2020-2021山东省青岛实验初级中学七年级数学上期中试题附答案

合集下载

青岛版七年级数学上期中考试试卷(含答案)

青岛版七年级数学上期中考试试卷(含答案)

2020-2021学年山东省聊城市七年级(上)数学试卷1.如图,小红用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能解释这一现象的数学知识是()A. 经过一点能画无数条直线B. 两点之间,线段最短C. 两点确定一条直线D. 连接两点间的线段的长度,叫做这两点的距离2.下面调查方式中,合适的是()A. 为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,采用普查方式B. 了解定西市一批袋装食品是否含有防腐剂,选择普查方式C. 试航前对我国第一艘国产航母“辽宁号”各系统的检查,选择抽样调查方式D. 调查某新型防火材料的防火性能,采用普查的方式3.下列结论中,正确的有()①符号相反且绝对值相等的数互为相反数;②一个数的绝对值越大,表示它的点在数轴上离原点越远;③两个负数,绝对值大的它本身反而小;④正数大于一切负数;⑤一般来说,在数轴上,右边的数总大于左边的数.A. 2个B. 3个C. 4个D. 5个4.下列说法中,正确的是()A. 若a>|b|,则a>bB. 若a≠b,则a2≠b2C. 若|a|=|b|,则a=bD. 若|a|>|b|,则a>b5.如图所示的展开图能折叠的长方体可能是()A. B. C. D.6.如图,下列语句错误的是()A. 直线AC和BD是不同的直线B. AD=AB+BC+CDC. 射线DC和DB是同一条射线D. 射线BA和BD不是同一条射线7.下列计算中正确的是()A. (-15)×(--1)=-3+5+1=3B. (-15)×(--1)=-3-5-15=-23C. (-2)÷(-)=(-2)÷()+(-2)÷=4-6=-2D. -5××|-|=-58.为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理.欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是()A. 条形统计图B. 频数直方图C. 折线统计图D. 扇形统计图9.如图,数轴上的A、B两点所表示的数分别为a、b,则下列各数中,最大的是()A. B. a+b C. a+b2 D. a-b10.已知,则代数式()A. B. C. D.11.今年我县有8500名考生参加中考,为了了解这些考生的数学成绩,从中抽取200名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这8500名考生的数学中考成绩的全体是总体;②每个考生是个体;③200名考生是总体的一个样本;④样本的容量是200. 其中说法正确的有()A. 1个B. 2个C. 3个D. 4个12.如果A、B、C三点在同一直线上,且线段AB=8cm,BC=6cm,若M、N分别为AB、BC的中点,那么M、N两点之间的距离为()A. 7cmB. 1cmC. 7cm或1cmD. 无法确定13.如图,射击运动员在瞄准时,总是用一只眼瞄准准星和目标,这种现象用数学知识解释为______.14.如图所示,C为线段AB的中点,D在线段CB上,并且AD=10cm,DB=6cm,则CD=______cm.15.如果ab>0,那么=______.16.某学校在“你最喜爱的课外活动项目”调查中,随机调查了若干名学生(每名学生只选一个活动项目),并根据调查结果绘制了如图所示的扇形统计图.已知选最喜爱“体操”的学生是9人,则最喜爱“3D打印”学生数为______.17.一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去…最后落点为OA2019的中点A2020,则点A2020表示的数为______.18.计算:(1)15-(-2)+(-7)(2)(3)(4)19.如图,点B,C,D在线段AE上.(1)图中共有几条线段?说说你分析这个问题的具体思路.(2)你能用上面的思路来解决“8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛”这个问题吗?20.画出数轴,在数轴上表示下列各数,并用“<”连接:-22,2,-1.5,0,|-3|,.21.如图,已知C是线段AB的中点,D是AC上一点,AD-CD=2cm,若AB=16cm,求CD长.22.粮库3天内发生粮食进出库的吨数如下+26,-32,-15,+34,-38,-20(“+”表示进库“-”表示出库).(1)经过这3天,库里的粮食是增多还是减少了?(2)经过这3天,仓库管理员结算发现库里还存280吨粮,那么3天前库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这3天要付多少装卸费?23.已知|x-1|=-3(y+2)2,a与b互为倒数,c与d互为相反数,求(x+y)n+(ab)+3c+3d的值.24.某校开展“我最喜欢的一项体育社团活动”调查,若每名学生必选且只能选一项,现随机抽查了a名学生,并将其结果绘制成如下不完整的统计图,请解答下列问题:(1)求a的值;(2)补全条形统计图;(3)求“乒乓球”所对应的扇形圆心角的度数;(4)已知该校共有2400名学生,请你估计该校学生最喜欢篮球社团活动的人数.25.类比推理是一种重要的推理方法,根据两种事物在某些特征上相似,得出它们在其他特征上也可能相似的结论.在异分母的分数的加减法中,往往先化作同分母,然后分子相加减,例如:,我们将上述计算过程倒过来,得到,这一恒等变形过程在数学中叫做裂项. 类似地,对于可以用裂项的方法变形为:.类比上述方法,解决以下问题.(1)猜想并写出:= ______ .(2)探究并计算下列各式:①;②.答案和解析1.【答案】B【解析】[分析]根据线段的性质解答即可.此题主要考查了线段的性质,关键是掌握两点之间,线段最短.[详解]解:能解释这一现象的数学知识是两点之间,线段最短.故选B.2.【答案】A【解析】解:A、为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,适合采用普查方式;B、了解定西市一批袋装食品是否含有防腐剂,适合抽样调查;C、试航前对我国第一艘国产航母各系统的检查,零部件很重要,应全面检查;D、调査某新型防火材料的防火性能,适合抽样调查.故选:A.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.【答案】D【解析】【分析】本题考查了相反数,正数和负数,数轴及绝对值的知识,属于基础题,注意基础概念的熟练掌握.根据相反数,正数和负数,数轴及绝对值的定义,判断各个选项即可得出答案.【解答】解:①根据相反数的定义可知,符号相反且绝对值相等的数互为相反数,故本选项正确;②一个数的绝对值越大,表示它的点在数轴上离原点越远,故本选项正确;③根据负数的性质,可知两个负数,绝对值大的它本身反而小,故本选项正确;④正数都大于0,负数都小于0,故正数大于一切负数,故本选项正确;⑤一般来说,当数轴方向朝右时,右边的数比左边的数大,故本说法正确.综上,正确的有①②③④⑤,共5个.故选D.4.【答案】A【解析】解:A因为|b|≥0,若a>|b|,则a>|b|>0,即a>b,所以A选项正确;B如果a、b互为相反数,如2与-2,2≠-2,但22=(-2)2,即a2=b2,所以B选项不正确;C如果a、b互为相反数,如2与-2,|2|=|-2|,即|a|=|b|,但2≠-2,a≠b,所以C选项不正确;D如果a、b都为负数,如-2与-1,|-2|>|-1|,即|a|>|b|,但-2<-1,a<b,所以D选项不正确.故选:A.根据绝对值的意义进行逐一分析.本题主要考查绝对值的意义,根据|a|=进行分类讨论,通过赋值法可得出与题目相反的结论即判断题目正误.5.【答案】C【解析】解:根据题中展开图可知,长方体两端是黑色的小正方形,且两个黑面是相对的两个面,两个白面也是相对的两个面.故选:C.利用长方体及其表面展开图的特点依次分析选项可得答案.注意本题两个白面是相对的两个面.本题主要考查了几何体的展开图,注意长方体的空间图形,从相对面入手,分析及解答问题.6.【答案】A【解析】解:A、因为直线是可以向两端无限延伸的,它可以用这条直线上的两个点来表示,所以在A中,直线AC和BD是相同的直线,故A错.B、∵AD是三条线段的和,∴AD=AB+BC+CD,故B正确;C、端点相同的两条射线是同一条射线,则射线DC和DB是同一条射线,故C正确;D、端点相同的两条射线是同一条射线,所以在D中,射线BA和BD不是同一条射线,方向相反,故D正确;故选:A.根据直线、射线和线段的定义进行选择.本题考查了直线、射线、线段的区别和联系,注:线段有长度,而直线和射线无长度.7.【答案】D【解析】解:A、(-15)×(--1)=-3+5+15=17,故选项错误;B、(-15)×(--1)=-3+5+15=17,故选项错误;C、(-2)÷(-)=(-2)÷(-)=12,故选项错误;D、-5××|-|=-5××=-5.故选:D.A和B、根据乘法分配律简便计算即可求解;C、先算小括号里面的加法,再算括号外面的除法;D、先算绝对值,再约分计算即可求解.考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.8.【答案】D【解析】【分析】根据题意,需要反映部分与总体的关系,故最适合的统计图是扇形统计图.本题主要考查了统计图的应用,熟练掌握各种统计图的特点是解答本题的关键.【解答】解:欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是扇形统计图.故选:D.9.【答案】D【解析】解:方法一:由数轴可得:b<0<a,取a=0.2,b=-0.8,则==-0.25,a+b=0.2+(-0.8)=0.6,a+b2=0.2+(-0.8)2=0.2+0.64=0.84,a-b=0.2-(-0.8)=0.2+0.8=1,最大的是1,故选项D正确,方法二:由数轴可得:b<0<a,因为<0,a+b<0,a+b2>0,a-b>0,而a-b>a+b2,所以a-b最大,故选:D.根据有理数的运算结果进行判断.此题主要考查了有理数的加减、乘除运算,正确掌握相关运算法则是解题关键.10.【答案】B【解析】解:∵,∴,解得:,∵,∴当时,。

山东省青岛市2020-2021学年七年级上学期期中数学试题

山东省青岛市2020-2021学年七年级上学期期中数学试题
(1)试用含m的式子填空:
①降价后,每个文具袋的销售价为___元;
②降价后,每个文具袋的利润为___元(利润=销售价−进价);
③降价后,该超市的文具袋平均每月销售量为___个;
(2)如果(1)中的m=4,请计算该超市该月销售这种文具袋的利润是多少元?(总利润=单个利润×销售数量)
24.[问题提出]
一个边长为ncm(n⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?
山东省青岛市2020-2021学年七年级上学期期中数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1. 的相反数是()
A. B. C.3D.-3
2.在 ,- ,0,-(-3),-(+2)五个数中,负数有()
A.1个B.2个C.3个D.4个
A.4个B.3个C.2个D.1个
6.已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么数字5对面的数字是( )
A.6B.4C.3D.6或4或3
7.若两个非零的有理数a、b,满足:|a|=a,|b|=﹣b,a+b<0,则在数轴上表示数a、b的点正确的是( )
A. B.
没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:
一面涂色的:在面上,每个面上有4个,正方体共有个面,因此一面涂色的共有个;
两面涂色的:在棱上,每个棱上有2个,正方体共有条棱,因此两面涂色的共有个;
三面涂色的:在顶点处,每个顶点处有1个,正方体共有个顶点,因此三面涂色的共有个…

2020-2021学年初一(上)期中考试数学试卷(含答案)

2020-2021学年初一(上)期中考试数学试卷(含答案)

2020-2021学年初一(上)期中考试数 学(考试时间90分钟 满分100分)18分)1.如图是加工零件尺寸的要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .44.98D .Φ45.012.下列运算中正确的是( )A .2(2)4-=- B .224-= C .3(3)27-=- D .236= 3.若37x =是关于x 的方程70x m +=的解,则m 的值为( ) A .3- B .13- C .3 D .134.若单项式12m a b -与212n a b 是同类项,则mn 的值是( ) A .3 B .6 C .8 D .95.下列各式中,是一元一次方程的是( )A .852020x y -=B .26x -C .212191y y =+D .582x x +=6.下列计算正确的是( )A .8(42)8482÷+=÷+÷B .1(1)(2)(1)(1)12-÷-⨯=-÷-= C .3311311636624433434⎛⎫⎛⎫⎛⎫-÷=-⨯=-⨯+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ D .[](2)(2)40--+÷= 7.下列方程的解法,其中正确的个数是( ) ①14136x x ---=,去分母得2(1)46x x ---= ②24132x x ---=,去分母得2(2)3(4)1x x ---= ③2(1)3(2)5x x ---=,去括号得22635x x ---=④32x =-,系数化为1得32x =- A .3 B .2 C .1 D .08.2020年国庆档电影《我和我的家乡》上映13天票房收入达到21.94亿元,并连续10天拿下票房单日冠军.其中21.94亿元用科学记数法可表示为( )A .821.9410⨯元B .82.19410⨯元C .100.219410⨯元D .92.19410⨯元9.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是( )A .pB .qC .mD .n二、填空题(本题共有9小题,每小题3分,共27分)10.如果数轴上A 点表示3-,那么与点A 距离2个单位的点所表示的数是 .11.比较大小:78- 89-(填“>”“<”或“=”) 12.历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示,例如多项式2()25f x x x =+-,则(1)f -= .13.用四舍五入法将3.694精确到0.01,所得到的近似值为 .14.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如()2222153x x x x --+=-+-,则所捂住的多项式为 .15.“☆”是新规定的某种运算符号,设a ☆b =ab a b +-,若2 ☆8n =-,则n = .16.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知2m n +=-,4mn =-,则2(3)3(2)mn m n mn ---的值为 .17.某校为学生购买名著《三国演义》100套、《西游记》80套,共用12 000元,《三国演义》每套比《西游记》每套多16元,求《三国演义》和《西游记》每套各多少元?设西游记每套x 元,可列方程为 .18.观察下列一组算式:2231881-==⨯,22531682-==⨯,22752483-==⨯,22973284-==⨯……根据你所发现的规律,猜想22201920178-=⨯ .三、按要求解答(第19小题8分,第20小题5分,第21小题10分,共23分)19.计算题(每小题4分,共8分) ①3511114662⎛⎫---- ⎪⎝⎭ ②[]31452(3)5211⎛⎫-⨯-÷-+ ⎪⎝⎭20.(本题5分)化简并求值:222212(2)()2x xy y xy x y ⎡⎤⎛⎫---+- ⎪⎢⎥⎝⎭⎣⎦,其中x 、y 的取值如图所示.21.解方程(每小题5分,共10分)①3(202)10y y --= ②243146x x --=-四、解答题(第22、23小题4分,第24小题5分,共13分)22.(本题4分)解一元一次方程的过程就是通过变形,把一元一次方程转化为x a =的形式.下面是解方程20.30.410.50.3x x -+-=的主要过程,请在如图的矩形框中选择与方程变形对应的依据,并将它前面的序号填入相应的括号中.解:原方程可化为4153x +-=( ) 去分母,得3(203)5(104)15x x --+=( )去括号,得609502015x x ---=( )移项,得605015920x x -=++( )合并同类项,得1044x =(合并同类项法则) 系数化为1,得 4.4x =(等式的基本性质2)23.(本题4分)阅读材料,回答问题.计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭解:原式的倒数为211213106530⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭ =2112(30)31065⎛⎫-+-⨯- ⎪⎝⎭=203512-+-+=10-故原式=110- 根据材料中的方法计算113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭. 24.(本题5分)在某地住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示). (1)用含m ,n 的代数式表示该广场的面积S ;(2)若m ,n 满足2(6)50m n -+-=,求出该广场的面积.五、解答题(第25、26小题6分,第27小题7分,共19分)25.(本题6分)列代数式或一元一次方程解应用题请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打8折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.26.(本题6分)下表中的字母都是按一定规律排列的.我们把某格中的字母的和所得多项式称为特征多项式,例如第1格的“特征多项式”为62x y +,第2格的“特征多项式”为94x y +,回答下列问题.(1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n 格的“特征多项式”为 ;(n 为正整数)(2)求第6格的“特征多项式”与第5格的“特征多项式”的差.27.(本题7分)在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的13倍,我们就把点C叫做【A,B】的理想点.例如:图中,点A表示的数为-1,点B表示的数为3.表示数0的点C到点A的距离是1,到点B的距离是3,那么点C是【A,B】的理想点;又如,表示数2的点D到点A的距离是3,到点B的距离是1,那么点D 就不是【A,B】的理想点,但点D是【B,A】的理想点.(1)当点A表示的数为-1,点B表示的数为7时,①若点C表示的数为1,则点C(填“是”或“不是”)【A,B】的理想点;②若点D是【B,A】的理想点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为-2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止.请直接写出点C运动多少秒时,C,A,B中恰有一个点为其余两点的理想点?参考答案一、选择题(每小题2分,共18分)二、填空题(每小题3分,共27分)19.计算题(每小题4分,共8分)①原式=3511114662--+┈┈┈┈┈┈┈┈┈┈1分 =5131116642--++ =1224-+┈┈┈┈┈┈┈┈┈┈3分 =14┈┈┈┈┈┈┈┈┈┈4分 ②原式=14582211⎛⎫-⨯-÷ ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈2分 =24--┈┈┈┈┈┈┈┈┈┈3分=6-┈┈┈┈┈┈┈┈┈┈4分20.解:原式=22221242x xy y xy x y ⎛⎫---+- ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈1分 =22221242x xy y xy x y --+-+┈┈┈┈┈┈┈┈┈┈2分 =272x xy -┈┈┈┈┈┈┈┈┈┈3分 当2x =,1y =-时┈┈┈┈┈┈┈┈┈┈4分原式=2722(1)112-⨯⨯-=┈┈┈┈┈┈┈┈┈┈5分21.解方程(每小题5分,共10分)①3(202)10y y --=解:60610y y -+=┈┈┈┈┈┈┈┈┈┈2分61060y y +=+┈┈┈┈┈┈┈┈┈┈3分770y =┈┈┈┈┈┈┈┈┈┈4分10y =┈┈┈┈┈┈┈┈┈┈5分 ②243146x x --=- 解:3(2)122(43)x x -=--┈┈┈┈┈┈┈┈┈┈1分361286x x -=-+┈┈┈┈┈┈┈┈┈┈2分361286x x -=-+┈┈┈┈┈┈┈┈┈┈3分310x -=┈┈┈┈┈┈┈┈┈┈4分103x =-┈┈┈┈┈┈┈┈┈┈5分 四、解答题(第22、23小题4分,第24小题5分,共13分)22.③;②;④;①┈┈┈┈┈┈┈┈┈┈4分23.解:原式的倒数为132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭┈┈┈┈┈┈┈┈┈┈1分 1322(42)61437⎛⎫=-+-⨯- ⎪⎝⎭792812=-+-+14=-┈┈┈┈┈┈┈┈┈┈3分故原式=114-┈┈┈┈┈┈┈┈┈┈4分 24.解:(1)S 7220.52m n n m mn =⋅-⋅=┈┈┈┈┈┈┈┈┈┈2分 (2)由题意得6050m n -=⎧⎨-=⎩,解得65m n =⎧⎨=⎩┈┈┈┈┈┈┈┈┈┈3分当6m =,5n =时 S 7651052=⨯⨯=┈┈┈┈┈┈┈┈┈┈5分五、解答题(第25、26小题6分,第27小题7分,共19分)25.解:(1)设一个水瓶x 元,则一个水杯是(48)x -元┈┈┈┈┈┈┈┈┈┈1分34(48)152x x +-=┈┈┈┈┈┈┈┈┈┈2分40x =┈┈┈┈┈┈┈┈┈┈3分∴4848408x -=-=┈┈┈┈┈┈┈┈┈┈4分答:一个水瓶40元,一个水杯8元.(2)甲商场需付款:80%(540208)288⨯⨯+⨯=(元)┈┈┈┈┈┈┈┈┈┈5分 乙商场需付款:5408(2052)280⨯+⨯-⨯=(元)┈┈┈┈┈┈┈┈┈┈6分 ∴选择乙商场更划算.26.解:(1)126x y +;158x y +;3(1)2n x ny ++┈┈┈┈┈┈┈┈┈┈3分(2)(2112)(1810)x y x y +-+┈┈┈┈┈┈┈┈┈┈5分32x y =+┈┈┈┈┈┈┈┈┈┈6分27.(1)①是┈┈┈┈┈┈┈┈┈┈1分②5或11┈┈┈┈┈┈┈┈┈┈3分(2)设运动时间为t 秒,则BC t =,6AC t =-依题意,得C 是【A ,B 】的理想点时有16=3t t -,∴92t = C 是【B ,A 】的理想点时有1(6)3t t =-,∴32t = A 是【C ,B 】的理想点时有16=63t -⨯,∴4t =B 是【C ,A 】的理想点时有1=6=23t ⨯ 答:点C 运动92秒、32秒、4秒、2秒时,C ,A ,B 中恰有一个点为其余两点的理想点.┈┈┈┈┈┈┈┈┈┈7分。

2021-2022学年山东省青岛市七年级(上)学期中数学试卷(含答案)

2021-2022学年山东省青岛市七年级(上)学期中数学试卷(含答案)

2021-2022学年度七年级第一学期阶段质量抽测数学试题注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考 生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、 姓名是否一致.2.选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改 动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用 0.5 毫米黑色墨水签字 笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用 2B 铅笔画出,确定后必须用 0.5 毫米黑色墨水签字笔描黑.一、单选题(共8小题).1. 2021-的倒数是( ) A. 2021B.12021C. 2021-D. 12021-2. 下列图形中,不是三棱柱的表面展开图的是( )A. B. C. D.3. 下列计算错误的是( ) A. |-3|=3B. -12+13=-16C. 0-(-1)=1D.3(-2)=64. 在数轴上与点-3的距离等于4的点表示的数是( ) A. 1B. 1或-7C. -7D. -1或75. 用一个平面去截一个几何体,若截面的形状是长方形,则原来的几何体不可能是( ) A. 正方体B. 直棱柱C. 圆柱D. 圆锥6. “a 与b 的差的5倍”用代数式表示为( ) A.5a b- B. 5(a -b ) C. 5a -b D. a -5b7. 下列各式中,不能由m -n +c 通过变形得到是( ) A. m -(n -c )B. c -(n -m )C. m -(n +c )D. (m -n )+c8. 中秋节临近时,月饼销量大幅度增加,某月饼加工厂为了满足市场需求,计划每天生产2000个月饼,由于各种原因,每天实际上的产量与原计划相比有出入,下表是某一周的生产情况(超产为正,减产为负,单位:个)该工厂实行计件工资制,工人每生产一个月饼可获得0.3元,本周月饼加工厂应支付工人的工资总额是( )元 A. 8300B. 400C. 4320D. 14400二、填空题(本题满分24分,共8道小题,每小题3分)9. 计算14-12=_____. 10. 比较大小:-67_____-2.3(填“>”或“<”).11. 国庆节假期间,游客出游热情高涨,红色文化旅游持续升温.游客纷纷走进革命纪念馆学习党史,接受革命传统和爱国主义教育,经文化和旅游部数据中心测算,全国国内旅游出游约5170000000人次,将数字5170000000用科学计数法表示为______.12. 若一个直棱柱共有16个顶点,所有侧棱长的和等于72cm ,则每条侧棱的长为_____cm . 13. 若23m y x 与32n x y 是同类项,则n -2m =_____.14. 如图,一位同学在一个正方体盒子的每个面都写有一个字,分别是:我、爱、伟、大、祖、国,其平面展开图如图所示,那么在该正方体盒子中,与“祖”相对的面所写的字是_____.15. 某地气象统计资料表明,高度每增加2千米,气温就降低大约12℃,现在在高度1千米处测得气温是17℃.x (x >1)千米高空气温大约是_________℃(请用含x 代数式表示并化简).16. 阅读材料:按照一定顺序排列着的一列数称为数列,数列中的每个数叫做这个数列的项.排在第一位的数称为第一项,记为a 1;排在第二位的数称为这个数列的第2项,记为a 2;…;排在第n 位的数称为第n 项,记为n a .所以,数列的一般形式可以写成a 1,a 2,a 3……,a n ,一般地,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d 表示.如:数列1,4,7,10……为等差数列,其中a 1=1,a 2=4,公差为d =3.根据以上材料,则等差数列-5,-7,-9,-11……的公差d 为______,第2021项是_______.三、作图题(本题满分4分)17. 已知,如图是由几个小正方体所组成几何体的从上面看到的几何体的形状图,小正方体中的数字表示在该位置的小立方体的个数,请分别画出这个几何体的从正面、左面看到的几何体的形状图.四、解答题(本题共有7道大题,满分68分)18. 计算(1)12-(-18)+(-7)-15(2)1-5()6--5112 (3)(2153--31065+)÷(1-30) (4)-20211-(3-0.5)×13×[3-2(3)-]19. 化简(1)a +(a -2b )-(5a -3b ) (2)22223(2)(54)a b ab a b ab ---20 化简求值:333311113()2()2932x y x y -++-+,其中x =-2,y =-121. 2021年7月,我国河南省由于受台风等因素的影响,出现了千年难遇的特大洪涝灾害.国家防总部署强降雨防范,各级水利部门加强了检测预报预警,及时发布洪水预警信息,为调度决策、防范应对和抢险救灾提供了有力支撑.下表是我国河南省某水库一周内的水位变化情况 单位:(米) +25+02(注:该水库的警戒水位是35.5米,表格中“+”表示比警戒水位高,“—”表示比警戒水位低) (1)该水库本周水位最高的一天是星期______,这一天的实际水位是______米.(2)若规定水位比前一天上升用“+”,比前一天下降用“—”,不升不降用“0”,请补全下面的本周水位变化表:单位(米)(3)与上周末相比,本周末该水库水位是上升了,还是下降了?变化了多少?22. 将连续的整数1,2,3,4,5,6……排成如图所示的数表(1)如图,方框中九个数之和与中间数25有什么关系?请计算说明.(2)如(1)中的关系,其他这样的方框还成立吗?请举例说明.(3)如(1)中的关系,方框中九个数之和能等于630吗?为什么?23. 某住房户型呈长方形,平面图如下(单位:米),现准备铺设整个长方形地面,其中三间卧室铺设木地板,其它区域铺设地砖.(房间内隔墙宽度忽略不计)(1)求a的值;(2)请用含x的代数式分别表示铺设地面需要木地板和地砖各多少平方米;(3)按市场价格,木地板单价为150元/平方米,地砖单价为200元/平方米,则铺设地面材料总费用是多少元?(用含x的代数式表示)24. 某渔民借助绳索编织而成的渔网捕鱼,小明探索网的结点数(V),网眼数(F),边数(E)之间的关系,他采用由特殊到一般地方法进行探索探究一:如图1,网眼是等边三角形(1)根据①、②、③猜测V、F、E之间满足等量关系为E=V+F-______,表中“☆”处应填的数字为________.探究二:如图2,网眼是四边形.(2)列表如下:(3)将上述表格完成;根据上述探索过程,可以猜想V、F、E之间满足的等量关系为_______;(4)探究三:如果网眼是五边形,结点数(V),网眼数(F),边数(E)之间的关系是_______;(5)一般规律:如果网眼是n边形,结点数(V),网眼数(F),边数(E)之间的关系是_______;(6)规律应用:如图,网眼是六边形渔网的一部分,结点数(V)32个,网眼数(F)10个,边数(E)有______条.2021-2022学年度第一学期阶段质量抽测七年级数学试题(满分:120分时间120分钟)一、单选题(本题满分24分,共8道小题,每小题3分)1. 2021-的倒数是()A. 2021B.12021C. 2021- D.12021-【答案】D解:1 202112021⎛⎫-⨯-=⎪⎝⎭∴2021的倒数是1 2021 -故选:D2. 下列图形中,不是三棱柱的表面展开图的是()A. B. C. D.【答案】A【详解】B、C、D三个选项的中间三个长方形可以围成三棱柱的侧面,上下两个三角形围成三棱柱的两底面,故它们都能围成一个三棱柱,均是三棱柱的展开图;A选项中三个长方形可以围成三棱柱的侧面,但两个底面为同一底面,而另一面没有,故A不能围成三棱柱.故选:A【点睛】本题考查了三棱柱的展开图,掌握三棱柱的特征是解题的关键.3. 下列计算错误的是( ) A. |-3|=3 B. -12+13=-16C. 0-(-1)=1D.3(-2)=6【答案】D【详解】A 、 |-3|=3,正确,故本选项不符合题意; B 、111-+=-236,正确,故本选项不符合题意; C 、 0-(-1)=1,正确,故本选项不符合题意; D 、(-2)3=-8,错误,故本选项符合题意. 故选:D .4. 在数轴上与点-3的距离等于4的点表示的数是( ) A. 1 B. 1或-7C. -7D. -1或7【答案】B解:当点在-3的右侧时,距离-3等于4的点表示的数是:-3+4=1; 当点在-3的左侧时,距离-3等于4的点表示的数是:-3-4=-7. 故选:B .5. 用一个平面去截一个几何体,若截面的形状是长方形,则原来的几何体不可能是( ) A. 正方体 B. 直棱柱C. 圆柱D. 圆锥【答案】D 【解析】【分析】根据正方体、直棱柱、圆柱、圆锥的特点,以及横截面或纵截面的特点逐项判断即可得. 解:A 、正方体的截面可以是长方形,则此项不符题意; B 、直棱柱的截面可以是长方形,则此项不符题意;C 、圆柱的横截面或纵截面中有一个为长方形,则此项不符题意;D 、圆锥有一个平面和一个曲面,截面最多有三条边,因此截面不可能是长方形,此项符合题意; 故选:D .【点睛】本题考查了截一个几何体,明确截面的形状既与被截的几何体有关,还与截面的角度和方向有关是解题关键.6. “a 与b 的差的5倍”用代数式表示为( ) A.5a bB. 5(a -b )C. 5a -bD. a -5b【答案】B【解析】【分析】根据题意,先算a 与b 的差,再算差的5倍,列式即可. 解:∵a 与b 的差的5倍, ∴列式为:5(a -b ). 故选:B .【点睛】本题考查了列代数式,做题的关键是认真读题,理解题意中的关键词. 7. 下列各式中,不能由m -n +c 通过变形得到的是( ) A. m -(n -c ) B. c -(n -m )C. m -(n +c )D. (m -n )+c【答案】C 【解析】【分析】根据去括号法则逐项判断即可得.解:A 、()m n c m n c --=-+,则此项可以由m n c -+通过变形得到,不符题意; B 、()c n m c n m --=-+,则此项可以由m n c -+通过变形得到,不符题意; C 、()m n c m n c -+=--,则此项不能由m n c -+通过变形得到,符合题意; D 、()m n c m n c -+=-+,则此项可以由m n c -+通过变形得到,不符题意; 故选:C .【点睛】本题考查了去括号,熟练掌握去括号法则是解题关键.8. 中秋节临近时,月饼销量大幅度增加,某月饼加工厂为了满足市场需求,计划每天生产2000个月饼,由于各种原因,每天实际上的产量与原计划相比有出入,下表是某一周的生产情况(超产为正,减产为负,单位:个)该工厂实行计件工资制,工人每生产一个月饼可获得0.3元,本周月饼加工厂应支付工人的工资总额是( )元 A. 8300 B. 400C. 4320D. 14400【答案】C解:由题意得:()15010030050150400350200070.3-+-+-++⨯⨯,()400140000.3=+⨯,4320=(元),即本周月饼加工厂应支付工人的工资总额是4320元, 故选:C .二、填空题(本题满分24分,共8道小题,每小题3分)9. 计算14-12=_____. 【答案】14-##-0.25解:111424-=-,故答案为:14-.【点睛】本题考查了有理数的减法,熟练掌握运算法则是解题关键. 10. 比较大小:-67_____-2.3(填“>”或“<”). 【答案】> 【解析】【分析】根据有理数的大小比较法则即可得. 解:有理数的大小比较法则:负数绝对值大的反而小,因为62.37<, 所以62.37->-,故答案为:>.【点睛】本题考查了有理数的大小比较法则,熟练掌握有理数的大小比较法则是解题关键.11. 国庆节假期间,游客出游热情高涨,红色文化旅游持续升温.游客纷纷走进革命纪念馆学习党史,接受革命传统和爱国主义教育,经文化和旅游部数据中心测算,全国国内旅游出游约5170000000人次,将数字5170000000用科学计数法表示为______. 【答案】5.17×910 【解析】【分析】用科学记数法表示绝对值大于1的数,形如a ×,1100,1na n <<为正整数,据此解题.解:将数字5170000000用科学记数法表示为5.17×910, 故答案为:5.17×910.【点睛】本题考查用科学记数法表示绝对值大于1的数,是基础考点,掌握相关知识是解题关键.12. 若一个直棱柱共有16个顶点,所有侧棱长的和等于72cm ,则每条侧棱的长为_____cm . 【答案】9 【解析】【分析】根据棱柱的顶点,求得此棱柱为8棱柱,再根据棱柱的性质可得,求解即可. 解:直棱柱共有16个顶点,可知此棱柱为8棱柱,有8个侧棱,且每个侧棱都相等 由此可知每条侧棱的长为7289cm ÷= 故答案为:9.【点睛】此题考查了立体图形的结构特征,掌握直棱柱的几何性质是解题的关键. 13. 若23m y x 与32n x y 是同类项,则n -2m =_____. 【答案】-4 【解析】【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m 和n 的值. 解:∵单项式3y 2x m 和2x 3y n 是同类项, ∴m =3,n =2, ∴n -2m =2-2⨯3=-4. 故答案为:-4.【点睛】本题考查了同类项的知识,解答本题关键是掌握同类项:所含字母相同,并且相同字母的指数也相同.14. 如图,一位同学在一个正方体盒子的每个面都写有一个字,分别是:我、爱、伟、大、祖、国,其平面展开图如图所示,那么在该正方体盒子中,与“祖”相对的面所写的字是_____.【答案】我 【解析】【分析】根据正方体的平面展开图的特点即可得.解:由正方体的平面展开图的特点可知:“我”与“祖”字处在相对的面上,“爱”与“大”字处在相对的面上,“伟”与“国”字处在相对的面上, 故答案为:我.【点睛】本题考查了正方体的平面展开图,熟练掌握正方体的平面展开图的特点是解题关键.15. 某地气象统计资料表明,高度每增加2千米,气温就降低大约12℃,现在在高度1千米处测得气温是17℃.x (x >1)千米高空气温大约是_________℃(请用含x 代数式表示并化简). 【答案】(236)x -##(-6x +23) 【解析】【分析】根据“高度每增加2千米,气温就降低大约12C ︒”可得“高度每增加1千米,气温就降低大约6C ︒”,由此建立代数式即可.解:由题意得:高度每增加1千米,气温就降低大约1226()C ÷=︒, 则(1)x x >千米高空气温大约是176(1)236()x x C --=-︒, 故答案为:(236)x -.【点睛】本题考查了列代数式,理解题意,正确找出变量关系是解题关键,需注意的是,答案的书写格式,需要有括号.16. 阅读材料:按照一定顺序排列着的一列数称为数列,数列中的每个数叫做这个数列的项.排在第一位的数称为第一项,记为a 1;排在第二位的数称为这个数列的第2项,记为a 2;…;排在第n 位的数称为第n 项,记为n a .所以,数列的一般形式可以写成a 1,a 2,a 3……,a n ,一般地,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d 表示.如:数列1,4,7,10……为等差数列,其中a 1=1,a 2=4,公差为d =3.根据以上材料,则等差数列-5,-7,-9,-11……的公差d 为______,第2021项是_______. 【答案】 ①. 2- ②. 4045- 【解析】【分析】根据公差的定义即可得出公差;根据等差数列的定义归纳类推出一般规律,由此即可得出答案. 解:公差7(5)752d =---=-+=-, 由等差数列的定义得:15a =-,215(2)a a d =+=-+-,32125(2)2a a d a d =+=+=-+-⨯, 43135(2)3a a d a d =+=+=-+-⨯,1(1)5(2)(1)23n a a d n n n =+-=-+--=--,则第2021项是20212202134045a =-⨯-=-, 故答案为:2-,4045-.【点睛】本题考查了代数式的规律型问题,正确理解等差数列和公差的定义是解题关键.三、作图题(本题满分4分)17. 已知,如图是由几个小正方体所组成几何体的从上面看到的几何体的形状图,小正方体中的数字表示在该位置的小立方体的个数,请分别画出这个几何体的从正面、左面看到的几何体的形状图.【答案】见解析 【解析】【分析】由已知条件可知,从正面看有3列,每列小正方形个数分别4,3,2,从左面看有3列,每列小正方形数分别为3,4,1,画图即可.解:由已知条件可知,从正面看有3列,每列小正方形个数分别为4,3,2,从左面看有3列,每列小正方形数分别为3,4,1,如下图:【点睛】本题考查从不同方向看几何体的形状,由几何体从上面看所得的形状图确定几何体的形状是解题的关键.四、解答题(本题共有7道大题,满分68分)18. 计算(1)12-(-18)+(-7)-15(2)1-5()6--5112 (3)(2153--31065+)÷(1-30) (4)-20211-(3-0.5)×13×[3-2(3)-]【答案】(1)8;(2)14-;(3)-24;(4)4 【解析】【分析】(1)根据有理数的加减法的法则计算即可; (2)根据有理数的减法法则计算即可; (3)根据有理数的加减法与除法法则计算即可;(4)根据有理数的混合运算顺序及运算法则、乘方的运算计算即可. 【详解】(1)原式=12+18-7-15 =30-7-15 =23-15 =8; (2)原式=1511612+- =25111212- 312=-=14-;(3)原式=()21533031065⎛⎫-+-⨯- ⎪⎝⎭ =()()()()21533030303031065⨯--⨯-+⨯--⨯- =-20+3-25+18 =-24;(4)原式=()11 2.5393--⨯⨯- =()11 2.563--⨯⨯- =()1 2.52--⨯- =15-+ =4.【点睛】本题考查了含乘方的有理数的混合运算,熟练掌握运算法则是解题的关键. 19. 化简(1)a +(a -2b )-(5a -3b )(2)22223(2)(54)a b ab a b ab --- 【答案】(1)3a b -+;(2)22a b ab +. 【解析】【分析】(1)先去括号,再计算整式的加减即可得; (2)先去括号,再计算整式的加减即可得. 解:(1)原式253a a b a b =+--+,3a b =-+;(2)原式22226354a b ab a b ab --+=,22a b ab =+.【点睛】本题考查了整式的加减,熟练掌握运算法则是解题关键. 20. 化简求值:333311113()2()2932x y x y -++-+,其中x =-2,y =-1 【答案】33134563x y -+,11- 【解析】【分析】根据整式的加减运算法则,对式子进行化简,然后代数求值即可. 解:333311113()2()2932x y x y -++-+33331=23332321x y x y -+-++ 33134356x y =-+ 将21x y =-=-,代入得 原式=(8)5(1)1345113524336⨯--⨯-+=-++=- 【点睛】此题考查了整式的化简求值,涉及了整式的加减运算法则,熟练掌握整式的加减运算是解题的关键.21. 2021年7月,我国河南省由于受台风等因素的影响,出现了千年难遇的特大洪涝灾害.国家防总部署强降雨防范,各级水利部门加强了检测预报预警,及时发布洪水预警信息,为调度决策、防范应对和抢险救灾提供了有力支撑.下表是我国河南省某水库一周内的水位变化情况 单位:(米)(注:该水库的警戒水位是35.5米,表格中“+”表示比警戒水位高,“—”表示比警戒水位低)(1)该水库本周水位最高的一天是星期______,这一天的实际水位是______米.(2)若规定水位比前一天上升用“+”,比前一天下降用“—”,不升不降用“0”,请补全下面的本周水位变化表:单位(米)(3)与上周末相比,本周末该水库水位是上升了,还是下降了?变化了多少?【答案】(1)一,38;(2)补全表格见解析;(3)下降了,下降了1米.【解析】【分析】(1)找出表格中的最大数即为该水库本周水位最高的一天,再将其加上35.5即可得到这一天的实际水位;(2)根据题干中表格的数据,利用星期二的水位记录减去星期一的水位记录可得星期二的水位变化值,同样的方法求出其他时间的即可;(3)先根据星期一的水位变化值求出上周末的水位记录,再根据本周末的水位记录进行比较即可得出答案.+>+>+>+>->->-,解:(1)因为 2.5 2.1 1.20.20.30.50.8所以该水库本周水位最高的一天是星期一,++=(米),这一天的实际水位是 2.535.538故答案为:一,38;+-+=-(米),(2)星期二的水位变化值: 1.2( 2.5) 1.3+-+=+(米),星期三的水位变化值: 2.1( 1.2)0.9--+=-(米),星期四的水位变化值:0.3( 2.1) 2.4+--=+(米),星期六的水位变化值:0.2(0.5)0.7补全本周水位变化表如下:单位(米)+-+=+(米),(3)上周末的水位记录为 2.5( 2.3)0.2--+=-(米),则0.8(0.2)1答:与上周末相比,本周末该水库水位是下降了,下降了1米.【点睛】本题考查了正负数的实际应用、有理数加减法的应用,理解正负数的意义和正确列出各运算式子是解题关键.22. 将连续的整数1,2,3,4,5,6……排成如图所示的数表(1)如图,方框中九个数之和与中间数25有什么关系?请计算说明.(2)如(1)中的关系,其他这样的方框还成立吗?请举例说明.(3)如(1)中的关系,方框中九个数之和能等于630吗?为什么?【答案】(1)方框内的九个数之和是中间的数25的9倍;(2)方框内的九个数之和是中间的数的9倍;(3)能,理由见解析【解析】【分析】(1)求出图中方框内的九个数的和,即可发现其与中间的数的关系;(2)设数阵图中中间的数为x,用含x的代数式分别表示其余的8个数,求出九个数的和,即可发现这九个数之和还有这种规律;(3)根据这九个数之和分别等于630列出方程,解方程求出x的值,根据实际意义确定即可.解:(1)图中方框内的九个数的和为:14+15+16+24+25+26+34+35+36=225,225÷25=9,所以图中方框内的九个数之和是中间的数25的9倍;(2)在数阵图中任意作一类似(1)中的方框,这九个数之和还有这种规律.理由如下:设数阵图中中间的数为x,则其余的8个数为x-11,x-10,x-9,x-1,x+1,x+9,x+10,x+11,这九个数的和为:x +x -11+x -10+x -9+x -1+x +1+x +9+x +10+x +11=9x , 所以图中方框内的九个数之和是中间的数的9倍; (3)能,理由如下: 根据题意,得9x =630, 解得x =70.【点睛】本题考查了一元一次方程的应用,发现数阵中9个数之间的关系是解题的关键.23. 某住房户型呈长方形,平面图如下(单位:米),现准备铺设整个长方形地面,其中三间卧室铺设木地板,其它区域铺设地砖.(房间内隔墙宽度忽略不计)(1)求a 的值;(2)请用含x 代数式分别表示铺设地面需要木地板和地砖各多少平方米;(3)按市场价格,木地板单价为150元/平方米,地砖单价为200元/平方米,则铺设地面材料总费用是多少元?(用含x 的代数式表示)【答案】(1)5a =;(2)木地板(-14x +86)平方米,地砖(14x+74)平方米;(3)总费用为(700x+27700)元. 【解析】【分析】(1)根据长方形对边相等可得2a =3+7,即可求出a 的值;(2)根据三间卧室铺设木地板,其它区域铺设地砖,可知将三间卧室的面积的和为木地板的面积,用长方形的面积-三间卧室的面积,所得的差为地砖的面积;(3)根据所铺设面积和每种材料的单价,求出所需的费用即可. 解:(1)根据题意得273=+a , 解得5a =;(2)铺设地面需要木地板:()()523[973132]751486x x x x x ⨯+⨯+----+⨯=-+平方米; 铺设地面需要地砖:()()161014861474x x ⨯--+=+平方米; (3)总费用=地砖费用+木地板费用=()()1501486200147470027700x x x -+++=+, 则铺设地面的总费用为(700x+27700)元.【点睛】本题考查了列代数式,一元一次方程的应用.长方形的面积,分别求出铺设地面需要木地板与地砖的面积是解题的关键.24. 某渔民借助绳索编织而成的渔网捕鱼,小明探索网的结点数(V ),网眼数(F ),边数(E )之间的关系,他采用由特殊到一般地方法进行探索 探究一:如图1,网眼是等边三角形(1)根据①、②、③猜测V 、F 、E 之间满足的等量关系为E =V +F -______,表中“☆”处应填的数字为________. 探究二:如图2,网眼四边形.(2)列表如下:(3)将上述表格完成;根据上述探索过程,可以猜想V、F、E之间满足的等量关系为_______;(4)探究三:如果网眼是五边形,结点数(V),网眼数(F),边数(E)之间的关系是_______;(5)一般规律:如果网眼是n边形,结点数(V),网眼数(F),边数(E)之间的关系是_______;(6)规律应用:如图,网眼是六边形渔网的一部分,结点数(V)32个,网眼数(F)10个,边数(E)有______条.【答案】(1)V+F-E=1,14;(2)见解析;(3)V+F-E=1;(4)V+F-E=1;(5)V+F-E=1;(6)41 【解析】【分析】(1)根据表中数据可知,边数E比结点数V与网眼数F的和小1,从而得到7个网眼时的边数;依据以上规律可得V+F-E=1;(2)根据图形,填写表格即可;(3)类比网眼为三角形时的方法,可先罗列网眼数是1、2、3时的V、F、E,从而得出三者间关系;(4)(5)根据网眼为三角形、四边形时的方规律,从而得出三者间关系;(6)根据规律列式求解即可.解:(1)由表格数据可知,1个网眼时:3+1-3=1;2个网眼时:4+2-5=1;4个网眼时:6+4-9=1;7个网眼时:8+7-☆=1,故“☆”处应填的数字为14.据此可知,V+F-E=1;故答案为:V+F-E=1,14;(2)由图形可知,故填表如下:(3)由(2)的表格可知,V+F-E=1;(4)如图:填表如下:据表格可知可知,V+F-E=1;故答案为:V+F-E=1;(5)一般规律:如果网眼是n边形,结点数(V),网眼数(F),边数(E)之间的关系是V+F-E=1;故答案为:V+F-E=1;(6)∵结点数(V)32个,网眼数(F)10个,∴E= V+F-1=32+10-1=41(条),故答案为:41.【点睛】本题考查规律-图形的变化类,解答本题的关键是明确题意,发现题目中图形的变化规律.。

2020-2021学年最新青岛版七年级数学上学期期中联考模拟试题及答案解析-精编试题

2020-2021学年最新青岛版七年级数学上学期期中联考模拟试题及答案解析-精编试题

第一学期期中考试七年级数学一、选择题(本题共10 小题,每小题3 分,满分30分)1.绝对值不大于3的所有整数的和是( ) A .0 B .―1 C .1 D .6 2.下列各对数中,互为相反数的是( )A.()2--和2B. )(和3)3(+--+C.221-和 D. ()55----和 3.在下列有理数:-4,3)3(--,72-,0,22-中,负数有( ) A. 1个 B. 2个 C. 3个 D. 4个4. 数轴上点A,B,C,D 对应的有理数都是整数,若点A 对应有理数a ,点B 对应有理数b ,且b-2a=7,则数轴上原点应是( )CA. A 点B. B 点C. C 点D. D 点5.至2010年10月30日上海世博会累计入园人数约7277.99万人,这个数据精确到( ) A . 百分位 B .百位 C .千位 D .万位 6.若()ba b a 则,032122=-+-=( )A.61 B. 21- C. 6 D. 817. 下列各式中与a -b -c 的值不相等的是( )A .a -(b + c )B .a -(b -c )C .(a -b )+(-c )D .(-c )-(b -a )8.若代数式2x 2+3x +7的值为8,则代数式4x 2+6x -9的值是( )A .13B .2C .17D .-79. 下列说法正确的是( )学校___________________ 班级__________________ 姓名____________________ 号码______________________...............................................装............................订.........................线...............................A 、0,<-=a a a 则若B 、 是七次三项式式子124332+-y x xyC 、0,0,0><<b ab a 则若D 、mb m a m b a ==是有理数,则若, 10.方程3142xx =++,去分母后正确的是( ). A 、x x 412)2(3=++ B 、x x 1212)2(12=++ C 、x x 312)2(4=++ D 、x x 41)2(3=++ 二、填空题(本题共 4 小题,每小题 4 分,满分24 分)11.我国的国土面积为9596950平方千米,按四舍五入保留三个有效数字,则我国的国土面积可表示为________平方千米。

山东省青岛市市南区2020-2021学年七年级(上)期中数学试卷 解析版

山东省青岛市市南区2020-2021学年七年级(上)期中数学试卷  解析版

一、选择题(共8小题,每小题3分,满分24分)1.的绝对值是()A.B.C.﹣2D.22.下列图形都是由完全相同的小正方形组成的,将它们分别沿虚线折叠后,不能围成一个小立方体的是()A.B.C.D.3.如图,在数轴上点P的位置被一滴墨水遮挡了,那么请估计数轴上点P表示的数可能是()A.﹣2.6B.﹣1.4C.2.6D.1.44.10月11日青岛市全民进入核酸检测期,预计3天时间内将对全市600万人进行核酸检测,包含流动人口、旅差人员;600万人用科学记数法表示为()A.6×105B.6×104C.6×106D.0.6×1075.下面七个几何体中,是棱柱的有()个.A.4B.3C.2D.16.下列说法正确的是()A.棱柱侧面的形状可能是个三角形B.长方体的截面形状一定是长方形C.棱柱的每条棱长都相等D.所有的有理数都能用数轴上的点表示7.实数a、b、c在数轴上的位置如图所示,且a与c互为相反数,则下列式子中一定成立的是()A.a+b+c>0B.|a+b|<c C.|a﹣c|=|a|+c D.ab<08.如图,模块①由15个棱长为1的小正方体构成,模块②﹣⑥均由4个棱长为1的小正方体构成.现在从模块②﹣⑥中选出三个模块放到模块①上,与模块①组成一个棱长为3的大正方体.下列四个方案中,符合上述要求的是()A.模块②,④,⑤B.模块③,④,⑥C.模块②,⑤,⑥D.模块③,⑤,⑥二、填空题(本题满分24分,共有8道小题,每小题3分)9.东、西为两个相反方向,若+2米表示向东运动2米,那么向西运动7米记为米.10.在﹣5,0,﹣2.67,﹣|﹣5|,2,,24中,正数有个.11.单项式的系数是,次数是,任写一个与它是同类项的单项式.12.比较大小:0﹣;|﹣32|(﹣3)2;﹣2﹣2.3.(用“>,<或=”填空)13.如果a、b互为相反数,x、y互为倒数,则的值是.14.已知代数式2x2﹣3x的值为﹣6,那么代数式4x2﹣6x+8的值为.15.按如图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是.16.将长为40cm,宽为15cm的长方形白纸,按如图所示的方法粘合起来,粘合部分宽为5cm,则4张白纸粘合的总长度为cm,则n张白纸粘合的总长度表示为cm.三、作图题(本题满分6分,第1小题4分,第2小题2分)17.一个几何体由大小相同的立方块搭成,从上面看到的形状如图所示,其中小正方形中的数字表示在该位置的立方块个数.①在所给的方框中分别画出该几何体从正面,从左面看到的形状图;②若允许从该几何体中拿掉部分立方块,使剩下的几何体从正面看到的形状图和原几何体从上面看到的形状图相同,则最多可拿掉个立方块.四、解答题(本题满分66分,共有7道小题)18.计算:(1)45+(﹣30)﹣(﹣1);(2)1÷(﹣3)×(﹣);(3)(﹣)×(﹣36);(4)﹣23÷(﹣4)2﹣(﹣)×(﹣4).19.化简:(1)3f+2f﹣7f;(2)(4x+x2)﹣3(2x﹣x2+1);(3)先化简,再求值:(1﹣)﹣(4x2﹣2x+8),其中x=.20.送货员开着货车从超市出发,向东走了4千米到达小刚家,继续走了2千米到达小明家,然后向西走了10千米到达小芳家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,小芳家在超市的方,距超市千米.请在数轴上表示出小明家、小芳家的位置.(2)小刚家距小芳家千米.(3)若送货车每千米耗油0.15升,每升汽油4.2元,请问货车全程油耗多少元?21.下列图形,每条边都由一些圆点组成.我们把每条边上的圆点个数用n个(n≥2)表示,每个图形中圆点的总数用s(个)表示.(1)请写出当n=6时,n=;(2)根据上述规律,用含n的代数式可以表示出n,则n=;(3)请根据上述规律判断,一个这样的图形中圆点的总数能否等于346?若能请求出n的值;若不能,请说明理由.22.如图,一个长方形运动场被分隔成A,B,A,B,C共5个区,A区是边长为am的正方形,C区是4个边长为bm的小正方形组成的正方形.(1)每个B区长方形的长,宽,每个B区的周长(结果要求化简);(2)列式表示整个长方形运动场的周长(结果要求化简);(3)如果a=40m,b=20m,整个长方形运动场的面积是平方米.23.某服装厂生产一批秋季外套和村衫,外套每件定价300元,衬衫每件定价100元.服装厂在开展促销活动期间,向客户提供两种优惠方案:(客户只能选择其中1种优惠方案)①买一件外套送一件衬衫;②外套和衬衫都按定价的80%付款.现某客户要到该服装厂购买外套x件,衬衫y件(y>x).(1)若该客户按方案①购买,外套需付款元,衬衫需付款元,共花销元(用含x,y的式子表示并化简);(2)若该客户按方案②购买,外套需付款元,衬衫需付款元,共花销元(用含x,y的式子表示并化简);(3)若购买外套25件,衬衫30件,通过计算说明按方案①、方案②哪种方案购买较为合算?24.概念:如果一个n ×n 矩阵(教材中表现为方格图)的每行,每列及两条对角线的元素之和都相等,且这些元素都是从1到n 的自然数,这样的矩阵就称为n 阶幻方.有关幻方问题的研究在我国已流传了两千多年,这是一类形式独特的填数字问题.下面介绍一种构造三阶幻方方法﹣﹣杨辉法:口诀(如图):“九子斜排,上下对易,左右相更,四维挺出”.(1)请你将下列九个数:﹣18、﹣16、﹣14、﹣12、﹣10、﹣8、﹣6、﹣4、﹣2分别填入方格1中,使得每行、每列、每条对角线上的三个数之和都相等. (2)将方格2中的9个数填入右边方格中,使每一行、每一列、每条对角线上的三个数之和都相等.(3)将9个连续自然数填入方格3内,使每一横行、每一列、每条对角线上的三个数之和都等于60.(4)请你将下列九个数:4、6、8、﹣5、﹣3、﹣1、13、15、17分别填入方格4中,使得每行、每列、每条对角线上的三个数之和都相等.2020-2021学年山东省青岛市市南区七年级(上)期中数学试卷参考答案与试题解析一.选择题(共8小题)1.的绝对值是()A.B.C.﹣2D.2【分析】根据绝对值的定义即可求解.【解答】解:|﹣|=.故选:A.2.下列图形都是由完全相同的小正方形组成的,将它们分别沿虚线折叠后,不能围成一个小立方体的是()A.B.C.D.【分析】根据正方体的表面展开图的特征进行判断即可.【解答】解:正方体的表面展开图共有11种情况,其中“1﹣4﹣1型”的有6种,选项A、B、C中的图形都能折叠成正方体,只有选项D中的图形不能折叠成正方体,也可以根据“田凹应弃之”可知,选项D符合题意,故选:D.3.如图,在数轴上点P的位置被一滴墨水遮挡了,那么请估计数轴上点P表示的数可能是()A.﹣2.6B.﹣1.4C.2.6D.1.4【分析】根据数轴得出P所表示的数在﹣2和﹣1之间,然后结合选择项逐一分析即可求解.【解答】解:设P表示的数是x,由数轴可知:P点表示的数大于﹣2,且小于﹣1,即﹣2<x<﹣1,A、﹣3<﹣2.6<﹣2,故本选项错误;B、﹣2<﹣1.4<﹣1,故本选项正确;C、﹣1<2.6,故本选项错误;D、﹣1<1.4,故本选项错误;故选:B.4.10月11日青岛市全民进入核酸检测期,预计3天时间内将对全市600万人进行核酸检测,包含流动人口、旅差人员;600万人用科学记数法表示为()A.6×105B.6×104C.6×106D.0.6×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:600万=6×106.故选:C.5.下面七个几何体中,是棱柱的有()个.A.4B.3C.2D.1【分析】根据直棱柱的特征进行判断即可.【解答】解:如图,根据棱柱的特征可得,①是三棱柱,②是球,③圆锥,④三棱锥,⑤正方体,⑥圆柱体,⑦六棱柱,因此棱柱有:①⑤⑦,故选:B.6.下列说法正确的是()A.棱柱侧面的形状可能是个三角形B.长方体的截面形状一定是长方形C.棱柱的每条棱长都相等D.所有的有理数都能用数轴上的点表示【分析】根据棱柱的特征以及棱柱的截面的形状,即可得到正确结论,实数与数轴上的点一一对应,所有有理数都能用数轴上的点表示,但数轴上的点有的表示有理数,有的表示无理数.【解答】解:A.棱柱侧面的形状不可能是一个三角形,故本选项错误;B.长方体的截面形状不一定是长方形,故本选项错误;C.棱柱的每条棱长不一定都相等,故本选项错误;D.所有的有理数都能用数轴上的点表示,故本项正确.故选:D.7.实数a、b、c在数轴上的位置如图所示,且a与c互为相反数,则下列式子中一定成立的是()A.a+b+c>0B.|a+b|<c C.|a﹣c|=|a|+c D.ab<0【分析】先由数轴判断a,b,c的正负,根据有理数的加、减法则判断它们的和差的正负,再根据绝对值的意义做出最后的判断.【解答】解:由数轴知:a<b<0<c,|b|<|c|∵a与c互为相反数,∴|a|=|c|,∴a+b+c<0,故选项A错误;|a+b|>c,故选项B错误;|a﹣c|=|a|+c,故选项C正确;ab>0,故选项D错误;故选:C.8.如图,模块①由15个棱长为1的小正方体构成,模块②﹣⑥均由4个棱长为1的小正方体构成.现在从模块②﹣⑥中选出三个模块放到模块①上,与模块①组成一个棱长为3的大正方体.下列四个方案中,符合上述要求的是()A.模块②,④,⑤B.模块③,④,⑥C.模块②,⑤,⑥D.模块③,⑤,⑥【分析】观察模块①可知,模块②补模块①上面的左边,模块③补模块①上面的右上角,模块⑥补模块①上面的右下角能够成为一个棱长为3的大正方体.【解答】解:由图形可知模块②补模块①上面的左边,模块③补模块①上面的右上角,模块⑥补模块①上面的右下角,使得模块①成为一个棱长为3的大正方体.故能够完成任务的为模块②,⑤,⑥.故选:C.二.填空题(共8小题)9.东、西为两个相反方向,若+2米表示向东运动2米,那么向西运动7米记为﹣7米.【分析】根据正数和负数的意义解答.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,“正”和“负”相对.【解答】解:东、西为两个相反方向,若+2米表示向东运动2米,那么向西运动7米记为﹣7米.故答案为:﹣7.10.在﹣5,0,﹣2.67,﹣|﹣5|,2,,24中,正数有3个.【分析】根据实数的分类,可得答案.【解答】解:正数有2,,24=16,故答案为:3.11.单项式的系数是,次数是3,任写一个与它是同类项的单项式x2y.【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做这个单项式的系数,所有字母的指数的和是单项式的次数,直接写出答案即可.【解答】解:单项式的系数是,次数是3,与它同类项的单项式如x2y;故答案为:,3,x2y.12.比较大小:0>﹣;|﹣32|=(﹣3)2;﹣2<﹣2.3.(用“>,<或=”填空)【分析】根据0大于负数;有理数的乘方以及绝对值的定义;两个负数比较大小,绝对值大的其值反而小.【解答】解:0>;∵|﹣32|=9,(﹣3)2=9,∴|﹣32|=(﹣3)2;∵,|﹣2.3|=2.3,,∴.故答案为:>;=;<.13.如果a、b互为相反数,x、y互为倒数,则的值是.【分析】根据互为相反数的两个数的和等于0可得a+b=0,互为倒数的两个数的乘积是1可得xy=1,然后代入代数式进行计算即可得解.【解答】解:∵a、b互为相反数,∴a+b=0,∵x、y互为倒数,∴xy=1,∴(a+b)+xy=×0+×1=.故答案为:.14.已知代数式2x2﹣3x的值为﹣6,那么代数式4x2﹣6x+8的值为﹣4.【分析】把2x2﹣3x看作一个整体并代入代数式进行计算即可得解.【解答】解:∵2x2﹣3x的值为﹣6,∴2x2﹣3x=﹣6,∴4x2﹣6x+8=2(2x2﹣3x)+8=﹣12+8=﹣4.故答案为:﹣4.15.按如图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是231.【分析】根据程序可知,输入x,计算出的值,若≤100,然后再把作为x,输入,再计算的值,直到>100,再输出.【解答】解:∵x=3,∴=6,∵6<100,∴当x=6时,=21<100,∴当x=21时,=231,则最后输出的结果是231,故答案为:231.16.将长为40cm,宽为15cm的长方形白纸,按如图所示的方法粘合起来,粘合部分宽为5cm,则4张白纸粘合的总长度为145cm,则n张白纸粘合的总长度表示为(35n+5)cm.【分析】n张白纸黏合,需黏合(n﹣1)次,重叠5(n﹣1)cm,据此求解即可.【解答】解:根据题意和所给图形可得出:4张白纸粘合的总长度为40×4﹣5×(4﹣1)=145(cm),n张白纸粘合的总长度为40n﹣5(n﹣1)=(35n+5)(cm),故答案为:145,(35n+5).三.解答题17.一个几何体由大小相同的立方块搭成,从上面看到的形状如图所示,其中小正方形中的数字表示在该位置的立方块个数.①在所给的方框中分别画出该几何体从正面,从左面看到的形状图;②若允许从该几何体中拿掉部分立方块,使剩下的几何体从正面看到的形状图和原几何体从上面看到的形状图相同,则最多可拿掉个立方块.【考点】简单组合体的三视图;由三视图判断几何体;作图﹣三视图.【专题】投影与视图;空间观念.【答案】①详见解答;②5.【分析】①根据简单组合体三视图的画法画出相应的图形即可;②根据主视图、俯视图得出拿去的小正方体的个数.【解答】解:①该几何体从正面,从左面看到的图形如图所示:②拿掉后,剩下的几何体从正面看到的形状图和原几何体从上面看到的形状图相同,则最多可拿掉5个,故答案为:5.18.计算:(1)45+(﹣30)﹣(﹣1);(2)1÷(﹣3)×(﹣);(3)(﹣)×(﹣36);(4)﹣23÷(﹣4)2﹣(﹣)×(﹣4).【考点】有理数的混合运算.【专题】实数;运算能力.【答案】(1)16;(2);(3)﹣18;(4)﹣1.【分析】(1)首先写成省略括号的形式,然后再算加减即可;(2)先把除法化为乘法,再利用乘法法则进行计算即可;(3)利用乘法分配律进行计算即可;(4)先算乘方,再算乘除,最后计算加减即可.【解答】解:(1)原式=45﹣30+1=16;(2)原式=1×(﹣)×(﹣)=;(3)原式=﹣×(﹣36)+×(﹣36)﹣×(﹣36)=6﹣27+3=﹣18;(4)原式=﹣8÷16=﹣﹣=﹣1.19.化简:(1)3f+2f﹣7f;(2)(4x+x2)﹣3(2x﹣x2+1);(3)先化简,再求值:(1﹣)﹣(4x2﹣2x+8),其中x=.【考点】整式的加减—化简求值.【专题】整式;运算能力.【答案】(1)﹣2f;(2)4x2﹣2x﹣3;(3)﹣x2﹣1,﹣1.【分析】(1)直接合并同类项即可;(2)首先去括号,然后再合并同类项;(3)首先去括号,然后再合并同类项,化简后,再代入x的值可得答案.【解答】解:(1)原式=(3+2﹣7)f=﹣2f;(2)原式=4x+x2﹣6x+3x2﹣3=4x2﹣2x﹣3;(3)原式=1﹣x﹣x2+x﹣2=﹣x2﹣1,当x=时,原式=﹣﹣1=﹣1.20.送货员开着货车从超市出发,向东走了4千米到达小刚家,继续走了2千米到达小明家,然后向西走了10千米到达小芳家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,小芳家在超市的方,距超市千米.请在数轴上表示出小明家、小芳家的位置.(2)小刚家距小芳家千米.(3)若送货车每千米耗油0.15升,每升汽油4.2元,请问货车全程油耗多少元?【考点】正数和负数;数轴;有理数的混合运算.【专题】数形结合;实数;几何直观;运算能力;应用意识.【答案】(1)西,4.(2)8.(3)货车全程油耗12.6元.【分析】(1)根据题意画图即可得出答案.(2)用小刚家所在位置表示的数减去小芳家所在位置表示的数,计算即可得出答案.(3)用行驶里程乘以每千米耗油,再乘以汽油单价,计算即可.【解答】解:(1)在数轴上表示出小明家、小芳家的位置,如图所示:由图及题意可知小芳家在超市的西方,距超市4千米.故答案为:西,4.(2)∵4﹣(﹣4)=8,∴小刚家距小芳家8千米.故答案为:8.(3)由题意得:(4+2+10+4)×0.15×4.2=20×0.15×4.2=12.6(元).∴货车全程油耗12.6元.21.下列图形,每条边都由一些圆点组成.我们把每条边上的圆点个数用n个(n≥2)表示,每个图形中圆点的总数用s(个)表示.(1)请写出当n=6时,n=;(2)根据上述规律,用含n的代数式可以表示出n,则n=;(3)请根据上述规律判断,一个这样的图形中圆点的总数能否等于346?若能请求出n的值;若不能,请说明理由.【考点】列代数式;规律型:图形的变化类.【专题】规律型;数感;运算能力.【答案】(1)20;(2)4n﹣4;(3)不能.【分析】(1)注意观察前三个图形中圆点的个数可以发现分别为:4,8,12,后一个图形中的圆点个数比前一个图形中圆点多4,即可得当n=6时,n的值;(2)结合(1)可得S与n的关系式为:s=4n﹣4;(3)结合(2)即可说明.【解答】解:(1)因为n=2时,s=4;n=3时,s=4+1×4=8;n=4时,s=4+2×4=12;…所以当n=6时,n=4+4×4=20;故答案为:20;(2)由(1)可知:s=4+(n﹣2)×4=4n﹣4.故答案为:4n﹣4;(3)不能,理由如下:因为4n﹣4=346,解得n=112,因为n是正整数,不符合题意,所以图形中圆点的总数不能等于346.22.如图,一个长方形运动场被分隔成A,B,A,B,C共5个区,A区是边长为am的正方形,C区是4个边长为bm的小正方形组成的正方形.(1)每个B区长方形的长,宽,每个B区的周长(结果要求化简);(2)列式表示整个长方形运动场的周长(结果要求化简);(3)如果a=40m,b=20m,整个长方形运动场的面积是平方米.【考点】列代数式.【专题】计算题;应用意识.【答案】(1)(a+2b)m,(a﹣2b)m,4am;(2)8am;(3)4800.【分析】(1)利用图形得出区域B的长和宽,即可得出结论;(2)利用图形得出整个长方形的长和宽,即可得出结论;(3)先求出整个长方形的长和宽,利用面积公式即可得出结论.【解答】解:(1)每个B区长方形的长(a+2b)m,宽(a﹣2b)m,每个B区的周长2[(a+2b)+(a﹣2b)]=2(a+2b+a﹣2b)=4a(m);故答案为:(a+2b)m,(a﹣2b)m,4am;(2)整个长方形运动场的周长2[(a+a+2b)+(a+a﹣2b)]=2(a+a+2b+a+a ﹣2b)=8a(m);(3)S=(2a﹣2b)×(2a+2b)=4(a+b)(a﹣b)(平方米),当a=40,b=20时,原式=4×(40+20)×(40﹣20)=4800 (平方米).答:整个长方形运动场的面积为4800平方米.故答案为:4800.23.某服装厂生产一批秋季外套和村衫,外套每件定价300元,衬衫每件定价100元.服装厂在开展促销活动期间,向客户提供两种优惠方案:(客户只能选择其中1种优惠方案)①买一件外套送一件衬衫;②外套和衬衫都按定价的80%付款.现某客户要到该服装厂购买外套x件,衬衫y件(y>x).(1)若该客户按方案①购买,外套需付款元,衬衫需付款元,共花销元(用含x,y的式子表示并化简);(2)若该客户按方案②购买,外套需付款元,衬衫需付款元,共花销元(用含x,y的式子表示并化简);(3)若购买外套25件,衬衫30件,通过计算说明按方案①、方案②哪种方案购买较为合算?【考点】列代数式;代数式求值.【专题】整式;运算能力.【答案】(1)300x,100(y﹣x),300x+100(y﹣x);(2)240x,80y,240x+80y;(3)方案①.【分析】(1)根据根据方案①买一件外套送一件衬衫的要求,分别表示买x件外套,y件衬衫的金额,进而表示总金额;(2)根据根据方案②外套和衬衫都按定价的80%付款要求,分别表示买x件外套,y件衬衫的金额,进而表示总金额;(3)将x=25,y=30代入(1)(2)中的总金额的代数式求值即可.【解答】解:(1)根据方案①买一件外套送一件衬衫的要求可得,买x件外套的金额为300x,根据“买一送一”再买(y﹣x)件衬衫即可,所用的金额为100(y﹣x);所以,总金额为,300x+100(y﹣x),故答案为:300x,100(y﹣x),300x+100(y﹣x);(2)根据方案②外套和衬衫都按定价的80%付款.可得买x件外套的金额为300×80%x=240x,买y件衬衫所用的金额为100×80%y=80y;所以,总金额为,240x+80y,故答案为:240x,80y,240x+80y;(3)把x=25,y=30代入得,①300x+100(y﹣x)=300×25+100(30﹣25)=7500+500=8000(元),②240x+80y;=240×25+80×30=6000+2400=8400;∵8000<8400,∴方案①比较合算.24.概念:如果一个n×n矩阵(教材中表现为方格图)的每行,每列及两条对角线的元素之和都相等,且这些元素都是从1到n的自然数,这样的矩阵就称为n阶幻方.有关幻方问题的研究在我国已流传了两千多年,这是一类形式独特的填数字问题.下面介绍一种构造三阶幻方方法﹣﹣杨辉法:口诀(如图):“九子斜排,上下对易,左右相更,四维挺出”.(1)请你将下列九个数:﹣18、﹣16、﹣14、﹣12、﹣10、﹣8、﹣6、﹣4、﹣2分别填入方格1中,使得每行、每列、每条对角线上的三个数之和都相等.(2)将方格2中的9个数填入右边方格中,使每一行、每一列、每条对角线上的三个数之和都相等.(3)将9个连续自然数填入方格3内,使每一横行、每一列、每条对角线上的三个数之和都等于60.(4)请你将下列九个数:4、6、8、﹣5、﹣3、﹣1、13、15、17分别填入方格4中,使得每行、每列、每条对角线上的三个数之和都相等.【考点】一元一次方程的应用.【专题】数字问题;应用意识.【答案】(1)图形见解答;(2)图形见解答;(3)图形见解答;(4)图形见解答.【分析】(1)读题意,按照口诀:“九子斜排,上下对易,左右相更,四维挺出”,即可得出结论;(2)按照口诀:“九子斜排,上下对易,左右相更,四维挺出”,即可得出结论;(3)根据已知,算出该9个连续自然数,按照口诀:“九子斜排,上下对易,左右相更,四维挺出”,即可得出结论;(4)按照口诀:“九子斜排,上下对易,左右相更,四维挺出”,即可得出结论.【解答】解:(1)按照口诀:“九子斜排,上下对易,左右相更,四维挺出”得出方格1:﹣12﹣2﹣16﹣14﹣10﹣6﹣4﹣18﹣8(2)按照口诀:“九子斜排,上下对易,左右相更,四维挺出”得出结论:810668101068(3)设9个连续自然数中第5个数为x,由已知可得:9x=60×3,解得:x=20.故这连续的九个数为:16,17,18,19,20,21,22,23,24.按照口诀:“九子斜排,上下对易,左右相更,四维挺出”得出方格3:192417182022231621(4)按照口诀:“九子斜排,上下对易,左右相更,四维挺出”得出方格4:417﹣3﹣1613 15﹣58。

山东省青岛四区联考2020-2021学年七年级上学期期中数学试题

山东省青岛四区联考2020-2021学年七年级上学期期中数学试题

2020—2021学年度第一学期期中教学质量检测题七年级数学参考答案及评分标准说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题满分24分,共有8小题,每小题3分)1—4BCBD 5—8CADA二、填空题(本题满分24分,共有8小题,每小题3分)9.5110.32x y x y xy ++(答案不唯一,只要符合要求即可)11.9π或16π12.2513.3014.1615.6716.4三、作图题17.(本题满分6分)……………………每个图2分.四、解答题(本题共有8小题,满分66分)18.(本题满分6分)正确画出数轴……………………2分在数轴上准确找到点(标注化简之后的数得1分)……………………4分)3(0.52322-----<<<用“<”正确连接……………………6分从正面看从左面看从上面看19.(本题满分16分,每小题4分)(1)61(2)15(3)1-(4)320.(本题满分8分,每小题4分)(1)442-xy (2)23-ab 21.(本题满分6分)解:原式=1032-b a ………………4分当312-=-=b a ,时,原式=1032-b a =141031232-=--⨯-⨯()(………………6分22.(本题满分6分)(1)1001………………3分(2)20201-………………6分23.(本题满分6分)解:(1)342++=x x A ………………3分(2)432++x x ………………3分24.(本题满分8分)(1)星期五,39.00………………2分(2)80.1-,60.4-,+2.40,+5.10………………6分(3)35.50+(﹣1.50)﹣(35.50+2.40﹣3.10)=﹣0.80(米)答:本周末该水库水位下降了,下降了0.80米.………………8分25.(本题满分10分)探究1:m………………1分探究2:.(2)﹣b ﹣(﹣a )=﹣b +a ………………2分(3)b a b a b a b a OB OA -=-=-+=+=+)(………………3分【问题解决】b a -………………4分【实际应用】(1)5;………………5分(2)﹣2或8………………6分【拓展延伸】(1)3………………8分(2)4………………10分七年级数学试题参考答案及评分标准第3页(共3页)。

山东省青岛市 七年级(上)期中数学试卷-(含答案)

山东省青岛市 七年级(上)期中数学试卷-(含答案)

七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.的绝对值等于()A. B. C. D. 22.用一个平面去截下列几何体,截得的平面图形不可能是三角形的是()A. B. C. D.3.将如图所示的长方形绕图中的虚线旋转360°得到的几何体是()A.B.C.D.4.一个点从数轴上的原点出发,向左移动3个单位长度,再向右移动2个单位长度到达点P,则点P表示的数是()A. 1B.C. 2D.5.下列说法:①所有有理数都能用数轴上的点表示;②符号不同的两个数互为相反数;③有理数包括正数、零和负数;④两数相加,和一定大于任意一个加数,其中正确的有()A. 4个B. 3个C. 2个D. 1个6.有一大捆粗细均匀的钢筋,现要确定其长度,先称出这捆钢筋的总质量为m千克,再从中截出5米长的钢筋,称出它的质量为n千克,那么这捆钢筋的总长度为()A. 米B. 米C. 米D. 米7.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A. B.C. D.8.已知,a,b两数在数轴上的位置如图,下列各式成立的是()A. B. C. D.9.已知|m+3|与(n-2)2互为相反数,那么m n等于()A. 6B.C. 9D.10.观察下列算式:32=9,33=27,34=81,35=243,…,那么32016的末位数字为()A. 1B. 3C. 7D. 9二、填空题(本大题共10小题,共30.0分)11.-22ab3c2的系数是______,次数是______.12.下列各数:-2,1,-2.5,0,2,-3,-,其中最大的负整数是______ .13.写出相反数大于2且小于6的所有整数:______ .14.地球半径约为6 400 000m,这个数字用科学记数法表示为______ m.15.“夜晚的流星划过天空时留下一条明亮的光线,汽车的雨刷在挡风玻璃上画出一个扇面.”上面两句话用几何知识可以解释为______ .16.一个正n棱柱共有15条棱,一条侧棱的长为5cm,一条底面边长为3cm,则这个棱柱的侧面积为______ cm2.17.如图,下面表格给出的是国外四个城市与北京的时差(带“+”表示同一时刻比北6______18.19.一种“24点”游戏的规则如下:用4个数进行有理数的混合运算(每个数必须用一次而且只能用一次,可以加括号),使运算结果为24或-24,现有四个有理数1,-2,4,-8,请按照上述规则写出一种算式,使其结果等于24:______ .20.一个几何体由一些完全相同的小立方块搭成,从正面和从上面看到的这个几何体的形状如下,那么搭成这样一个几何体,最少需要______ 个这样的小立方块,最多需要______ 个这样的小立方块.三、计算题(本大题共2小题,共12.0分)21.计算:(1)6-(-3)+(-7)-2(2)12÷(-)×(3)-(-)+(-)-(-)(4)0-23÷(-4)2-(5)(--+)×(-24)(6)4-6÷2×(-)(7)-14+(0.5-1)×[-2-(-2)3].22.某工厂一种产品的标准质量是m千克,质检员在检测一批同一包装的该产品时,对抽取的5件产品分别称重,记录如下:-1.+2,+3,+1,-2(单位:千克,超出为“+”),解答下列问题:(1)请根据你所学知识分别说明记录中“-1”和“+2”分别表示什么意思?(2)请用含m的代数式表示抽取的5件产品的总质量,并确定当m=100时,这5件产品的总质量.四、解答题(本大题共4小题,共32.0分)23.我们知道,将一个立方体沿某些棱剪开,可以得到它的平面展开图,请画出下面立方体的一种平面展开图,并分别把-3,-2,-1,1,2,3分别填入展开后的六个正方形内,且使原立方体相对面上的两数和为0.24.已知A=3x2y-2xy2+xy,B是多项式,小明在计算2A-B时,误将其按2A+B计算,得C=4x2y-xy2+3xy.(1)试确定B的表达式;(2)求2A-B的表达式.25.如图,小红和小兰房间窗户的装饰物分别由一些半圆和四分之一圆组成(半径分别相同).(1)请用代数式分别表示小红和小兰房间窗户能射进阳光部分的面积(窗框面积忽略不计);(2)请通过计算说明,谁的窗户能射进阳光部分的面积大?大多少?26.将连接的偶数2,4,6,8,…排成如下的数表,用一个十字形框中五个数.(1)你能发现十字框中这五个数之间有哪些关系?请你尝试写出其中两个;(2)设中间数为x,请用代数式表示十字形框中五个数的和;(3)移动十字形框,框出的五个数之和能否等于2000和2020?若能,试求出这五个数中的最大数和最小数;若不能,说明理由.答案和解析1.【答案】C【解析】解:-的绝对值等于.故选:C.根据负数的绝对值等于它的相反数即可求解.此题考查了绝对值,计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.2.【答案】C【解析】解:∵圆柱体的主视图只有矩形或圆,∴如果截面是三角形,那么这个几何体不可能是圆柱.故选:C.根据圆柱体的主视图只有矩形或圆,即可得出答案.此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.3.【答案】A【解析】解:将如图所示的长方形绕图中的虚线旋转360°得到的几何体是圆柱.故选:A.一个平面图形绕中心对称轴旋转一周,根据面动成体的原理即可解.此题主要考查学生立体图形的空间想象能力及分析问题,解决问题的能力.4.【答案】B【解析】解:由题意,得0-3+2=-1,故选:B.根据数轴上的点左移减,右移加,可得答案.本题考查了数轴,利用数轴上的点左移减,右移加是解题关键.5.【答案】D【解析】解:∵所有有理数都能用数轴上的点表示,∴选项①符合题意;∵符号不同,大小相等的两个数互为相反数,∴选项②不符合题意;∵有理数包括正有理数、零和负有理数,∴选项③不符合题意;∵两数相加,和不一定大于任意一个加数,∴选项④不符合题意,∴正确的有1个:①.故选:D.根据在数轴上表示数的方法,数轴的特征,有理数的分类,以及相反数的含义和求法,逐项判定即可.此题主要考查了在数轴上表示数的方法,数轴的特征,有理数的分类,以及相反数的含义和求法,要熟练掌握.6.【答案】B【解析】解:这捆钢筋的总长度为m•米.故选B.此题要根据题意列出代数式.可先求1千克钢筋有几米长,即米,再求m千克钢筋的长度.此题考查列代数式问题,用字母表示数时,要注意写法:①在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号;②在代数式中出现除法运算时,一般按照分数的写法来写;③数字通常写在字母的前面;④带分数的要写成假分数的形式.7.【答案】D【解析】解:根据题意可得:(1-15%)(x+20),故选D先提价的价格是原价+20,再降价的价格是降价前的1-15%,得出此时价格即可.本题考查了列代数式,解答本题的关键是读懂题意,列出代数式.8.【答案】D【解析】解:∵由图可知,-2<b<-1<0<a<1,∴ab<0,故A选项错误;a+1>0,b+1<0,(a+1)(b+1)<0,故B选项错误;a+b<0,故C选项错误;a-1<0,b-1<0,(a-1)(b-1)>0,故D选项正确.故选D.根据各点在数轴上的位置判断出a,b的取值范围,进而可得出结论.本题考查的是数轴,有理数的大小比较,熟知数轴的特点是解答此题的关键.9.【答案】C【解析】解:∵|m+3|与(n-2)2互为相反数,∴|m+3|+(n-2)2=0,∴m+3=0,n-2=0,解得m=-3,n=2,所以,m n=(-3)2=9.故选C.根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m、n的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.【答案】A【解析】解:已知31=3,末位数字为3,32=9,末位数字为9,33=27,末位数字为7,34=81,末位数字为1,35=243,末位数字为3,36=729,末位数字为9,37=2187,末位数字为7,38=6561,末位数字为1,…由此得到:3的1,2,3,4,5,6,7,8,…次幂的末位数字以3、9、7、1四个数字为一循环,又∵2016÷4=504,∴32016的末位数字与34的末位数字相同是1.故选A.从运算的结果可以看出尾数以3、9、7、1四个数字一循环,用2016除以4,余数是几就和第几个数字相同,由此解决问题即可.此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.11.【答案】-4;6【解析】解:-22ab3c2的系数是-4,次数是6,故答案为:-4;6.根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数可得答案.此题主要考查了单项式,关键是掌握单项式的系数和次数的定义.12.【答案】-2【解析】解:根据有理数比较大小的方法,可得-3<-2.5<-2<-<0<1<2,∴:-2,1,-2.5,0,2,-3,-,其中最大的负整数是-2.故答案为:-2.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.13.【答案】-3,-4,-5【解析】解:∵大于2且小于6的所有整数是3,4,5,∴相反数大于2且小于6的所有整数:-3,-4,-5;故答案为:-3,-4,-5.先写出大于2小于6的整数是3、4、5,再写出3、4、5的相反数即可.此题考查了有理数的大小比较和相反数,解题关键是写出大于2且小于6的所有整数.14.【答案】6.4×106【解析】解:6 400000=6.4×106,故答案为:6.4×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成M时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n 是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于3 120 000有7位,所以可以确定n=7-1=6.本题主要考查了科学记数法,把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,掌握当原数绝对值大于10时,n与M的整数部分的位数的关系是解决问题的关键.15.【答案】点动成线,线动成面【解析】解:“夜晚的流星划过天空时留下一条明亮的光线,汽车的雨刷在挡风玻璃上画出一个扇面.”上面两句话用几何知识可以解释为点动成线,线动成面.故答案为:点动成线,线动成面.流星是点,光线是线,所以说明点动成线;雨刷可看成线,扇面是面,那么线动成面.此题主要考查了点、线、面、体,关键是掌握点动成线,线动成面,面动成体.16.【答案】75【解析】解:根据题意知该几何体为正五棱柱,这个棱柱的侧面积为5×3×5=75,故答案为:75.根据侧面积=底面周长×高可得答案.此题主要考查了认识立体图形,关键是掌握棱柱的特点.17.【答案】上午8点【解析】解:∵现在悉尼时间是下午6时,又∵与伦敦相差-10个小时,∴伦敦时间是上午8点;故答案为:上午8点根据时差求出伦敦的时间即可.此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.18.【答案】-3【解析】解:∵a-2b=3,∴3-2a+4b=3-2(a-2b)=3-2×3=-3,故答案为:-3.先变形得出3-2a+4b=3-2(a-2b),再代入求出即可.本题考查了求代数式的值,能够整体代入是解此题的关键.19.【答案】(-8-4)×(-2)×1【解析】解:解法一,(-8-4)×(-2)×1,=-12×(-2),=24,解法二,[4÷(-2)-1]×(-8),=[-2-1]×(-8),=24,解法三,(-2)4×1-(-8),=16+8,=24.故答案为::(-8-4)×(-2)×1.根据有理数混合运算顺序列式即可.此题主要考查了有理数的混合运算,本题要列式得定值,这比一般的有理数混合运算的题要难,要熟练掌握有理数混合运算顺序法则:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.【答案】6;8【解析】解:综合主视图和俯视图,这个几何体的底层有4个小正方体,第二层最少有2个,最多有4个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:4+2=6个,至多需要小正方体木块的个数为:4+4=8个,故答案为:6,8.易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.此题主要考查了几何体的三视图,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.21.【答案】解:(1)6-(-3)+(-7)-2=9-7-2=0(2)12÷(-)×=(-18)×=-27(3)-(-)+(-)-(-)=(+)+(-)=1-=(4)0-23÷(-4)2-=-8÷16-=--=-(5)(--+)×(-24)=(-)×(-24)-×(-24)+×(-24)=6+8-4=10(6)4-6÷2×(-)=4-3×(-)=4+1=5(7)-14+(0.5-1)×[-2-(-2)3]=-1+(-0.5)×[-2-(-8)]=-1+(-0.5)×6=-1-3=-4【解析】(1)(2)从左向右依次计算即可.(3)根据加法交换律和加法结合律计算即可.(4)首先计算乘方和除法,然后从左向右依次计算即可.(5)根据乘法分配律计算即可.(6)首先计算除法和乘法,然后计算减法即可.(7)首先计算小括号、中括号里面的运算,然后计算乘法和加法即可.此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法分配律的应用.22.【答案】解:(1)“-1”表示低于标准重量1千克;“+2”表示超出标准重量2千克;(2)m-1+m+2+m+3+m+1-m+2=5m+3,当m=100时,原式=503.【解析】(1)根据相反意义量的定义判断即可;(2)用m表示出5件产品的总质量,将m的值代入计算即可求出值.此题考查了代数式求值,正数与负数,以及列代数式,熟练掌握运算法则是解本题的关键.23.【答案】解:如图所示:【解析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.24.【答案】解:(1)由题意得:B=C-2A=4x2y-xy2+3xy-2(3x2y-2xy2+xy)=-2x2y+3xy2+xy;(2)由题意得,2A-B=2(3x2y-2xy2+xy)-(-2x2y+3xy2+xy)=8x2y-7xy2+xy.【解析】(1)根据2A+B=C,得出B即可;(2)再计算2A-B的值即可.本题考查了整式的加减,掌握去括号与合并同类项的法则是解题的关键.25.【答案】解:(1)小红窗户透光面积:ab-b2;小兰窗户透光面积:ab-b2;(2)ab-b2-(ab-b2)=-b2<0,所以小兰窗户透光面积更大.【解析】(1)观察图可知两个房间窗户的面积相等,都是ab;要求它们的窗户能射进阳光的面积分别是多少,先利用圆的面积S=πr2分别求出两家窗帘的面积,也就是遮住阳光的面积,进而用总面积减去遮住的面积即可;(2)利用作差法比较大小即可.此题考查列代数式,解决此题关键是用窗户的面积减去窗帘的面积,就是能射进阳光的面积.26.【答案】解:(1)根据题意得:①横向相邻两数相差2;②纵向相邻两数相差10;(2)∵中间数为x,∴它上面的数是x-10,下面的数是x+10,它左面的数是x-2,它右面的数是x+2,∴十字形框中五个数的和是:x-10+x+x+10+x-2+x+2=5x;(3)根据题意得:若5x=2000,则x=400,但400不能出现在十字框的中间,所以这五个数的和不能等于2000;若5x=2020,则x=404,但404能出现在十字框的中间,所以这五个数的和能等于2020,此时这五个数中的最大数是414,最小数是394.【解析】(1)根据十字形框中给出的数据得出横向相邻两数相差2,纵向相邻两数相差10;(2)根据十字形框中给出的数据的规律和中间数为x,得出它上面的数是x-10,下面的数是x+10,它左面的数是x-2,它右面的数是x+2,然后相加即可得出答案;(3)根据(2)得出的五个数的和是5x,得出5x=2000或5x=2020,求出x的值,再根据各数之间的关系进行判断即可得出答案.此题考查了一元一次方程的应用,根据十字形框中给出的数据,得出相邻各数之间的关系是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021山东省青岛实验初级中学七年级数学上期中试题附答案一、选择题1.甲乙两个超市为了促销一种定价相等的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买同样的商品最合算( ) A .甲 B .乙C .相同D .和商品的价格有关2.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++3.用科学记数方法表示0.0000907,得( ) A .49.0710-⨯B .59.0710-⨯C .690.710-⨯D .790.710-⨯4.7-的绝对值是 ( ) A .17-B .17C .7D .7-5.2019的倒数的相反数是( ) A .-2019B .12019-C .12019D .20196.如图,从左面看该几何体得到的形状是( )A .B .C .D .7.已知∠1=18°18′,∠2=18.18°,∠3=18.3°,下列结论正确的是( ) A .∠1=∠3B .∠1=∠2C .∠2=∠3D .∠1=∠2=∠38.有理数a 、b 在数轴上对应的位置如图所示:则下列关系成立的是( )A .a-b>0B .a+b>0C .a-b=0D .a+b<09.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠: 会员年卡类型 办卡费用(元) 每次收费(元) A 类 1500 100 B 类 3000 60 C 类400040例如,购买A 类会员年卡,一年内健身20次,消费1500100203500+⨯=元,若一年内在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为( ) A .购买A 类会员年卡 B .购买B 类会员年卡 C .购买C 类会员年卡D .不购买会员年卡10.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .4011.下列等式变形正确的是( ) A .由a =b ,得5+a =5﹣b B .如果3a =6b ﹣1,那么a =2b ﹣1 C .由x =y ,得x y m m= D .如果2x =3y ,那么262955x y--= 12.如果||a a =-,下列成立的是( ) A .0a >B .0a <C .0a ≥D .0a ≤二、填空题13.实数a ,b 在数轴上的位置如图所示,则化简代数式|a+b|﹣2a =_____.14.小华在计算14a -时,误把“-”看成“+”,求得结果为5-,则14a -=____________.15.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____. 16.观察下列运算并填空. 1×2×3×4+1=24+1=25=52; 2×3×4×5+1=120+1=121=112; 3×4×5×6+1=360+1=361=192; 4×5×6×7+1=840+1=841=292; 7×8×9×10+1=5040+1=5041=712; ……试猜想:(n +1)(n +2)(n +3)(n +4)+1=________2. 17.下列哪个图形是正方体的展开图( )A .B .C .D .18.已知3x =是关于x 方程810mx -=的解,则m =__________.19.一只蚂蚁从数轴上一点 A 出发,爬了7 个单位长度到了+1,则点 A 所表示的数是_____20.若a 与b 互为相反数,c 与d 互为倒数,则a+b+3cd=_____.三、解答题21.如图,已知A 、B 、C 是数轴上的三点,点C 表示的数是6,点B 与点C 之间的距离是4,点B 与点A 的距离是12,点P 为数轴上一动点. (1)数轴上点A 表示的数为 .点B 表示的数为 ;(2)数轴上是否存在一点P ,使点P 到点A 、点B 的距离和为16,若存在,请求出此时点P 所表示的数;若不存在,请说明理由;(3)点P 以每秒1个单位长度的速度从C 点向左运动,点Q 以每秒2个单位长度从点B 出发向左运动,点R 从点A 以每秒5个单位长度的速度向右运动,它们同时出发,运动的时间为t 秒,请求点P 与点Q ,点R 的距离相等时t 的值.22.已知:223+2A B a ab -=,223A a ab =-+-. (1)求B ;(用含a 、b 的代数式表示)(2)比较A 与B 的大小.23.已知22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+.()1化简:2B A -;()2已知x 22a b --与y1ab 3的同类项,求2B A -的值. 24.初一(7)班数学学习小组“孙康映雪”在学习了第七章平面图形的认识(二)后对几何学习产生了浓厚的兴趣.请你认真研读下列三个片断,并完成相关问题.如图1,直线OM ⊥ON ,垂足为O ,三角板的直角顶点C 落在∠MON 的内部,三角板的另两条直角边分别与ON 、OM 交于点D 和点B .(片断一)小孙说:由四边形内角和知识很容易得到∠OBC+∠ODC 的值.如果你是小孙,得到的正确答案应是:∠OBC+∠ODC = °.(片断二)小康说:连结BD (如图2),若BD 平分∠OBC ,那么BD 也平分∠ODC .请你说明当BD 平分∠OBC 时,BD 也平分∠ODC 的理由.(片断三)小雪说:若DE 平分∠ODC 、BF 平分∠MBC ,我发现DE 与BF 具有特殊的位置关系.请你先在备用图中补全图形,再判断DE 与BF 有怎样的位置关系并说明理由. 25.如图,∠AOB=90°,∠BOC=2∠BOD ,OD 平分∠AOC ,求∠BOD 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】此题可设原价为x 元,分别计算出两超市降价后的价钱,再比较即可. 【详解】设原价为x 元,则甲超市价格为x×(1-10%)×(1-10%)=0.81x 乙超市为x×(1-20%)=0.8x ,2.B解析:B 【解析】 【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案. 【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形; ()232S S x x +=++正方形小矩形; ()36S S x x +=++小矩形小矩形.故选:B. 【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.3.B解析:B 【解析】 【分析】 【详解】解:根据科学记数法的表示—较小的数为10n a ⨯,可知a=9.07,n=-5,即可求解. 故选B 【点睛】本题考查科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.4.C解析:C 【解析】 【分析】负数的绝对值为这个数的相反数. 【详解】 |-7|=7,即答案选C.掌握负数的绝对值为这个数的相反数这个知识点是解题的关键. 5.B解析:B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是1 2019,1 2019的相反数为12019-,所以2019的倒数的相反数是1 2019 -,故选B.【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.6.B解析:B【解析】【分析】根据该几何体的左视图进行判断即可.【详解】该几何体的左视图如下故答案为:B.【点睛】本题考查了几何体的三视图,掌握三视图的性质以及画法是解题的关键.7.A解析:A【解析】【分析】根据小单位化大单位除以进率,可化成相同单位的角,根据有理数的大小比较,可得答案.【详解】∠1=18°18′=18.3°=∠3<∠2,故选:A.本题考查了度、分、秒的换算,利用小单位化大单位除以进率化成相同单位的角是解题的关键.8.D解析:D【解析】【分析】先根据数轴判断出a和b的取值范围,再逐一进行判断即可得出答案.【详解】由数轴可知:a<-1,0<b<1则a-b<0,故A错误;a+b<0,故B错误,D正确;a-b≠0,故C错误;故答案选择D.【点睛】本题考查的是有理数的加法、减法,根据数轴判断出a、b的取值范围是解决本题的关键. 9.C解析:C【解析】【分析】设一年内在该健身俱乐部健身x次,分别用含x的代数式表示出购买各类卡所需消费,然后将x=50和x=60分别代入各个代数式中比较大小即可得出结论.【详解】解:设一年内在该健身俱乐部健身x次,由题意可知:50≤x≤60则购买A类会员年卡,需要消费(1500+100x)元;购买B类会员年卡,需要消费(3000+60x)元;购买C类会员年卡,需要消费(4000+40x)元;不购买会员卡年卡,需要消费180x元;当x=50时,购买A类会员年卡,需要消费1500+100×50=6500元;购买B类会员年卡,需要消费3000+60×50=6000元;购买C类会员年卡,需要消费4000+40×50=6000;不购买会员卡年卡,需要消费180×50=9000元;6000<6500<9000当x=60时,购买A类会员年卡,需要消费1500+100×60=7500元;购买B类会员年卡,需要消费3000+60×60=6600元;购买C类会员年卡,需要消费4000+40×60=6400;不购买会员卡年卡,需要消费180×60=10800元;6400<6600<7500<10800综上所述:最省钱的方式为购买C类会员年卡故选C.【点睛】此题考查的是用代数式表示实际意义,掌握实际问题中各个量之间的关系是解决此题的关键.10.B解析:B【解析】试题解析:第(1)个图形中面积为1的正方形有2个, 第(2)个图形中面积为1的图象有2+3=5个, 第(3)个图形中面积为1的正方形有2+3+4=9个, …, 按此规律,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n +个, 则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个. 故选B .考点:规律型:图形变化类.11.D解析:D 【解析】 【分析】根据等式性质1对A 进行判断;根据等式性质2对B 、C 进行判断;根据等式性质1、2对D 进行判断. 【详解】解:A 、由a =b 得a +5=b +5,所以A 选项错误; B 、如果3a =6b ﹣1,那么a =2b ﹣13,所以B 选项错误; C 、由x =y 得xm =y m(m ≠0),所以C 选项错误; D 、由2x =3y 得﹣6x =﹣9y ,则2﹣6x =2﹣9y ,所以262955x y--=,所以D 选项正确. 故选:D . 【点睛】本题考查了等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.12.D解析:D 【解析】 【分析】绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0. 【详解】如果||a a =-,即一个数的绝对值等于它的相反数,则0a ≤. 故选D . 【点睛】本题考查绝对值,熟练掌握绝对值的性质是解题关键.二、填空题13.2a+b【解析】【分析】直接利用二次根式的性质以及绝对值的性质化简得出答案【详解】由数轴可得:a+b>0a<0则原式=a+b-(-a)=2a+b故答案是:2a+b【点睛】考查了二次根式的性质与化简正解析:2a+b【解析】【分析】直接利用二次根式的性质以及绝对值的性质化简得出答案.【详解】由数轴可得:a+b>0,a<0,则原式=a+b-(-a)=2a+b.故答案是:2a+b.【点睛】考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.14.33【解析】【分析】先根据错解求出a的值再进行计算即可得解【详解】解:根据题意得14+a=-5a=-14-5=-19∴14-a=14-(-19)=33故答案为:33【点睛】本题考查有理数的加法和减法解析:33【解析】【分析】先根据错解求出a的值,再进行计算即可得解.【详解】解:根据题意得,14+a=-5,a=-14-5=-19, ∴14-a=14-(-19)=33故答案为:33【点睛】本题考查有理数的加法和减法,正确理解题意是解题的关键.15.2【解析】试题分析:由题意可得:2x2+3x+7=10所以移项得:2x2+3x=10-7=3所求多项式转化为:6x2+9x﹣7=3(6x2+9x)-7=3×3-7=9-7=2故答案为2考点:求多项式解析:2【解析】试题分析:由题意可得:2x2+3x+7=10,所以移项得:2x2+3x=10-7=3,所求多项式转化为:6x2+9x﹣7=3(6x2+9x)-7=3×3-7=9-7=2,故答案为2.考点:求多项式的值.16.n2+5n+5【解析】【分析】观察几个算式可知结果都是完全平方式且5=1×4+111=2×5+119=3×6+1…由此可知最后一个式子为完全平方式且底数=(n+1)(n+4)+1=n2+5n+5【详解析:n2+5n+5【解析】【分析】观察几个算式可知,结果都是完全平方式,且5=1×4+1,11=2×5+1,19=3×6+1,…,由此可知,最后一个式子为完全平方式,且底数=(n+1)(n+4)+1=n2+5n+5.【详解】根据算式的规律可得:(n+1)(n+2)(n+3)(n+4)+1=(n2+5n+5)2.故答案为n2+5n+5.【点睛】本题考查了整式的混合运算,解题的关键是熟练的掌握整式的混合运算法则.17.B【解析】【分析】根据正方体展开图的11种特征选项ACD不是正方体展开图;选项B是正方体展开图的1-4-1型【详解】根据正方体展开图的特征选项ACD不是正方体展开图;选项B是正方体展开图故选B【点睛解析:B【解析】【分析】根据正方体展开图的11种特征,选项A、C、D不是正方体展开图;选项B是正方体展开图的“1-4-1”型.【详解】根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图.故选B.【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.18.6【解析】【分析】将x=3代入原方程即可求出答案【详解】将x=3代入mx−8=10∴3m=18∴m=6故答案为:6【点睛】本题考查一元一次方程解题的关键是熟练运用一元一次方程的解的定义本题属于基础题解析:6【解析】【分析】将x=3代入原方程即可求出答案.【详解】将x=3代入mx−8=10,∴3m=18,∴m=6,故答案为:6【点睛】本题考查一元一次方程,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.19.﹣6或8【解析】试题解析:当往右移动时此时点A表示的点为﹣6当往左移动时此时点A表示的点为8解析:﹣6 或 8【解析】试题解析:当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8.20.【解析】【分析】【详解】解:∵ab互为相反数∴a+b=0∵cd互为倒数∴cd=1∴a+b+3cd=0+3×1=3故答案为3【点睛】本题考查代数式求值解析:【解析】【分析】【详解】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∴a+b+3cd=0+3×1=3.故答案为3.【点睛】本题考查代数式求值.三、解答题21.(1)-10;2 (2)存在;﹣12或4 (3)127或4【解析】【分析】(1)结合数轴可知点A和点B都在点C的左边,且点A小于0,在根据题意列式计算即可得到答案;(2)因为AB=12,则P不可能在线段AB上,所以分两种情况:①当点P在BA的延长线上时,②当点P在AB的延长线上时,进行讨论,即可得到答案;(3)根据题意“t秒P点到点Q,点R的距离相等”,则此时点P、Q、R所表示的数分别是6﹣t,2﹣2t,﹣10+5t,分①6﹣t﹣(2﹣2t)=6﹣t﹣(﹣10+5t),②6﹣t﹣(2﹣2t)=(﹣10+5t)﹣(6﹣t)两种情况,计算即可得到答案.【详解】解:(1)由题意可知点A和点B都在点C的左边,且点A小于0,则由题意可得数轴上点B表示的数为6-4=2,点A表示的数为2-10=﹣10,故答案为:﹣10,2;(2)∵AB =12,∴P 不可能在线段AB 上,所以分两种情况:①如图1,当点P 在BA 的延长线上时,PA +PB =16,∴PA +PA +AB =16,2PA =16﹣12=4,PA =2,则点P 表示的数为﹣12;②如图2,当点P 在AB 的延长线上时,同理得PB =2,则点P 表示的数为4;综上,点P 表示的数为﹣12或4;(3)由题意得:t 秒P 点到点Q ,点R 的距离相等,则此时点P 、Q 、R 所表示的数分别是6﹣t ,2﹣2t ,﹣10+5t ,①6﹣t ﹣(2﹣2t )=6﹣t ﹣(﹣10+5t ),解得t =127; ②6﹣t ﹣(2﹣2t )=(﹣10+5t )﹣(6﹣t ),解得t =4;答:点P 与点Q ,点R 的距离相等时t 的值是127或4秒. 【点睛】本题考查数轴和动点问题,解题的关键是掌握数轴上的有理数的性质,注意分类讨论.22.(1)-5a 2+2ab-6;(2)A >B .【解析】【分析】(1)根据题意目中223+2A B a ab -=,223A a ab =-+-,可以用含a 、b 的代数式表示出B ;(2)根据题目中的A 和(1)中求得的B ,可以比较它们的大小.【详解】(1)∵2A-B=3a 2+2ab ,A=-a 2+2ab-3,∴B=2A-(3a 2+2ab )=2(-a 2+2ab-3)-(3a 2+2ab )=-2a 2+4ab-6-3a 2-2ab=-5a 2+2ab-6,(2)∵A=223a ab -+-,B=-5a 2+2ab-6,∴A-B=(223a ab -+-)-(-5a 2+2ab-6)=-a 2+2ab-3+5a 2-2ab+6=4a 2+3,∵无论a 取何值,a 2≥0,所以4a 2+3>0,∴A >B .【点睛】本题考查整式的加减,解答本题的关键是明确整式加减的计算方法.23.(1)225x 9xy 9y +-(2)63或-13【解析】【分析】(1)把A 与B 代入2B-A 中,去括号合并即可得到结果;(2)利用同类项的定义求出x 与y 的值,代入原式计算即可得到结果.【详解】 ()1∵22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+,∴()()22222222222B A 22xy 3y 4x 3x 3y 5xy 4xy 6y 8x 3x 3y 5xy 5x 9xy 9y -=-+-+-=-+--+=+-; ()2∵x 22a b --与y 1ab 3的同类项, ∴x 21-=,y 2=,解得:x 3=或x 1=,y 2=,当x 3=,y 2=时,原式45543663=+-=;当x 1=,y 2=时,原式5183613=+-=-.【点睛】本题考查了整式的加减,以及同类项,熟练掌握运算法则是解本题的关键.24.(1)180°;(2)见解析;(3)DE ⊥BF.【解析】【分析】(1)根据四边形的性质,可得答案;(2)根据三角形内角和定理和角平分线的定义即可求解;(3)根据补角的性质,可得∠CBM=∠ODC ,根据相似三角形的判定与性质,可得答案.【详解】(1)由四边形内角的性质,得,∠OBC+∠DOB+∠ODC+∠DCB=360°,∵∠DOB=∠DCB=90°,∴∠OBC+∠ODC=180°;(2)∵∠OBD+∠ODC=180°BD 平分∠OBC∴∠OBD=∠CBD∴∠OBD+∠ODB=90°∴∠CBD+∠ODC=90°∴∠ODB=∠BDC∴BD平分∠ODC.(3)如图,延长DE交BF于G,,∵∠ODC+∠OBC=∠CBM+∠OBC=180,∴∠CBM=∠ODC,∠CBM=∠EBG=∠ODC=∠EDC.∵∠BEG=∠DEC,∴△DEC∽△BEG,∴∠BGE=∠DCE=90°,∴DE垂直BF.【点睛】本题考查了三角形的内角和定理,利用相似三角形的判定与性质是解题关键;利用补角的性质得出∠NDC+∠CBM=180°是解题关键.25.∠BOD=22.5°.【解析】【试题分析】根据两角的等量关系列方程求解即可.【试题解析】设∠BOD=x,因为∠AOB=90°,则∠AOD=90°-x,因为 OD平分∠AOC,所以∠D OC=∠AOD=90°-x,所以∠BOC=∠DOC-∠BOD=90°-2x ,因为∠BOC=2∠BOD,所以90°-2x=2x,解得:x =22.5°.即∠BOD=22.5°.【方法点睛】本题目是一道考查角平分线的题目,在本题中,根据两角的数量关系借助方程解决更简单一些.。

相关文档
最新文档