 5log 9log 451818log 36log 4log 92log ()2log ()99b ab a b a aa a++++=====+-++20知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是 解:∵)2(log ax y a -=是由u y a log =,ax u -=2复合而成,又a >0∴ax u -=2在[0,1]上是x 的减函数,由复合函数关系知u y a log =应为增函数,∴a >1又由于x 在[0,1]上时 )2(log ax y a -=有意义,ax u -=2又是减函数,∴x =1时,ax u -=2取最小值是a u -=2min >0即可, ∴a <2综上可知所求的取值范围是1<a <221已知函数()log (3)a f x ax =-.(1)当[0,2]x ∈时()f x 恒有意义,求实数a 的取值范围.(2)是否存在这样的实数a 使得函数()f x 在区间[1,2]上为减函数,并且最大值为1,如果存在,试求出a 的值;如果不存在,请说明理由.分析:函数()f x 为复合函数,且含参数,要结合对数函数的性质具体分析找到正确的解题思路,是否存在性问题,分析时一般先假设存在后再证明.解:(1)由假设,ax -3>0,对一切[0,2]x ∈恒成立,0,1a a >≠显然,函数g(x)= ax -3在[0,2]上为减函数,从而g(2)=32a ->0得到a <32∴a 的取值范围是(0,1)∪(1,32)(2)假设存在这样的实数a ,由题设知(1)1f =,即(1)log (3)a f a =-=1∴a =32此时3()log (3)2a f x x =-当2x =时,()f x 没有意义,故这样的实数不存在.点评:本题为探索性问题,应用函数、方程、不等式之间的相互转化,存在性问题一般的处理方法是先假设存在,结合已知条件进行推理和等价转化,若推出矛盾,说明假设不成立.即不存在,反之没有矛盾,则问题解决.22已知函数f (x )=1421lg 2+-⋅++a a ax x , 其中a 为常数,若当x ∈(-∞, 1]时, f (x )有意义,求实数a 的取值范围.分析:参数深含在一个复杂的复合函数的表达式中,欲直接建立关于a 的不等式(组)非常困难,故应转换思维角度,设法从原式中把a 分离出来,重新认识a 与其它变元(x )的依存关系,利用新的函数关系,常可使原问题“柳暗花明”. 解:14212+-⋅++a a ax x >0, 且a 2-a +1=(a -21)2+43>0,∴ 1+2x +4x ·a >0, a >)2141(x x +-,当x ∈(-∞, 1]时, y =x 41与y =x 21都是减函数,∴ y =)2141(x x +-在(-∞, 1]上是增函数,)2141(x x +-max =-43,∴ a >-43, 故a 的取值范围是(-43, +∞).点评:发掘、提炼多变元问题中变元间的相互依存、相互制约的关系、反客为主,主客换位,创设新的函数,并利用新函数的性质创造性地使原问题获解,是解题人思维品质高的表现.本题主客换位后,利用新建函数y =)2141(x x +-的单调性转换为函数最值巧妙地求出了实数a 的取值范围.此法也叫主元法.23若1133(1)(32)a a --+<-,试求a 的取值范围.解:∵幂函数13y x -=有两个单调区间,∴根据1a +和32a -的正、负情况,有以下关系10320.132a a a a +>⎧⎪->⎨⎪+>-⎩① 10320.132a a a a +<⎧⎪-<⎨⎪+>-⎩② 10.320a a +<⎧⎨->⎩③解三个不等式组:①得23<a <32,②无解,③a <-1∴a 的取值范围是(-∞,-1)∪(23,32)点评:幂函数13y x -=有两个单调区间,在本题中相当重要,不少学生可能在解题中误认为132a a +>-,从而导致解题错误.24 已知a>0 且a ≠1 ,f (log a x ) = 12-a a(x -x 1)(1)求f(x);(2)判断f(x)的奇偶性与单调性;(3)对于f(x) ,当x ∈(-1 , 1)时 , 有f( 1-m ) +f (1- m 2 ) < 0 ,求m 的集合M . 分析:先用换元法求出f(x)的表达式;再利用有关函数的性质判断其奇偶性和单调性;然后利用以上结论解第三问.解:(1)令t=log a x(t ∈R),则).(),(1)(),(1)(,22R x a a a a x f a a a a t f a x xx t t t ∈--=∴--==--,101,.)(,10,)(,01,1.)(,),()(1)()2(22<<><<-=>->∴∈-=--=---a a x f a a a x u a aa x f R x x f a a a a x f x x x x 或无论综上为增函数类似可判断时当为增函数时当为奇函数且f(x)在R 上都是增函数.)1,1().1()1(,)(,0)1()1()3(22-∈-<-∴<-+-x m f m f R x f m f m f 又上是增函数是奇函数且在.211111111122<<⇒⎪⎩⎪⎨⎧-<-<-<-<-<-∴m m m m m点评:对含字母指数的单调性,要对字母进行讨论.对本例的③不需要代入f (x )的表达式可求出m 的取值范围,请同学们细心体会.25已知函数2()3f x x ax a =++-若[2,2]x ∈-时,()f x ≥0恒成立,求a 的取值范围. 解:设()f x 的最小值为()g a(1)当22a-<-即a >4时,()g a =(2)f -=7-3a ≥0,得73a ≤故此时a 不存在;(2) 当[2,2]2a-∈-即-4≤a ≤4时,()g a =3-a -24a ≥0,得-6≤a ≤2又-4≤a ≤4,故-4≤a ≤2;(3)22a->即a <-4时,()g a =(2)f =7+a ≥0,得a ≥-7,又a <-4故-7≤a <-4综上,得-7≤a ≤226已知210mx x ++=有且只有一根在区间(0,1)内,求m 的取值范围. 解:设2()1f x mx x =++,(1)当m =0时方程的根为-1,不满足条件.(2)当m ≠0∵210mx x ++=有且只有一根在区间(0,1)内又(0)f =1>0∴有两种可能情形①(1)0f <得m <-2 或者②1(1)02f m =-且0<<1得m 不存在综上所得,m <-227.是否存在这样的实数k ,使得关于x 的方程x 2+(2k -3)x -(3k -1)=0有两个实数根,且两根都在0与2之间?如果有,试确定k 的取值范围;如果没有,试说明理由.解:令2()(23)(31)f x x k x k =+---那么由条件得到2(23)4(31)0(0)130(2)42(23)(31)023022k k f k f k k k ⎧∆=-+-≥⎪=->⎪⎪⎨=+--->⎪-⎪<<⎪⎩即24501313722k k k k ⎧+≥⎪⎪<⎪⎨>⎪⎪<<⎪⎩即此不等式无解即不存在满足条件的k 值.28已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).解:设F (x )=()f x -121[()()]2f x f x +,则方程 ()f x =121[()()]2f x f x + ①与方程 F (x )=0 ② 等价 ∵F (x 1)=1()f x -121[()()]2f x f x +=121[()()]2f x f x - F (x 2)=2()f x -121[()()]2f x f x +=121[()()]2f x f x -+∴ F (x 1)·F (x 2)=-2121[()()]4f x f x -,又12()()f x f x ≠∴F (x 1)·F (x 2)<0故方程②必有一根在区间(x 1,x 2)内.由于抛物线y =F (x )在x 轴上、下方均有分布,所以此抛物线与x 轴相交于两个不同的交点,即方程②有两个不等的实根,从而方程①有两个不等的实根,且必有一根属于区间(x 1,x 2).点评:本题由于方程是()f x =121[()()]2f x f x +,其中因为有()f x 表达式,所以解题中有的学生不理解函数图像与方程的根的联系,误认为证明()f x 的图像与x 轴相交于两个不同的点,从而证题中着眼于证1()f x 2()f x <0,使本题没法解决. 本题中将问题转化为F (x )=()f x -121[()()]2f x f x +的图像与x 轴相交于两个不同的两点是解题的关健所在. 29试确定方程322420x x x --+=最小根所在的区间,并使区间两个端点是两个连续的整数.分析:只要构造函数()f x =32242x x x --+,计算()f x 的自变量x 取整数值时的函数值,根据其符号,确定方程根的个数及根的分布. 解:令()f x =32242x x x --+∵(3)f -=-54-9+12+2=-49<0 (2)f -=-16-4+8+2=-10<0 (1)f -=-2-1+4+2=3>0,,(0)f =0-0-0+2=2>0 (1)f =2-1-4+2=-1<0, (2)f =16-4-8+2=6>0根据(2)f -·(1)f -<0,(0)f ·(1)f <0,(1)f ·(2)f <0 可知()f x 的零点分别在区间(-2,-1),(0,1),(1,2)内.因为方程是一个一元三次方程,所以它最多有三个根,所以原方程的最小根在区间(-2,-1)内.点评:计算一元高次函数值可借助于计算器来完成,在实数范围内一元n 次方程最多有n 个实根,当然本题也可以用因式分解方法来解.32242x x x --+221(21)2(21)2()(2)212()(2)(2)2x x x x x x x x =---=--=-所以32242x x x --+=0有三个根:12,22-30设二次函数2()(0),f x ax bx c a =++>方程0)(=-x x f 的两个根21,x x ,满足0<21x x <a1<. (1)当),0(1x x ∈时,证明1)(x x f x <<;(2)设函数2()(0),f x ax bx c a =++>的图像关于直线0x x =对称,证明:210x x <. 分析:(1)用作差比较法证明不等式1)(x x f x <<;(2)函数2()(0),f x ax bx c a =++>图像关于直线0x x =对称,实际直线0x x =就是二次函数的对称轴,即abx 20-=,然后用已知条件证明不等式即可. 证明:(1)依题意,设))(()()(21x x x x a x x f x F --=-= 当),0(1x x ∈时,由于21x x <,∴0))((21>--x x x x ,又0>a ∴))(()()(21x x x x a x x f x F --=-=>0即)(x f x <)1)(()1)(()()]([)(2121111ax x x ax ax x x x F x x x F x x x f x -->-+-=--=+-=-∵0<21x x x <<a1<.∴01,021>->-ax x x ∴0)(1>-x f x 综合得1)(x x f x << (2)依题意知a b x 20-=,又ab x x 121--=+ ∴aax ax a x x a a bx 2121)(221210-+=-+=-=∵,012<-ax ∴22110x a ax x =<点评:解决本题的关健有三:一是用作差比较法证明不等式;二是正确选择二次函数的表达式,即本题选用两根式表示;三要知道二次函数的图像关于直线对称,此直线为二次函数的对称轴,即ab x 20-= 31已知函数0)1(),1(2)(2=<<++=f b c c bx x x f ,且方程01)(=+x f 有实根. (1)求证:-3<c ≤-1,b ≥0.(2)若m 是方程01)(=+x f 的一个实根,判断)4(-m f 的正负并加以证明 分析:(1)题中条件涉及不等关系的有1<<b c 和方程01)(=+x f 有实根.及一个等式0)1(=f ,通过适当代换及不等式性质可解得;(2)本小题只要判断)4(-m f 的符号,因而只要研究出4-m 值的范围即可定出)4(-m f 符号. (1)证明:由0)1(=f ,得1+2b+c=0,解得21+-=c b ,又1<<b c , 1c c >+->21解得313-<<-c , 又由于方程01)(=+x f 有实根,即0122=+++c bx x 有实根, 故0)1(442≥+-=∆c b 即0)1(4)1(2≥+-+c c 解得3≥c 或1-≤c ∴13≤<-c ,由21+-=c b ,得b ≥0. (2)c bx x x f ++=2)(2=)1)(()1(2--=++-x c x c x c x ∵01)(<-=m f ,∴c<m<1(如图) ∴c —4<m —4<—3<c. ∴)4(-m f 的符号为正.点评:二次函数值的符号,可以求出其值判断,也可以灵活运用二次函数的图像及性质解题.32定义在R 上的函数()f x 满足:对任意实数,m n ,总有()()()f m n f m f n +=⋅,且当0x >时,()01f x <<.(1)试求()0f 的值;(2)判断()f x 的单调性并证明你的结论; (3)设()()()(){}()({}22,1,,21,A x y f x f y f B x y f ax y a R =⋅>=-=∈,若A B ⋂=∅,试确定a 的取值范围.(4)试举出一个满足条件的函数()f x .解:(1)在()()()f m n f m f n +=⋅中,令1,0m n ==.得:()()()110f f f =⋅.因为()10f ≠,所以,()01f =.(2)要判断()f x 的单调性,可任取12,x x R ∈,且设12x x <.在已知条件()()()f m n f m f n +=⋅中,若取21,m n x m x +==,则已知条件可化为:()()()2121f x f x f x x =⋅-.由于210x x ->,所以()2110f x x >->.为比较()()21f x f x 、的大小,只需考虑()1f x 的正负即可.在()()()f m n f m f n +=⋅中,令m x =,n x =-,则得()()1f x f x ⋅-=. ∵ 0x >时,()01f x <<, ∴ 当0x <时,()()110f x f x =>>-.又()01f =,所以,综上,可知,对于任意1x R ∈,均有()10f x >. ∴ ()()()()2112110f x f x f x f x x -=--<⎡⎤⎣⎦. ∴ 函数()f x 在R 上单调递减.(3)首先利用()f x 的单调性,将有关函数值的不等式转化为不含f 的式子.()()()222211f x f y f x y ⋅>+<即,(()210f ax y f -==,即20ax y -+=.由A B ⋂=∅,所以,直线20ax y -+=与圆面221x y +<无公共点.所以,2211a ≥+.解得 11a -≤≤.(4)如()12xf x ⎛⎫= ⎪⎝⎭.点评:根据题意,将一般问题特殊化,也即选取适当的特值(如本题中令1,0m n ==;以及21,m n x m x +==等)是解决有关抽象函数问题的非常重要的手段;另外,如果能找到一个适合题目条件的函数,则有助于问题的思考和解决. 33设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值.解:(1)当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(2)(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.点评:(1)探索函数的奇偶性,可依据定义,通过)()(x f x f =-代入有1||1||)(22+-+=+--+-a x x a x x ,即||||a x a x -=+可得,当0=a 时,||||a x a x -=+,函数)()(x f x f =-函数为偶函数. 通过)()(x f x f -=-可得 1||1||)(22----=+--+-a x x a x x 化得 ||||222a x a x x -++=+此式不管0=a 还是0≠a 都不恒成立,所以函数不可能是奇函数.(2)由于本题中含有绝对值,需要去掉,故分类讨论,既要对二次函数值域的研究方法熟练掌握,又要将结论综合,对学生的综合运用数学知识能力及数学思想作了较好的考查.34某公司为帮助尚有26.8万元无息贷款没有偿还的残疾人商店,借出20万元将该商店改建成经营状况良好的某种消费品专卖店,并约定用该店经营的利润逐步偿还债务(所有债务均不计利息).已知该种消费品的进价为每件40元;该店每月销售量q (百件)与销售价p (元/件)之间的关系用右图中的一条折线(实线)表示;职工每人每月工资为600元,该店应交付的其它费用为每月130元. (1)若当销售价p 为52元/件时,该店正好收支平衡,求该店的职工人数; (2)若该店只安排40名职工,则该店最早可在几年后还清所有债务,此时每件消费品的价格定为多少元?分析:本题题目的篇幅较长,所给条件零散杂乱,为此,不仅需要划分段落层次,弄清每一层次独立的含义和相互间的关系,更需要抓住矛盾的主要方面.由题目的问题找到关键词——“收支平衡”、“还清所有债务”,不难想到,均与“利润”相关.从阅读和以上分析,可以达成我们对题目的整体理解,明确这是一道函数型应用题.为此,首先应该建立利润与职工人数、月销售量q 、单位商品的销售价p 之间的关系,然后,通过研究解析式,来对问题作出解答.由于销售量和各种支出均以月为单位计量,所以,先考虑月利润. 解:(1)设该店的月利润为S 元,有职工m 名.则()4010060013200S q p m =-⨯--.124584060q p81又由图可知:()()2140, 405882 5881p p q p p -+≤≤⎧⎪=⎨-+<≤⎪⎩. 所以,()()()()()()21404010060013200 4058824010060013200 58<81p p m p S p p m p -+-⨯--≤≤⎧⎪=⎨-+-⨯--≤⎪⎩ 由已知,当52p =时,0S =,即()()214040100600132000p p m -+-⨯--=,解得50m =.即此时该店有50名职工.(2)若该店只安排40名职工,则月利润()()()()()()21404010037200 4058824010037200 58<81p p p S p p p -+-⨯-≤≤⎧⎪=⎨-+-⨯-≤⎪⎩. 当4058p ≤≤时,求得55p =时,S 取最大值7800元. 当5881p <≤时,求得61p =时,S 取最大值6900元. 综上,当55p =时,S 有最大值7800元.设该店最早可在n 年后还清债务,依题意,有 1278002680002000000n ⨯--≥. 解得5n ≥.所以,该店最早可在5年后还清债务,此时消费品的单价定为55元.点评:求解数学应用题必须突破三关:(1)阅读理解关:一般数学应用题的文字阅读量都比较大,要通过阅读审题,找出关键词、句,理解其意义.(2)建模关:即建立实际问题的数学模型,将其转化为数学问题. (3)数理关:运用恰当的数学方法去解决已建立的数学模型.。
【易错题】高一数学上期中试题(及答案)

【易错题】高一数学上期中试题(及答案)一、选择题1.已知集合{}220A x x x =-->,则A =R ðA .{}12x x -<<B .{}12x x -≤≤ C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥2.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B =( ) A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.函数()ln f x x x =的图像大致是( )A .B .C .D .4.已知函数()25,1,,1,x ax x f x a x x⎧---≤⎪=⎨>⎪⎩是R 上的增函数,则a 的取值范围是( )A .30a -≤<B .0a <C .2a ≤-D .32a --≤≤5.已知定义域为R 的函数()f x 在[1,)+∞单调递增,且(1)f x +为偶函数,若(3)1f =,则不等式(21)1f x +<的解集为( ) A .(1,1)- B .(1,)-+∞ C .(,1)-∞ D .(,1)(1,)-∞-+∞U6.已知函数)245fx x x =+,则()f x 的解析式为( )A .()21f x x =+ B .()()212f x x x =+≥C .()2f x x =D .()()22f x xx =≥7.已知函数y=f (x )定义域是[-2,3],则y=f (2x-1)的定义域是( )A .50,2⎡⎤⎢⎥⎣⎦B .[]1,4-C .1,22⎡⎤-⎢⎥⎣⎦D .[]5,5-8.函数()2log ,0,2,0,xx x f x x ⎧>=⎨≤⎩则函数()()()2384g x fx f x =-+的零点个数是( )A .5B .4C .3D .69.已知()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,则()2log 7f =( )A .7B .72C .74D .7810.已知函数在上单调递减,则实数a 的取值范围是( ) A .B .C .D .11.三个数20.420.4,log 0.4,2a b c ===之间的大小关系是( ) A .a c b <<B .b a c <<C .a b c <<D .b c a <<12.已知函数()y f x =在区间(),0-∞内单调递增,且()()f x f x -=,若12log 3a f ⎛⎫= ⎪⎝⎭,()1.22b f -=,12c f ⎛⎫= ⎪⎝⎭,则a 、b 、c 的大小关系为( )A .a c b >>B .b c a >>C .b a c >>D .a b c >> 二、填空题13.设25a b m ==,且112a b+=,则m =______. 14.已知函数()f x 是定义在 R 上的奇函数,且当0x >时,()21xf x =-,则()()1f f -的值为______.15.已知()21f x x -=,则()f x = ____.16.若函数|1|12x y m -⎛⎫=+ ⎪⎝⎭的图象与x 轴有公共点,则m 的取值范围是__________.17.已知函数(12)(1)()4(1)x a x f x ax x⎧-<⎪=⎨+≥⎪⎩,且对任意的12,x x R ∈,12x x ≠时,都有()()12120f x f x x x ->-,则a 的取值范围是________18.若关于的方程有三个不相等的实数根,则实数的值为_______.19.已知函数()266,34,x x f x x ⎧-+=⎨+⎩ 00x x ≥<,若互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________.20.若函数()22xf x b =--有两个零点,则实数b 的取值范围是_____.三、解答题21.已知函数22()f x x x=+. (1)求(1)f ,(2)f 的值;(2)设1a b >>,试比较()f a 、()f b 的大小,并说明理由; (3)若不等式2(1)2(1)1f x x m x -≥-++-对一切[1,6]x ∈恒成立,求实数m 的最大值. 22.设函数f (x )是增函数,对于任意x ,y ∈R 都有f (x+y )=f (x )+f (y ). (1)求f (0);(2)证明f (x )是奇函数;(3)解不等式f (x 2)—f (x )>f (3x ).23.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数301log lg 2100x v x =-,单位是min km ,其中x 表示候鸟每分钟耗氧量的单位数,0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:lg 20.30=, 1.23 3.74=, 1.43 4.66=)(1)若02x =,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少min km ? (2)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(3)若雄鸟的飞行速度为2.5min km ,雌鸟的飞行速度为1.5min km ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?24.设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,tan a b A =,且B 为钝角. (1)证明:2B A π-=; (2)求sin sin A C +的取值范围.25.为了研究某种微生物的生长规律,研究小组在实验室对该种微生物进行培育实验.前三天观测的该微生物的群落单位数量分别为12,16,24.根据实验数据,用y 表示第()*x x ∈N 天的群落单位数量,某研究员提出了两种函数模型;①2y ax bx c =++;②x y p q r =⋅+,其中a ,b ,c ,p ,q ,r 都是常数.(1)根据实验数据,分别求出这两种函数模型的解析式;(2)若第4天和第5天观测的群落单位数量分别为40和72,请从这两个函数模型中选出更合适的一个,并计算从第几天开始该微生物群落的单位数量超过1000. 26.设集合2{|40,}A x x x x R =+=∈,22{|2(1)10,}B x x a x a x R =+++-=∈. (1)若A B B ⋃=,求实数a 的值; (2)若A B B =I ,求实数a 的范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x -或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.2.C解析:C 【解析】∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B ⋂= ∴1x =是方程240x x m -+=的解,即140m -+= ∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C3.A解析:A 【解析】 【分析】从图象来看图象关于原点对称或y 轴对称,所以分析奇偶性,然后再用特殊值确定. 【详解】因为函数()ln f x x x =是奇函数,排除C ,D 又因为2x = 时()0f x >,排除B 故选:A 【点睛】本题主要考查了函数的图象的判断,还考查了数形结合的思想,属于基础题.4.D解析:D 【解析】【分析】根据分段函数的单调性特点,两段函数在各自的定义域内均单调递增,同时要考虑端点处的函数值. 【详解】要使函数在R 上为增函数,须有()f x 在(,1]-∞上递增,在(1,)+∞上递增,所以21,20,115,1a a a a ⎧-≥⎪⎪<⎨⎪⎪--⨯-≤⎩,解得32a --≤≤.故选D. 【点睛】本题考查利用分段函数的单调性求参数的取值范围,考查数形结合思想、函数与方程思想的灵活运用,求解时不漏掉端点处函数值的考虑.5.A解析:A 【解析】 【分析】由函数y =f (x +1)是定义域为R 的偶函数,可知f (x )的对称轴x =1,再利用函数的单调性,即可求出不等式的解集. 【详解】由函数y =f (x +1)是定义域为R 的偶函数,可知f (x )的对称轴x =1,且在[1,+∞)上单调递增,所以不等式f (2x+1)<1=f (3)⇔ |2x+1﹣1|)<|3﹣1|, 即|2x |<2⇔|x |<1,解得-11x << 所以所求不等式的解集为:()1,1-. 故选A . 【点睛】本题考查了函数的平移及函数的奇偶性与单调性的应用,考查了含绝对值的不等式的求解,属于综合题.6.B解析:B 【解析】 【分析】利用换元法求函数解析式,注意换元后自变量范围变化. 【详解】2t =,则2t ≥,所以()()()()2224t 251,2,f t t t t =-+-+=+≥即()21f x x =+ ()2x ≥.【点睛】本题考查函数解析式,考查基本求解能力.注意换元后自变量范围变化.7.C解析:C 【解析】∵函数y =f (x )定义域是[−2,3], ∴由−2⩽2x −1⩽3, 解得−12⩽x ⩽2, 即函数的定义域为1,22⎡⎤-⎢⎥⎣⎦,本题选择C 选项.8.A解析:A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0xx x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A . 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.9.C解析:C 【解析】 【分析】根据函数的周期性以及分段函数的表达式,结合对数的运算法则,代入即可得到结论. 【详解】2222log 4log 7log 83=<<=Q ,20log 721∴<-<,()()2log 72227log 7log 7224f f -∴=-==. 故选:C . 【点睛】本题主要考查函数值的计算,根据分段函数的表达式以及函数的周期性进行转化是解决本题的关键.10.C解析:C 【解析】 【分析】由函数单调性的定义,若函数在上单调递减,可以得到函数在每一个子区间上都是单调递减的,且当时,,求解即可.【详解】 若函数在上单调递减,则,解得. 故选C. 【点睛】本题考查分段函数的单调性.严格根据定义解答,本题保证随的增大而减小,故解答本题的关键是的最小值大于等于的最大值. 11.B解析:B 【解析】20.4200.41,log 0.40,21<<Q ,01,0,1,a b c b a c ∴<<∴<<,故选B.12.B解析:B 【解析】 【分析】由偶函数的性质可得出函数()y f x =在区间()0,∞+上为减函数,由对数的性质可得出12log 30<,由偶函数的性质得出()2log 3a f =,比较出2log 3、 1.22-、12的大小关系,再利用函数()y f x =在区间()0,∞+上的单调性可得出a 、b 、c 的大小关系. 【详解】()()f x f x -=Q ,则函数()y f x =为偶函数,Q 函数()y f x =在区间(),0-∞内单调递增,在该函数在区间()0,∞+上为减函数,1122log 3log 10<=Q ,由换底公式得122log 3log 3=-,由函数的性质可得()2log 3a f =,对数函数2log y x =在()0,∞+上为增函数,则22log 3log 21>=, 指数函数2xy =为增函数,则 1.2100222--<<<,即 1.210212-<<<, 1.22102log 32-∴<<<,因此,b c a >>. 【点睛】本题考查利用函数的奇偶性与单调性比较函数值的大小关系,同时也考查了利用中间值法比较指数式和代数式的大小关系,涉及指数函数与对数函数的单调性,考查分析问题和解决问题的能力,属于中等题.二、填空题13.【解析】【分析】变换得到代入化简得到得到答案【详解】则故故答案为:【点睛】本题考查了指数对数变换换底公式意在考查学生的计算能力【解析】 【分析】变换得到2log a m =,5log b m =,代入化简得到11log 102m a b+==,得到答案. 【详解】25a b m ==,则2log a m =,5log b m =,故11log 2log 5log 102,m m m m a b+=+==∴=【点睛】本题考查了指数对数变换,换底公式,意在考查学生的计算能力.14.【解析】由题意可得:解析:1-【解析】由题意可得:()()()()()111,111f f ff f -=-=--=-=-15.【解析】【分析】利用换元法求函数解析式【详解】令则代入可得到即【点睛】本题考查利用换元法求函数解析式考查基本代换求解能力 解析:()21?x + 【解析】 【分析】利用换元法求函数解析式. 【详解】 令 1t x -=则 t 1,x =+代入 ()21f x x -=可得到()()21f t t =+ ,即()()21f x x =+. 【点睛】本题考查利用换元法求函数解析式,考查基本代换求解能力.16.【解析】【分析】由可得出设函数将问题转化为函数与函数的图象有交点利用数形结合思想可求出实数的取值范围【详解】由可得出设函数则直线与函数的图象有交点作出函数与函数的图象如下图所示由图象可知则解得因此实 解析:[)1,0-【解析】 【分析】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,将问题转化为函数y m =-与函数()y g x =的图象有交点,利用数形结合思想可求出实数m 的取值范围.【详解】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,则直线y m =-与函数()y g x =的图象有交点,作出函数()111,122,1x x x g x x --⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩与函数y m =-的图象如下图所示,由图象可知()01g x <≤,则01m <-≤,解得10m -≤<. 因此,实数m 的取值范围是[)1,0-. 故答案为:[)1,0-. 【点睛】本题考查利用函数有零点求参数的取值范围,在含单参数的函数零点问题的求解中,一般转化为参数直线与函数图象有交点来处理,考查数形结合思想的应用,属于中等题.17.【解析】【分析】根据判断出函数在上为增函数由此列不等式组解不等式组求得的取值范围【详解】由于对任意的时都有所以函数在上为增函数所以解得故答案为:【点睛】本小题主要考查根据函数的单调性求参数的取值范围 解析:[1,0)-【解析】 【分析】 根据()()12120f x f x x x ->-判断出函数在R 上为增函数,由此列不等式组,解不等式组求得a 的取值范围.【详解】由于对任意的12,x x R ∈,12x x ≠时,都有()()12120f x f x x x ->-,所以函数在R 上为增函数,所以1210124a a a a ->⎧⎪<⎨⎪-≤+⎩,解得10a -≤<.故答案为:[)1,0-. 【点睛】本小题主要考查根据函数的单调性求参数的取值范围,考查指数函数的单调性,考查分式型函数的单调性,属于基础题.18.3【解析】令fx=x2-2x-2则由题意可得函数y=fx 与函数y=m 的图象有三个公共点画出函数fx=x2-2x-2的图象如图所示结合图象可得要使两函数的图象有三个公共点则m=3答案:3解析:3 【解析】令,则由题意可得函数与函数的图象有三个公共点.画出函数的图象如图所示,结合图象可得,要使两函数的图象有三个公共点,则.答案:319.【解析】【分析】画出分段函数的图像由图像结合对称性即可得出【详解】函数的图像如下图所示不妨设则关于直线对称所以且满足则故的取值范围是【点睛】解决本题的关键是要会画分段函数的图像由图像结合对称性经过计解析:11(,6)3【解析】 【分析】画出分段函数的图像,由图像结合对称性即可得出。
高一数学集合与函数错题集锦

高一数学集合易错题汇总及详解一、混淆集合中元素的形成例1 集合{}()|0A x y x y =+=,,{}()|2B x y x y =-=,,则AB = .错解:解方程组02x y x y +=⎧⎨-=⎩ 得11x y =⎧⎨=-⎩{}11A B =-,∴ 剖析: 产生错误的原因在于没有弄清楚集合中元素的形式,混淆点集与数集.集合A B ,中的元素都是有序数对,即平面直角坐标系中的点,而不是数,因而A B ,是点集,而不是数集.{}(11)AB =-,∴(加强练习)1、集合{}{}2,,,A x x y y R B y y x x R==∈==∈,则A B ⋂= ( )A 、{}0,1 B 、(){}0,1 C 、{}0yy ≥ D 、∅解析:A=R ,[)[)0,,0,B A B =+∞∴=+∞。
答案C2、已知集合}1|{2x y x A -==,},1|{A x x y y B ∈-==,则=⋂B A () A 、}1,0{ B 、)}0,1{( C 、]0,1[- D 、]1,1[-解析:[1,1],[2,0],[1,0]A B A B =-=-∴=-。
答案C 二、忽视空集的特殊性例2 已知{}|(1)10A x m x =-+=,{}2|230B x x x =--=,若A B ⊆,则m 的值为 . 错解: 由(1)10m x -+= 得11x m=- 由2230x x --= 得1x =-或3x =1|1A x x m ⎧⎫==⎨⎬-⎩⎭∴ {}13B =-, A B ⊆∵ 111m =--∴或3 2m =∴或23m = 剖析:由于忽视空集的特殊性――空集是任何集合的子集,产生丢解的错误,以上只讨论了A ≠∅的情形,还应讨论A =∅的情形,当A =∅时,1m =.m ∴的值为2123,,.(加强练习)设}01)1(2|{},04|{222=-+++==+=a x a x x B x x x A ,若B B A =⋂,求a 的值解析:∵ B B A =⋂∴ B ⊆A ,由A={0,-4},∴B=Φ,或B={0},或B={-4},或B={0,-4}当B=Φ时,方程01)1(222=-+++a x a x 无实数根,则 △ =0)1(4)1(422<--+a a 整理得01<+a 解得1-<a ;当B={0}时,方程01)1(222=-+++a x a x 有两等根均为0,则⎩⎨⎧=-=+-010)1(22a a 解得1-=a ; 当B={-4}时,方程01)1(222=-+++a x a x 有两等根均为-4,则⎩⎨⎧=--=+-1618)1(22a a 无解; 当B={0,-4}时,方程01)1(222=-+++a x a x 的两根分别为0,-4,则⎩⎨⎧=--=+-014)1(22a a 解得1=a 综上所述:11=-≤a a 或三、忽视集合中的元素的互异性...这一特征 例3 已知集合{}22342A a a =++,,,{}207422B a a a =+--,,,,且{}37A B =,,求a 的值.错解: ∵{}37AB =,, ∴必有2427a a ++=2450(5)(1)0a a a a +-=⇔+-=∴5a =-∴或1a =剖析:由于忽视集合中元素应互异这一特征,产生增解的错误.求出a 的值后,还必须检验是否满足集合中元素应互异这一特征.事实上,(1)当5a =-时,2423a a +-=,27a -=不满足B 中元素应互异这一特征,故5a =-应舍去.(2)当1a =时,2423a a +-=,21a -=满足{}37A B =,且集合B 中元素互异.a ∴的值为1.四、没有弄清全集的含义例4 设全集{}{}22323212S a a A a =+-=-,,,,,{}5S C A =,求a 的值. 错解: ∵{}5S C A =5S ∈∴且5A ∉2235a a +-=∴2280a a +-=∴2a =∴或4a =- 剖析:没有正确理解全集..的含义,产生增解的错误.全集中应含有讨论集合中的一切元素,所以还须检验.(1)当2a =时,213a -=,此时满足3S ∈.(2)当4a =-时,219a S -=∉,4a =-∴应舍去,2a =∴. 五、没有弄清事物的本质例5 若{}|2A x x n n ==∈Z ,,{}|22B x x n n ==-∈Z ,,试问A B ,是否相等.错解: 222n n ≠-∵A B ≠∴剖析:只看到两集合的形式区别,没有弄清事物的本质,事实上A 是偶数集,B 也是偶数集,两集合应相等,尽管形式不同.{}{}|2|2A x x n n x x ==∈==⨯Z 整数,{}{}|22|2(1)B x x n x x x n n ==-∈==-∈Z Z ,,{}|2x x ==⨯整数换句话说{}{}||C x x n n x x ==∈==Z ,整数, {}{}|1|D x x n n x x ==-∈==Z ,整数两集合中所含元素完全相同,C D A B =⇔= (加强练习)1. 已知2{1,},{1,}My y x x R P x x a a R ==-∈==-∈,则集合M 与P 的关系是( A )A. M=PB.P R ∈ C . M ⊂≠P D. M ⊃≠P2、已知集合T S T S x x S ⋃=⋂<-=则使},1|12||{的集合T= ( )A 、{|01}x x <<B 、}210|{<<x x C 、}21|{<x xD 、}121|{<<x x解析:显然S=T ,1211,01x x ∴-<-<∴<<。
完整版)高一数学函数经典习题及答案

完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。
3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。
4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。
二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。
三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。
2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。
3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。
5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。
高一数学试题答案及解析

高一数学试题答案及解析1.已知命题,且,命题,且.(1)若,,求实数的值;(2)若是的充分条件,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)先求集合,由条件知的值正好是集合对应端点的值,解得;(Ⅱ)由题意得试题解析:(Ⅰ)因为,由题意得,.(Ⅱ)由题意得【考点】集合的关系、充要条件、一元二次不等式的解法.2.设底为等边三角形的直棱柱的体积为V,那么其表面积最小时,底面边长为.【答案】【解析】设底边边长为a,高为h,利用体积公式V=Sh得出h,再根据表面积公式得S=,最后利用导函数即得底面边长.解:设底边边长为a,高为h,则V=Sh=a2×h,∴h==,则表面积为=,则,令可得,即a=.故答案为.点评:本小题主要考查棱柱、棱锥、棱台、棱柱、棱锥、棱台的侧面积和表面积、基本不等式等基础知识,考查运算求解能力,考查转化思想.属于基础题.3.某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总收益R与年产量x的关系为R=R(x)=,则总利润最大时,每年生产的产品数量是.【答案】300.【解析】先根据题意得出总成本函数,从而写出总利润函数,它是一个分段函数,下面求其导数P′(x),令P′(x)=0,从而得出P的最大值即可.解析:由题意,总成本为C=20000+100x.∴总利润为:P=R﹣C=,P′=.令P′=0,即可得到正确答案,即x=300.故答案:300.点评:本小题主要考查根据实际问题建立数学模型,以及运用函数、导数的知识解决实际问题的能力.4.已知f(x)=x2+2x•f′(1),则f′(0)= .【答案】﹣4.【解析】要求某点处函数的导数,应先求函数解析式f (x ),本题求函数解析式f (x )关键求出未知f′(1).解:f'(x )=2x+2f'(1)⇒f'(1)=2+2f'(1),∴f'(1)=﹣2,有f (x )=x 2﹣4x ,f'(x )=2x ﹣4,∴f'(0)=﹣4.点评:本题考查导数的运算,注意分析所求.5. 双曲线8kx 2﹣ky 2=8的一个焦点为(0,3),则k 的值为 . 【答案】﹣1.【解析】先把双曲线8kx 2﹣ky 2=8的方程化为标准形式,焦点坐标得到c 2=9,利用双曲线的标准方程中a ,b ,c 的关系即得双曲线方程中的k 的值. 解:根据题意可知双曲线8kx 2﹣ky 2=8在y 轴上, 即,∵焦点坐标为(0,3),c 2=9, ∴,∴k=﹣1,故答案为:﹣1.点评:本题考查双曲线的标准方程,以及双曲线的简单性质的应用,注意化成双曲线的标准方程中a ,b ,c 的关系.6. 过抛物线y 2=4ax (a >0)的焦点F ,作相互垂直的两条焦点弦AB 和CD ,求|AB|+|CD|的最小值.【答案】16a .【解析】根据抛物线方程求得焦点坐标,设直线AB 方程为y=k (x ﹣a ),则CD 方程可得,分别代入抛物线方程,根据抛物线定义可知|AB|=x A +x B +p ,|CD|=x C +x D +p 进而可求得|AB|+|CD|的表达式,根据均值不等式求得|AB|+|CD|的最小值为16a .解:抛物线的焦点F 坐标为(a ,0),设直线AB 方程为y=k (x ﹣a ), 则CD 方程为,分别代入y 2=4x 得:k 2x 2﹣(2ak 2+4a )x+k 2a 2=0及,∵,|CD|=x C +x D +p=2a+4ak 2+2a ,∴,当且仅当k 2=1时取等号,所以,|AB|+|CD|的最小值为16a .点评:本题主要考查了抛物线的应用.涉及了直线与抛物线的关系及抛物线的定义.7. 已知抛物线的准线方程是x=﹣7,则抛物线的标准方程是 . 【答案】y 2=28x .【解析】设抛物线方程为y 2=2px (p >0),根据题意建立关于p 的方程,解之可得p=14,得到抛物线方程.解析:由题意,设抛物线的标准方程为y 2=2px (p >0), 准线方程是x=﹣,则﹣=﹣7,解得p=14,故所求抛物线的标准方程为y 2=28x . 故答案为:y 2=28x .点评:本题给出抛物线的准线,求抛物线的标准方程,着重考查了抛物线的定义与标准方程的知识,属于基础题.8. 已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2﹣6x ﹣7=0相切,则p 的值为 . 【答案】2【解析】先表示出准线方程,然后根据抛物线y 2=2px (p >0)的准线与圆(x ﹣3)2+y 2=16相切,可以得到圆心到准线的距离等于半径从而得到p 的值. 解:抛物线y 2=2px (p >0)的准线方程为x=﹣,因为抛物线y2=2px(p>0)的准线与圆(x﹣3)2+y2=16相切,所以3+=4,解得p=2.故答案为:2点评:本题考查抛物线的相关几何性质及直线与圆的位置关系,理解直线与圆相切时圆心到直线的距离等于半径.9.双曲线与椭圆+=1有相同焦点,且经过点(,4),求其方程.【答案】【解析】根据已知中双曲线与椭圆有相同焦点,我们可以设出双曲线的标准方程(含参数a),然后根据经过点(,4),得到一个关于a的方程,解方程,即可得到a2的值,进而得到双曲线的方程.解:椭圆的焦点为(0,±3),c=3,…设双曲线方程为,…(6分)∵过点(,4),则,…(9分)得a2=4或36,而a2<9,∴a2=4,…(11分)双曲线方程为.…(12分)点评:本题考查的知识点是双曲线的标准方程,其中根据已知条件设出双曲线的标准方程(含参数a),并构造一个关于a的方程,是解答本题的关键.10.已知顶点在坐标原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为,求此抛物线方程.【答案】抛物线的方程为y2=12x或y2=﹣4x【解析】设出抛物线的方程,直线与抛物线方程联立消去y,进而根据韦达定理求得x1+x2的值,进而利用弦长公式求得|AB|,由AB=可求p,则抛物线方程可得.解:由题意可设抛物线的方程y2=2px(p≠0),直线与抛物线交与A(x1,y1),B(x2,y2)联立方程可得,4x2+(4﹣2p)x+1=0则,,y1﹣y2=2(x1﹣x2)====解得p=6或p=﹣2∴抛物线的方程为y2=12x或y2=﹣4x点评:本题主要考查了抛物线的标准方程.解题的关键是对抛物线基本性质和标准方程的熟练应用11.下列命题是全称命题并且是真命题的是.①每个二次函数的图象都开口向上;②对任意非正数c,若a≤b+c,则a≤b;③存在一条直线与两个相交平面都垂直;④存在一个实数x0使不等式x2﹣3x+6<0成立.【答案】②【解析】先确定各命题中是否含有全称量词,然后再判断真假.解:①含有全称量词“每个”,所以为全称命题.当二次函数的二次项系数小于时,二次函数的图象开口向下,所以①为假命题.②含有全称量词“任意”,所以为全称命题.∵c≤0,∴b+c≤b.∵a≤b+c,∴a≤b.所以②为真命题.③含有特称量词“存在一条”,所以不是为全称命题.所以③不满足条件.④含有特称量词“存在一个”,所以不是为全称命题.所以④不满足条件.故答案为:②.点评:本题主要考查命题是否是全称命题,以及全称命题的真假判断,比较基础.12.已知命题“∃x∈[1,2],使x2+2x+a≥0”为真命题,求a的取值范围.【答案】[﹣8,+∞).【解析】求出x∈[1,2]时,x2+2x的最大值,然后求出a的范围即可.解:因为命题“∃x∈[1,2],使x2+2x+a≥0”为真命题,x∈[1,2]时,x2+2x的最大值为8,所以a≥﹣8时,命题“∃x∈[1,2],使x2+2x+a≥0”为真命题.所以a的取值范围:[﹣8,+∞).点评:本题考查命题的真假的判断,特称命题的判断,考查基本知识的应用.13.不等式x2﹣x>x﹣a对∀x∈R都成立,则a的取值范围是.【答案】a>1.【解析】将不等式转化为一元二次不等式的形式,然后利用不等式的性质求解.解:法一:不等式x2﹣x>x﹣a对∀x∈R都成立,即不等式x2﹣2x+a>0恒成立;结合二次函数图象得对应方程的△<0,即4﹣4a<0,所以a>1.法二:不等式x2﹣x>x﹣a对∀x∈R都成立,也可看作a>﹣x2+2x对∀x∈R都成立,;而二次函数f(x)=﹣x2+2x的最大值为,所以a>(﹣x2+2x)max所以a>1.故答案为:a>1.点评:本题主要考查一元二次不等式恒成立问题,比较综合.14.下列存在性命题中,是真命题的是.①∃x∈R,x≤0;②至少有一个整数,它既不是合数,也不是质数;③∃x∈{x|x是无理数},x2是无理数.【答案】①②③【解析】利用特称命题的真假的判断方法分别判断.解:①真命题,如当x=﹣1时,x≤0成立;②真命题,1既不是合数,也不是质数;③真命题,如x=,x2=为无理数.故答案为:①②③.点评:本题主要考查特称命题的真假判断,对于特称命题,存在即为真命题,否则为假命题.15.命题“原函数与反函数的图象关于y=x对称”的否定是.【答案】存在一个原函数与反函数的图象不关于y=x对称.【解析】命题中隐含全称量词“所有的”.分别对题设和结论进行否定即可.解:题设隐含全称量词“所有的”.故题设的否定为存在一个原函数,结论为原函数与反函数的图象不关于y=x对称∴原命题的否定为:存在一个原函数与反函数的图象不关于y=x对称.故答案:存在一个原函数与反函数的图象不关于y=x对称.点评:本题考查了命题的否定,注意题设和结论否定时的写法.16.下列命题的否定为假命题的是.①∀x∈R,﹣x2+x﹣1<0;②∀x∈R,|x|>x;③∀x,y∈Z,2x﹣5y≠12;④∃x∈R,Tsin2x+sinx+1=0.【答案】①【解析】要使命题的否定为假命题则证明原命题为真命题即可.解析:命题的否定为假命题亦即原命题为真命题,只有①为真命题.解:①因为﹣x2+x﹣1=﹣(x﹣)2﹣<0,所以①正确.②当x=0时,|x|=x=0,所以②错误.③当x=1,y=2时,2x﹣5y=12,所以③错误.④设t=sinx,则原方程为t2+t+1=0,因为△=1﹣4=﹣3<0,所以方程无解,所以④错误.故答案为:①.点评:本题主要考查全称命题和特称命题的否定以及命题的真假判断.17.判断下列命题的真假.(1)∀x∈R,|x|>0;(2)∀a∈R,函数y=logax是单调函数;(3)∀x∈R,x2>﹣1;(4)∃∈{向量},使=0;(5)∃x>0,y>0,使x2+y2=0.【答案】(1)假命题.(2)假命题.(3)真命题.(4)真命题.(5)假命题.【解析】根据全称命题和特称命题判断条件分别判断命题的真假.解:(1)由于0∈R,当x=0时,|x|>0不成立,因此命题“∀x∈R,|x|>0”是假命题.(2)由于1∈R,当a=1时,y=loga x无意义,因此命题“∀a∈R,函数y=logax是单调函数”是假命题.(3)由于∀x∈R,都有x2≥0,因而有x2>﹣1.因此命题“∀x∈R,x2>﹣1”是真命题.(4)由于∈{向量},当时,能使•=0,因此命题“∃∈{向量},使•=0”是真命题.(5)由于使x2+y2=0成立的只有x=y=0,而0不是正实数,因而没有正实数x,y,使x2+y2=0,因此命题“∃x>0,y>0,使x2+y2=0”是假命题.点评:本题主要考查含有量词的命题的真假判断.18.若p、q是两个命题,且“p或q”的否定是真命题,则p、q的真假性是.【答案】p假,q假.【解析】利用“p或q”的否定是真命题,得到p或q”是假命题,从而确定p、q的真假.解:因为p或q的否定是真命题,所以p或q为假命题,因此p、q为假命题.故答案为:p假,q假.点评:本题主要考查复合命题的真假判断,比较基础.19.已知命题p:集合{x|x=(﹣1)n,n∈N}只有3个真子集,q:集合{y|y=x2+1,x∈R }与集合{x|y=x+1}相等.则下列新命题:①p或q;②p且q;③非p;④非q.其中真命题的个数为.【答案】2【解析】利用或且非的含义判断命题p,q的真假关系,进一步利用复合命题与简单命题真假之间的关系确定出有关命题的真假即可.解:命题p的集合为{﹣1,1},只有2个元素,有3个真子集,故p为真,非p为假;q中的两个集合不相等,故q为假,非q为真.因此有2个新命题为真.故答案为:2点评:本题考查含有量词的命题真假的判断,解决的关键是寻找和证明相结合.集合之间关系的运用,理解复合命题真假与简单命题真假之间的关系.20.椭圆的离心率为,则的值为_____________.【答案】【解析】当焦点在轴时,,所以,解得,当焦点在轴时,,所以,解得,所以答案应填:.【考点】1、椭圆的离心率;2、分类讨论.。
【易错题】高一数学下期末试卷带答案(1)

【易错题】高一数学下期末试卷带答案(1)一、选择题1.ABC V 中,已知sin cos cos a b cA B C==,则ABC V 为( ) A .等边三角形B .等腰直角三角形C .有一个内角为30°的直角三角形D .有一个内角为30°的等腰三角形2.某空间几何体的三视图如图所示,则该几何体的体积为( )A .73 B .8π3- C .83D .7π3- 3.已知ABC ∆是边长为4的等边三角形,P 为平面ABC 内一点,则•()PA PB PC +u u u v u u u v u u u v的最小值是() A .6-B .3-C .4-D .2-4.已知函数y=f (x )定义域是[-2,3],则y=f (2x-1)的定义域是( ) A .50,2⎡⎤⎢⎥⎣⎦B .[]1,4-C .1,22⎡⎤-⎢⎥⎣⎦D .[]5,5-5.已知数列{}n a 的前n 项和22n S n n =+,那么它的通项公式是( )A .21n a n =-B .21n a n =+C .41n a n =-D .41n a n =+6.已知不等式220ax bx ++>的解集为{}12x x -<<,则不等式220x bx a ++<的解集为( ) A .112x x ⎧⎫-<<⎨⎬⎩⎭B .112x x x ⎧⎫<->⎨⎬⎩⎭或 C .{}21x x -<< D .{}21x x x <->或7.设正项等差数列的前n 项和为,若,则的最小值为 A .1B .C .D .8.函数223()2xx xf x e +=的大致图像是( )A .B .C .D .9.已知()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在三个不同实数a ,b ,c 使得()()()f a f b f c ==,则abc 的取值范围是( ) A .(0,1)B .[-2,0)C .(]2,0-D .(0,1)10.(2018年天津卷文)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为 A .6B .19C .21D .4511.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出//AB 平面MNP 的图形的序号是( )A .①③B .②③C .①④D .②④12.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( ) A .7B .6C .5D .4二、填空题13.若直线1x y -=与直线(3)80m x my ++-=平行,则m =______________. 14.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =___.15.已知数列{}n a 满足1121,2n n a a a n +==+,则na n的最小值为_______. 16.设向量(12)(23)a b ==r r ,,,,若向量a b λ+r r 与向量(47)c =--r ,共线,则λ= 17.在四面体ABCD 中,=2,60,90AB AD BAD BCD =∠=︒∠=︒,二面角A BD C --的大小为150︒,则四面体ABCD 外接球的半径为__________.18.已知点G 是ABC ∆的重心,内角A 、B 、C 所对的边长分别为a 、b 、c ,且0578a b c GA GB GC ++=u u ur u u u r u u u r r ,则角B 的大小是__________. 19.已知函数2,()24,x x mf x x mx m x m⎧≤=⎨-+>⎩ 其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________. 20.已知a ∈R ,命题p :[]1,2x ∀∈,20x a -≥,命题q :x ∃∈R ,2220x ax a ++-=,若命题p q ∧为真命题,则实数a 的取值范围是_____.三、解答题21.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2AB AD ==,2CA CB CD BD ====. (1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点E 到平面ACD 的距离.22.已知(1,2),(2,1)(2)()a b m a t b n ka tb k R ==-=++=+∈r r rr r r r r ,,.(1)若1t =,且m n r P r,求k 的值;(2)若t R ∈,且5m n =r rg ,求证:k 2≤.23.如图所示,一座小岛A 距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一城镇B .一年青人从小岛A 出发,先驾驶小船到海岸线上的某点C 处,再沿海岸线步行到城镇B .若PAC θ∠=,假设该年青人驾驶小船的平均速度为2/km h ,步行速度为4/km h .(1)试将该年青人从小岛A 到城镇B 的时间t 表示成角θ的函数; (2)该年青人欲使从小岛A 到城镇B 的时间t 最小,请你告诉他角θ的值. 24.已知函数()e cos xf x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值.25.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知10cos A =-,2b =,5c =.(1)求a ;(2)求cos()B A -的值.26.如图1,在直角梯形ABCD 中,//,,2AD BC BAD AB BC π∠==12AD a ==,E 是AD 的中点,O 是OC 与BE 的交点,将ABE ∆沿BE 折起到图2中1A BE ∆的位置,得到四棱锥1A BCDE -.(Ⅰ)证明:CD ⊥平面1A OC ;(Ⅱ)当平面1A BE ⊥平面BCDE 时,四棱锥1A BCDE -的体积为2a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】 【分析】 【详解】因为sin cos cos a b c A B C==,所以sin sin sin sin cos cos 4A B C B C A B C π==∴== , 即ABC V 为等腰直角三角形.故选:B .2.B解析:B 【解析】 【分析】由三视图可知,该几何体是由一个四棱锥挖掉半个圆锥所得,故利用棱锥的体积减去半个圆锥的体积,就可求得几何体的体积. 【详解】由三视图可知,该几何体是由一个四棱锥挖掉半个圆锥所得,故其体积为21118222123233ππ-⋅⋅⋅-⋅⋅⋅⋅=.故选B. 【点睛】本小题主要考查由三视图判断几何体的结构,考查不规则几何体体积的求解方法,属于基础题.3.A解析:A 【解析】 【分析】建立平面直角坐标系,表示出点的坐标,利用向量坐标运算和平面向量的数量积的运算,求得最小值,即可求解. 【详解】由题意,以BC 中点为坐标原点,建立如图所示的坐标系,则(0,(2,0),(2,0)A B C -,设(,)P x y ,则(,),(2,),(2,)PA x y PB x y PC x y =-=---=--u u u r u u u r u u u r,所以22()(2))(2)22PA PB PC x x y y x y •+=-⋅-+⋅-=-+u u u r u u u r u u u r222[(3]x y =+-,所以当0,x y ==()PA PB PC •+u u u r u u u r u u u r取得最小值为2(3)6⨯-=-,故选A.【点睛】本题主要考查了平面向量数量积的应用问题,根据条件建立坐标系,利用坐标法是解答的关键,着重考查了推理与运算能力,属于基础题.4.C解析:C 【解析】∵函数y =f (x )定义域是[−2,3], ∴由−2⩽2x −1⩽3, 解得−12⩽x ⩽2, 即函数的定义域为1,22⎡⎤-⎢⎥⎣⎦,本题选择C 选项.5.C解析:C 【解析】分类讨论:当1n =时,11213a S ==+=,当2n ≥时,221(2)2(1)141n n n a S S n n n n n -⎡⎤=-=+--+-=-⎣⎦, 且当1n =时:1414113n a -=⨯-== 据此可得,数列的通项公式为:41n a n =-. 本题选择C 选项.6.A解析:A 【解析】 【分析】根据一元二次不等式的解集与一元二次方程根的关系,结合韦达定理可构造方程求得,a b ;利用一元二次不等式的解法可求得结果.【详解】220ax bx ++>Q 的解集为{}12x x -<<1∴-和2是方程220ax bx ++=的两根,且0a <1212122ba a⎧-=-+=⎪⎪∴⎨⎪=-⨯=-⎪⎩,解得:11a b =-⎧⎨=⎩ 222210x bx a x x ∴++=+-< 解得:112x -<<,即不等式220x bx a ++<的解集为112x x ⎧⎫-<<⎨⎬⎩⎭故选:A 【点睛】本题考查一元二次不等式的解法、一元二次不等式的解集与一元二次方程根的关系等知识的应用;关键是能够通过一元二次不等式的解集确定一元二次方程的根,进而利用韦达定理构造方程求得变量.7.D解析:D 【解析】 【分析】先利用等差数列的求和公式得出,再利用等差数列的基本性质得出,再将代数式和相乘,展开后利用基本不等式可求出的最小值.【详解】由等差数列的前项和公式可得,所以,,由等差数列的基本性质可得,, 所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选:D.【点睛】本题考查的等差数列求和公式以及等差数列下标性质的应用,考查利用基本不等式求最值,解题时要充分利用定值条件,并对所求代数式进行配凑,考查计算能力,属于中等题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学经典错题回顾(含答案)1、数列 ,11,22,5,2的一个通项公式是___________2、若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项n S 最大时的最大自然数n 是:_______3、已知45<x ,函数54124-+-=x x y 的最大值是4、设n S 是等差数列{}n a 的前n 项和,若5359a a =,则95SS 的值为5、已知等比数列{}n a ,公比21=q 且3049531=++++a a a a ,则++21a a 503a a ++ 等于6、等差数列{}n a 共有21n +项,其中奇数项之和为319,偶数项之和为290,则中间项为_______7、若关于x 的不等式20ax bx c ++>的解集是11{}45xx x <<或,那么不等式2220cx bx a --<的解集是8、若两个等差数列{}n a 和{}n b 的前n 项和分别是,n n S T ,已知73n nS n T n =+,则54a b 等于9、数列{a n }中,前n 项和31n n s =+,则n a = 。
10、在锐角△ABC 中,BC=1,B=2A,则cos ACA的值等于 AC 的取值范围为11、直角三角形三边成等比数列,公比为q ,则2q 的值为 。
12、若方程2(1)10ax a x a +-+-=有一正、一负两实数解,则a 的范围为_____________13、若正数b a ,满足3++=b a ab ,则ab 的取值范围是14、函数9y x x=+的值域是15、如果满足∠ABC=60°,AC=2,BC=k 的△ABC 恰有一个,那么k 的取值范围是16、三个数c b a ,,成等比数列,且0,0a c >>,若1=++c b a 成立,则b 的范围是三个数c b a ,,成等比数列,且0,0a c >>,若1=++c b a 成立,则b 的范围是17、若钝角三角形三边长为a+1,a+2,a+3,则a 的取值范围是18、若正数b a ,满足3++=b a ab ,则ab 的取值范围是19、在面积为S (S 为定值)的扇形中,当扇形中心角为θ,半径为r 时,扇形周长最小,这时r ,θ的值分别为20、函数9y x x=+的值域是21、如图所示,某海岛上一观察哨A 上午11时测得一轮船在海岛北偏东060的C 处,12时20分测得船在海岛北偏西060的B 处,12时40分轮船到达位于海岛正西方且距海岛5 km 的E 港口,如果轮船始终匀速直线前进,问船速多少?22、在等比数列{}n a 中,已知,214,21133==S a 求q a 与1。
23、解关于x 的不等式:()0112>++-x a ax24、在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且.2cos cos ca bC B +-= (1)求角B 的大小;(2)若4,13=+=c a b ,求ABC ∆的面积.25、某房地产开发商投资81万元建一座写字楼,第一年的装修费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元。
(1)若扣除投资和装修费,则从第几年开始获取纯利润?(2)若干年后开发商为了投资其他项目,有两种处理方案:一,纯利润总和最大时,以10万元出售;二,该楼年平均利润最大时以46万元出售该楼,问哪种方案更优?26、已知2()(3)f x ax b x a ab =+---,当(1,2)x ∈-时,()0f x <;(,1)(2,)x ∈-∞-+∞ 时,()0f x > (1)求a 、b 的值;(2)若2212cx cx x ax b +-<++的解集为R ,求 c 的取值范围。
27. 过点P (4,1)的直线m 分别交x 轴y 轴的正方向交于A 、B ,O 为原点,(1)求|OA|+|OB|最小时,直线m 的方程;(2)当0AB 面积最小时,求直线m 的方程。
28. 设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111==b a , 2153=+b a ,1335=+b a .(1)求数列{}n a 、{}n b 的通项公式; (2)求数列⎭⎬⎫⎩⎨⎧n n b a 的前n 项和n S .答案 1、数列,11,22,5,2的一个通项公式是____)na n N *=∈____________2、若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项n S 最大时的最大自然数n 是:___2003_______3、已知45<x ,函数54124-+-=x x y 的最大值是 14、设n S 是等差数列{}n a 的前n 项和,若5359a a =,则95SS 的值为 15、已知等比数列{}n a ,公比21=q 且3049531=++++a a a a ,则++21a a 503a a ++ 等于 456、等差数列{}n a 共有21n +项,其中奇数项之和为319,偶数项之和为290,则中间项为__29______7、若关于x 的不等式20ax bx c ++>的解集是11{}45xx x <<或,那么不等式2220cx bx a --<的解集是 {101}x x -<<8、若两个等差数列{}n a 和{}n b 的前n 项和分别是,n n S T ,已知73n n S n T n =+,则54a b 等于 63/109、数列{a n }中,前n 项和31n n s =+,则n a = 14,123,2n n n -=⎧⎨≥⎩。
10、在锐角△ABC 中,BC=1,B=2A,则cos ACA的值等于 2 AC的取值范围为11、直角三角形三边成等比数列,公比为q ,则2q 的值为 。
12、若方程2(1)10ax a x a +-+-=有一正、一负两实数解,则a 的范围为______0<a<1_________13、若正数b a ,满足3++=b a ab ,则ab 的取值范围是 >=914、函数9y x x=+的值域是 y>=6,y<=-615、如果满足∠ABC=60°,AC=2,BC=k 的△ABC 恰有一个,那么k 的取值范围是012,k k <≤=16、三个数c b a ,,成等比数列,且0,0a c >>,若1=++c b a 成立,则b 的范围是三个数c b a ,,成等比数列,且0,0a c >>,若1=++c b a 成立,则b 的范围是 [-1,0)(0,1/3]17、若钝角三角形三边长为a+1,a+2,a+3,则a 的取值范围是 0<a<218、若正数b a ,满足3++=b a ab ,则ab 的取值范围是 >=919、在面积为S (S 为定值)的扇形中,当扇形中心角为θ,半径为r 时,扇形周长最小,这时r ,θ的值分别为20、函数9y x x=+的值域是y>=6,y<=-621、如图所示,某海岛上一观察哨A 上午11时测得一轮船在海岛北偏东060的C 处,12时20分测得船在海岛北偏西060的B 处,12时40分轮船到达位于海岛正西方且距海岛5 km 的E 港口,如果轮船始终匀速直线前进,问船速多少?解:轮船从C 到B 用时80分钟,从B 到E 用时20分钟, 而船始终匀速前进,由此可见:BC=4EB ,设EB=x ,则 则BC=4x ,由已知得0030,150BAE EAC ∠=∠= 在△AEC 中,由正弦定理得:sin sin sin sin EC AE AE EAC C EAC C EC ⋅∠=∴=∠05sin150152x x==在△ABC 中,由正弦定理得:0sin120sin BC AB C=014sin sin120x BC CAB ⋅⋅∴==3=在△ABE 中,由余弦定理得:2222cos30BE AB AE AB AE =+-⋅⋅16312525,33BE =+-⨯==故所以船速3BEv t===km/h22、在等比数列{}n a 中,已知,214,21133==S a 求q a 与1。
11632112a a huo q q =⎧⎧=⎪⎪⎨⎨=-⎪⎪=⎩⎩23、解关于x 的不等式()0112>++-x a axa=0,x<1a=1,x 不等于1 a>1,x>1或x<1/a 0<a<1, x<1或x>1/aa<0, 1/a<x<124、在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且.2cos cos ca bC B +-= (1)求角B 的大小;(2)若4,13=+=c a b ,求ABC ∆的面积.(1)120°(2)425、某房地产开发商投资81万元建一座写字楼,第一年的装修费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元。
(1)若扣除投资和装修费,则从第几年开始获取纯利润?(2)若干年后开发商为了投资其他项目,有两种处理方案:一,纯利润总和最大时,以10万元出售;二,该楼年平均利润最大时以46万元出售该楼,问哪种方案更优? (1)4 (2)二26、已知2()(3)f x ax b x a ab =+---,当(1,2)x ∈-时,()0f x <;(,1)(2,)x ∈-∞-+∞ 时,()0f x >(1)求a 、b 的值;(2)若2212cx cx x ax b +-<++的解集为R ,求 c 的取值范围。
(1) a=2,b=1 (2)-6<c ≤227. 过点P (4,1)的直线m 分别交x 轴y 轴的正方向交于A 、B ,O 为原点,(1)求|OA|+|OB|最小时,直线m 的方程;(2)当0AB 面积最小时,求直线m 的方程。
28. 设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111==b a ,2153=+b a ,1335=+b a .(1)求数列{}n a 、{}n b 的通项公式; (2)求数列⎭⎬⎫⎩⎨⎧n n b a 的前n 项和n S .(1)121,2n n n a n b -=-=(2) 12362n n n S -+=-。