单相桥式半控整流电路.
单相半控桥式整流电路实验

单位: ***职业技术教育中心姓名: ***学科: 机电题目: 浅析单相桥式半控整流电路实验电话: ***********浅析单相桥式半控整流电路实验摘要:《电力电子技术》是一门实践性很强的课程,该文总结了本人在单相可控整流实验教学中的心得体会,对《电力电子技术》教学有一定的指导作用。
关键词:半控整流、晶闸管、触发电路、单结晶体管实验一、引言整流电路将交流电变为直流电, 是电力电子电路中出现最早的一种电路, 与人类生产生活实际联系密切, 应用十分广泛。
单相半波可控整流电路虽然具有电路简单、调整方便、使用元件少的优点, 但却有整流电压脉动大、输出整流电流小的缺点。
较常用的是半控桥式整流电路, 简称半控桥。
二、实验说明整流电路中, 采用晶闸管来控制导通的时间和路径。
作为一个传统电力电子技术实验, 采用相控方式。
单相半控桥式整流电路中有两个晶闸管控制导通时间, 另两个不可控的硅整流管作为限定电流的路径。
其直流输出电压平均值的表达式为Ud =0.9U2(1+cosα/2)为保证触发的晶闸管可靠导通, 触发脉冲信号应有一定的宽度。
一般晶闸管的导通时间为6μs,因此触发脉冲宽度应在此值之上, 最好在20~50μs之间。
本次实验使用单结晶体管触发电路。
三、实验器材1.示波器一台2.变压器(220V/12V)一台3.万用表一只4.触发电路板一块及电路元件5.整流主电路板一块及电路元件四、实验线路五、实验步骤1.万用表对晶闸管进行检测(1)电极判别万用表置R×1K挡, 将可控硅其中一端假定为控制极, 与黑表笔相接, 然后用红表笔分别接另外两个脚。
若有一次出现正向导通, 则假定的控制极是对的, 而导通那次红表笔所接的脚是阴极K, 另一极则是阳极A。
如果两次均不导通, 则说明假定的不是控制极, 可重新设定一端为控制极。
(2)好坏判别在正常情况下, 可控硅的GK是一个PN结, 具有PN结特性, 而GA和AK之间存在反向串联的PN结, 故其间电阻值均为无穷大。
半控桥整流电路

原理图
仿真波形图
• U2 • i2 • UD • iD
• 实际运行中,该电路在接大电感负载的 情况下,若突然关断触发脉冲或将α迅速 移到180度,在没有接入续流二极管VD 时,可能出现一个晶闸管直通,两个整 流管交替导通的失控现象。
单相桥式半控整流(阻感性负 载,晶闸管在同一桥臂)
• 两个晶闸管串联电路 的优点是两个串联的 二极管除了起整流作 用外,还可以替代接 续流管,使电路不会 出现失控现象。
半控桥整流电路
单相桥式半控整流(阻感性负载, 不带续流二极管) 单相桥式半控整流(阻感性负载, 带续流二极管)
单相桥式半控整流(阻感性 负载,晶闸管在同一桥臂)
ห้องสมุดไป่ตู้
单相桥式半控整流(阻感性负 载,不带续流二极管)
• 特点:晶闸管在 触发时刻换流, 二极管在电源过 0时刻换流。
• 当电源电压u2的正半周,在控制角a=ωt时,触发晶闸 当电源电压u 的正半周,在控制角a=ωt a=ωt时 导通,则负载电源i 流通, 管VT1导通,则负载电源iD经VT1,VD2流通,达到 ωt=π时 开始由0变负,由于电感L的作用, ωt=π时,u2开始由0变负,由于电感L的作用,负载 电流维持不变, 继续导通,但此时的a 电流维持不变,使VT1继续导通,但此时的a点电位已 经开始低于b点电位,整流管VD 自然换到VD 经开始低于b点电位,整流管VD2自然换到VD1,并使 承受反压而截止。所以, 负半周开始, VD2承受反压而截止。所以,从u2负半周开始,VT1和 导通,与负载形成回路,, ,,负载电流不再经过变压 VD1导通,与负载形成回路,,负载电流不再经过变压 器副边绕组,而由VT 起自然续流作用, 器副边绕组,而由VT1和VD1起自然续流作用,输出电 压为这两个管子的正向压降,接近于0 压为这两个管子的正向压降,接近于0,使得在 π~π+α期间 期间, 波形不会出现负值。 π~π+α期间,uD波形不会出现负值。 • 在u2的负半周,晶闸管VT2承受正向电压,在 的负半周,晶闸管VT 承受正向电压, ωt=π+α时 被触发导通,并使VT ωt=π+α时,VT2被触发导通,并使VT1承受反向电压 而关断,于是VT 导通,电流i 从电源b端经VT 而关断,于是VT2和VD1导通,电流iD从电源b端经VT2、 负载、 会到a ωt=2π以后 以后, 由负变正, 负载、VD1会到a端。在ωt=2π以后,u2由负变正,整 流管VD 又自然换流到VD 续流, 等于0 流管VD1又自然换流到VD2,VT2和VD2续流,使uD等于0, 由于承受反压而截止……如此重复循环。 ……如此重复循环 而VD1由于承受反压而截止……如此重复循环。
单相桥式半控整流电路实验

实验二单相桥式半控整流电路实验一.实验目的1.研究单相桥式半控整流电路在电阻负载,电阻—电感性负载及反电势负载时的工作。
2.熟悉MCL—05组件锯齿波触发电路的工作。
3.进一步掌握双踪示波器在电力电子线路实验中的使用特点与方法。
二.实验线路及原理见图4-6。
三.实验内容1.单相桥式半控整流电路供电给电阻性负载。
2.单相桥式半控整流电路供电给电阻—电感性负载(带续流二极管)。
3.单相桥式半控整流电路供电给反电势负载(带续流二极管)。
4.单相桥式半控整流电路供电给电阻—电感性负载(断开续流二极管)。
四.实验设备及仪器1.MCL系列教学实验台主控制屏。
2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。
3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)4.MCL—05组件或MCL—05A组件5.MEL—03三相可调电阻器或自配滑线变阻器。
6.MEL—02三相芯式变压器。
7.二踪示波器8.万用电表五.注意事项1.实验前必须先了解晶闸管的电流额定值(本装置为5A),并根据额定值与整流电路形式计算出负载电阻的最小允许值。
2.为保护整流元件不受损坏,晶闸管整流电路的正确操作步骤(1)在主电路不接通电源时,调试触发电路,使之正常工作。
(2)在控制电压U ct =0时,接通主电源。
然后逐渐增大U ct ,使整流电路投入工作。
(3)断开整流电路时,应先把U ct 降到零,使整流电路无输出,然后切断总电源。
3.注意示波器的使用。
4.MCL —33(或MCL —53组件)的内部脉冲需断开。
5.接反电势负载时,需要注意直流电动机必须先加励磁六.实验方法1.将MCL —05(或MCL —05A ,以下均同)面板左上角的同步电压输入接MCL —18的U 、V 输出端(如您选购的产品为MCL —Ⅲ、Ⅴ,则同步电压输入直接与主控制屏的U 、V 输出端相连), “触发电路选择”拨向“锯齿波”。
3.2单相桥式半空整流电路

需要隔离。
3/131
2/131
3.1.4 单相桥式半控整流电路
■单相桥式半控整流电路的另一种接法
图3-4 (a)单相全控桥式电路
图2-11 单相桥式半控整流电路 的另一接法
◆这相样当可于以把省图去3-续5(流a)二中极的管VTV3D和RV,T续4换流为由二V极D3管和VVDD34和来V实D现4,。 ◆这种接法的两个晶闸管阴极电位不同,二者的触发电路
3.1.4 单相桥式半控整流电路
■与全控电路在电阻负载时的 工作情况相同。
■带电感负载
◆电路分析(先不考虑VDR )
u2
☞每一个导电回路由1个晶闸管 b) O
wt
和1个二极管构成。
ud
☞在uVD4向负载供电。
id
Id
☞u2过零变负时,因电感作用使
iiVVDTO41
Id
wt
电流连续,VT1继续导通,但因a点 电位低于b点电位,电流是由VT1和 VD2续流 ,ud=0。
iiVVDT3O2
i
O
VDR
O i2 O
p-
Id
Id
p-
Id
wt wt wt wt
☞在u2负半周,处触发触发VT3,
向VT1加反压使之关断,u2经VT3和
I
图3-11 单相桥式半控整流电路,有续流 二极管,阻感负载时的电路及波形
VD2向负载供电。
1/131
☞ u2 过 零 变 正 时 , VD4 导 通 ,
3.1.4 单相桥式半控整流电路
◆续流二极管VDR
☞若无续流二极管,则当突然增大至180或触发脉冲丢
失时,会发生一个晶闸管持续导通而两个二极管轮流导通 的情况,这使ud成为正弦半波,即半周期ud为正弦,另外 半周期ud为零,其平均值保持恒定,相当于单相半波不可 控整流电路时的波形,称为失控。 ☞有续流二极管VDR时,续流过程由VDR完成,避免了失 控的现象。 ☞续流期间导电回路中只有一个管压降,少了一个管压降, 有利于降低损耗。
单相半控桥式整流电路

一、实验基本内容1.实验名称:单相半控桥整流电路实验2.已知条件:a)工作电路原理图图1 工作原理图b)理想工作波形c)产生失控现象的原因及理论结果对于单相桥式半控整流电路,在正常运行的情况下,如果突然把触发脉冲切断或者将触发延迟角α增大到180°,电路将产生“失控”现象。
失控原因:正在导通的晶闸管的关断必须依赖后续晶闸管的开通,如果后续晶闸管不能导通,则已经导通的晶闸管就无法关断。
失控结果:失控后,一个晶闸管持续导通,两个二极管轮流导通,整流输出电压波形为正弦半波,即半周期为正弦波,另外半周期为零,输出电压平均值恒定。
d)各物理量基本数量关系(感性负载)Ⅰ.输出直流电压平均值U dU d=1π2παsinwtd(wt)=0.9U21+cosα2Ⅱ.负载电流平均值I d=U dR =0.45U2R1+cosα2Ⅲ.流过晶闸管的电流有效值I VTI VT=I VD=π−α2πI dⅣ.流过晶闸管的电流平均值I dVTI dVT=I dVD=π−α2πI dⅤ.变压器二次电流有效值I2I2=1πI d2d(ωt)π+αα=I d=2I VTⅥ.续流二极管电流有效值I VD RI VTR =απI dⅦ.续流二极管电流平均值I dVT RI dVTR =απI d3.实验目标:a)实现控制触发脉冲与晶闸管同步;b)观测单相半控桥在纯阻性负载时的移相控制特点,测量最大移相范围及输入-输出特性;c)观测单相半控桥在阻-感性负载时的输出状态,制造失控现象并讨论解决方案。
二、实验条件1.主要设备仪器a)电力电子及电气传动教学实验台i.型号MCL-Ⅲ型ii.生产厂商浙江大学求是公司b)Tektronix示波器i.型号TDS2012ii.主要参数带宽:100MHz最高采样频率:1GS/sc)数字万用表i.型号GDM-81452.小组人员分工u 2abVT1VT2VD2VD4Ru da)实验主要操作人辅助操作人电流表监控影像记录数据记录b)报告实验基本内容描述实验图片整理实验图片处理实验条件阐述实验过程叙述数据处理电路仿真讨论思考题讨论结果整理实验综合评估报告整合排版三、实验原理1.阻性负载如图所示为带阻性负载时单相桥式半控整流电路。
单相半控桥式整流电路

➢ 负载输出电压的平均值为
VT1 VT2
u1
u2
Rd
VD3 VD
4
ud
ωt ug
i2
ωt
ωt
阻感性负载单相桥式半控整流电路
假设负载中电感很大 工作原理-无触发〔0,α〕
u2
T i2
VT1 VT2
+
u1
u2
-
VD3 VD4
id L ud R
Thank you! Bye
单相可控整流电路的分析方法
• 1.可假设第一个触发脉冲前管子均关断。 • 2.确定触发脉冲时相应的SCR A-K两端电压是否正
偏,若是则导通; • 3.电压过零点时注意负载性质(阻性则电流同时
过零SCR关断;大电感性则电流量连续可继续导通 到另一组SCR触发导通时换相)。 • 4.负载端带续流二极管情况:输出电压不可能小 于零。
0α π
2π ωt
阻感性负载单相桥式半控整流电路
工作原理-有触发〔π +α,2 π 〕
T i2
VT1 VT2
-
u1
u2
u2
+
VHale Waihona Puke 3 VD4id L ud R
0α π ud
0α π id
0α π i2
2π ωt
• ωt= π+ α 时,给VT2加触发信号:
2π
ωt
• •
VT2、VD3导通 iVT2 = iVD3 = id =- i2
阻感性负载单相桥式半控整流电路
u2
O ud u
u1
wt
T i2 u2
VT1
单相桥式半控整流电路

单相桥式半控整流电路一.单相桥式半控整流电路手册1.单相桥式半控整流电路原理图如图1-1所示图1-1二.工作原理单相桥式半控整流电路在电阻性负载时的工作情况与全控电路完全相同。
当在阻感性负载工作时,当电源电压u2在正半周期,控制角为a 时触发晶闸管VT1使其导通,电源经VT1和VD4向负载供电。
当u2过零变负时,由于电感的作用使VT1继续导通。
因a点电位低于b点电位,使得电流从VD4转移至VD2,电流不再流经变压器二次绕组,而是由VT1和VD2续流。
此阶段忽略器件的通态压降,则ud=0,不像全控电路那样出现ud为负的情况。
在u2负半周控制角为a时触发VT3使其导通,则向VT1加反压使之关断,u2经VT3和VD2向负载供电。
u2过零变正时,VD4导通。
VT3和VD4续流,ud又为零。
此后重复以上过程。
若无续流二极管,则当a突然增大至180°或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使lid成为正弦半波,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,称为失控。
有续流二极管VD时,续流过程由VD完成,在续流阶段晶闸管关断,避免了某一个晶闸管持续导通从而导致失控的现象。
三.波形分析利用matlab仿真,能够直观地观察整流电路波形的变化(注:从上至下,第一个为电源电压波形,第二个为品闸管VT1两端电压波形,第三个为VT2两端电压波形,第四个为负载电流,第五个为负载两端电压波形,第六个为触发脉冲。
)1.单相桥式半控整流电路电阻性负载。
仿真原理图如图波形图如图3T-2(Q=30)RUEdeMrwO(apUy^muUtionCodeBohHelp比”—卜的❶•图3@■,M。
I图3-1-1图3-1-22.单相桥式半控整流电路阻感性负载仿真原理图如图3-2-1,波形图如图3-2-2(Q=30)RUEde M E OhpUrCugr«mitmuhtionAni>/aiiCedeBobH«lp3.单相桥式半控整流电路反电势负载仿真原理图如图3-3-1,波形图如图3-3-20dt4%图3-2-1 图3-2-2fita(dieMewOiaplayCUgMm^muiatcnAna^atCodebchHelp图3-3-1 :臼z-八1A图3-3-2四.电路参数晶闸管承受的最大正向电压和反向电压分别为七/2U 和&U 。
单相全波可控整流电路单相桥式半控整流电路

单相全波可控整流电路、单相桥式半控整流电路一.单相全波可控整流电路单相全波可控整流电路(Single Phase Full Wave Controlled Rectifier),又称单相双半波可控整流电路。
图1 单相全波可控整流电路及波形单相全波与单相全控桥从直流输出端或从交流输入端看均是基本一致的。
变压器不存在直流磁化的问题。
单相全波与单相全控桥的区别是:单相全波中变压器结构较复杂,材料的消耗多。
单相全波只用2个晶闸管,比单相全控桥少2个,相应的,门极驱动电路也少2个;但是晶闸管承受的最大电压是单相全控桥的2倍。
单相全波导电回路只含1个晶闸管,比单相桥少1个,因而管压降也少1个。
因此,单相全波电路有利于在低输出电压的场合应用1.电路结构图2.单相桥式半控整流电路,有续流二极管,阻感负载时的电路及波形单相全控桥中,每个导电回路中有2个晶闸管,1个晶闸管可以用二极管代替,从而简化整个电路。
如此即成为单相桥式半控整流电路(先不考虑VDR)。
单相全控桥式整流电路带电阻性负载的电路图如2所示,四个晶间管组成整流桥,其中vTl、vT4组成一对桥臂,vT 2、vT3组成另一对桥臂,vTl和vT3两只晶闸管接成共阴极,VT2和VT 4两只品间管接成共阳极,变压器二次电压比接在a、b两点,u2=1.414U2sin(wt)2.电阻负载半控电路与全控电路在电阻负载时的工作情况相同。
其工作过程如下:a)在u2正半周,u2经VT1和VD4向负载供电。
b) u2过零变负时,因电感作用电流不再流经变压器二次绕组,而是由VT1和VD2续流。
c)在u2负半周触发角a时刻触发VT3,VT3导通,u2经VT3和VD2向负载供电。
d)u2过零变正时,VD4导通,VD2关断。
VT3和VD4续流,u d又为零。
3.续流二极管的作用1)避免可能发生的失控现象。
2)若无续流二极管,则当a突然增大至180 或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使u d成为正弦半波,其平均值保持恒定,称为失控。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单相桥式半控整流电路
一、实验目的
了解单相整流桥的工作原理
ቤተ መጻሕፍቲ ባይዱ
熟悉常用整流触发电路
掌握整流电路在电阻负载,电阻—电感性 负载时工作特性的测量方法
二、实验内容
1.测定单相桥式半控整流电路带电阻性负载特性 2.测定单相桥式半控整流电路带电阻电感性负载特性 3.分析续流二极管的作用
NMCL33 Uct
调节给定电压Ug ,记录五 组α, UL , Ui,
观测UL的波形 断开续流二极管,观测UL 的波形
Ublf NMCL32
Ublr
VT4'
VT6'
V +
L
Ui
α
UL
U V VD4 VD6
1
2 3 4 5
VD2
RL 900Ω并联
四、实验步骤3——电阻电感性负载
调节偏移电压,使当 Uct=0时,α=0°或90°;
uo D ,D 导通 1 3
_
t
t
uo
D2,D4截止 电流通路: A D1 RLD3B
U0
uD4,uD2
输出是脉动的直流电压!
u u , 3 D D 1
t
四、实验原理
电阻负载单相半波可控整流电路及其波形
ug V ui uT iL g RL uL (a ) 0 uL iL 0 uT 0 α θ ωt (b ) 0 ωt (e) uL iL ωt (d ) ωt (c)
三、实验设备
1.MCL系列教学实验台主控制屏
2.MCL—31组件
3.MCL—33组件 4.MCL—05 5.MEL—03三相可调电阻器或自配滑线变阻器。 6.MEL—02三相芯式变压器。 7.二踪示波器 8.万用电表
四、实验原理
单相桥式整流电路
u2正半周时 电流通路
实验目的 实验内容 电路图 原始记录数据 绘制曲线 =60时,U L f (t) 思考题: 简述续流二极管的作用及电感量大小对负载 电流的影响?
NMCL31 Ug
Rp1 Rp2 偏移电压
NMCL33 Uct
调节给定电压Ug ,记录五 组α, UL , Ui,
观测UL的波形 断开续流二极管,观测UL 的波形
Ublf NMCL32
Ublr
VT4'
VT6'
V +
L
Ui
α
UL
U V VD4 VD6
1
2 3 4 5
VD2
RL 900Ω并联
五、实验报告
3 .断开整流电路时,应先把Uct降到零, 使整流电路无输出,然后切断总电源。 4.MCL—33的内部脉冲需断开。
5.接反电势负载时,需要注意直流电动机 必须先加励磁
四、实验步骤2——电阻性负载
调节偏移电压,使当 Uct=0时,α=0°或90°;
NMCL31 Ug
Rp1 Rp2 偏移电压
ui
四、实验原理
电阻负载单相桥式半控整流电路的波形
ui O uG ωt (a )
V1 a u1 VD 1
V2 b VD2 RL Uo
O iL O uL O uV 1 O ωt (e) ωt (c) ωt (b )
ωt
(d )
五、实验步骤1——操作规范
1 .在主电路不接通电源时,调试触发电路, 使之正常工作。 2 .在控制电压Uct=0时,接通主电源。然 后逐渐增大Uct,使整流电路投入工作。
T u1
+
A u2 B D4 D1 D3 D2
+
RL
uo
-
-
四、实验原理
单相桥式整流电路
T
u1 1 A u2 B D4 D1 D3 D2
u2负半周时 电流通路
+
RL
u0
+
_
四、实验原理
单相桥式整流电路输出波形及二极管上电压波形
A D4
u2 B
u2
D3
D1 D2
RL
+
u2>0 时
u2<0 时
D2,D4导通 D1,D3截止 电流通路: B D2 RLD4A