有关函数通性的试题选讲
中职数学:不等式题型选讲典型例题(含答案)

不等式题型选讲1、 有关不等式的解法:解不等式是通过变形转化为简单不等式从而得到解集,如分式不等式转化为整式不等式但要注意是同解变形,每一步变形既充分又必要,例如解分式不等式不要随便去分母,而是先移项,等价转化为f (x )>0或f (x )<0的形式,再分析讨论。
一些含绝对值符号的不等式,含有参数的不等式必须进行讨论。
例1、(1)设集合A ={x ∣x 2-1>0},B ={x ∣log 2x >0},则A ∩B 等于( )A 、{x ∣x >1}B 、{x ∣x >0}C 、{x ∣x <-1}D 、{x ∣x <-1或x>1}(2)不等式(1+x )(1-∣x ∣)>0的解集为( )A 、{x ∣0≤x <1}B 、{x ∣x <0且x ≠-1}C 、{x ∣-1<x <1}D 、{x ∣x <1或x ≠-1}(3)设f (x )是奇函数且在(-∞,0)内是减函数,f (-2)=0,则x f (x )<0的解集为( )A 、(-1,0)∪(2,+∞)B 、(-∞,-2)∪(0,2)C 、(-∞,-2)∪(2,+∞)D 、(-2,0)∪(0,2)(4)(2003新教材高考试题)设函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,若f (x )>1,则x 0的取值范围是( )A 、(-1,1)B 、(-1,+∞)C 、(-∞,-2)∪(0,+∞)D 、(-∞,-1)∪(1,+∞)选择题具有自身独特的特点,从而决定了它的解法具有灵活机动的优势。
解题者选择不同的解法,从一个侧面反映出他们数学水平的不同“层次”。
例2、(1)不等式1)20(lg cos 2>x (x ∈(0,π)的解集为(2)不等式x x x <-24的解集是-----------------。
不等式选件高考题

不等式选件高考题1.已知函数 3f x x a x .(1)当1a 时,求不等式 6f x 的解集;(2)若 f x a ,求a 的取值范围.2.已知函数()2,()2321f x x g x x x .(1)画出 y f x 和 y g x 的图像;(2)若 f x a g x ,求a 的取值范围.3.已知函数()|31|2|1|f x x x .(1)画出()y f x 的图像;(2)求不等式()(1)f x f x 的解集.4.设函数 211f x x x .(1)画出 y f x 的图像;(2)当 0x ∈,, f x ax b ,求a b 的最小值.5.(2016高考新课标Ⅰ,理24)选修4-5:不等式选讲已知函数 123f x x x .(Ⅰ)画出 y f x 的图象;(Ⅱ)求不等式 1f x 的解集.6.已知函数2()|21|f x x a x a .(1)当2a 时,求不等式 4f x 的解集;(2)若 4f x ,求a 的取值范围.7.已知()|||2|().f x x a x x x a (1)当1a 时,求不等式()0f x 的解集;(2)若(,1)x 时,()0f x ,求a 的取值范围.8.已知 11f x x ax .(1)当=1a 时,求不等式 1f x 的解集;(2)若 0,1x 时不等式 f x x 成立,求a 的取值范围.9.设函数()52f x x a x .(1)当1a 时,求不等式()0f x 的解集;(2)若()1f x 恒成立,求a 的取值范围.10.已知函数()f x =│x +1│–│x –2│.(1)求不等式()f x ≥1的解集;(2)若不等式()f x ≥x 2–x +m 的解集非空,求实数m 的取值范围.11.已知函数2()4f x x ax ,()|1||1|g x x x .(1)当1a 时,求不等式()()f x g x 的解集;(2)若不等式()()f x g x 的解集包含[–1,1],求a 的取值范围.12.选修4-5:不等式选讲已知函数11()22f x x x,M 为不等式()2f x 的解集.(Ⅰ)求M ;(Ⅱ)证明:当a ,b M 时,1a b ab .13.已知函数()|2|f x x a a .(1)当a=2时,求不等式()6f x 的解集;(2)设函数()|21|g x x .当x R 时,()()3f x g x ,求a 的取值范围.14.已知a ,b ,c 为正数,且满足abc =1.证明:(1)222111a b c a b c;(2)333()()()24a b b c c a .15.已知a ,b ,c 均为正数,且22243a b c ,证明:(1)23a b c ;(2)若2b c ,则113a c.16.已知a ,b ,c 都是正数,且3332221a b c ,证明:(1)19abc;(2)a b c b c a c a b ;17.设a ,b ,c R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c参考答案:1.(1) ,42, .(2)3,2.【分析】(1)利用绝对值的几何意义求得不等式的解集.(2)利用绝对值不等式化简 f x a ,由此求得a 的取值范围.【详解】(1)[方法一]:绝对值的几何意义法当1a 时, 13f x x x ,13x x 表示数轴上的点到1和3 的距离之和,则 6f x 表示数轴上的点到1和3 的距离之和不小于6,当4x 或2x 时所对应的数轴上的点到13 ,所对应的点距离之和等于6,∴数轴上到13 ,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x 或2x ,所以 6f x 的解集为 ,42, .[方法二]【最优解】:零点分段求解法当1a 时,()|1||3|f x x x .当3x 时,(1)(3)6 x x ,解得4x ;当31x 时,(1)(3)6 x x ,无解;当1x 时,(1)(3)6 x x ,解得2x .综上,|1||3|6 x x 的解集为(,4][2,) .(2)[方法一]:绝对值不等式的性质法求最小值依题意 f x a ,即3a x a x 恒成立,333x a x x a a x ,当且仅当 30a x x 时取等号,3min f x a ,故3a a ,所以3a a 或3a a ,解得32a .所以a 的取值范围是3,2.[方法二]【最优解】:绝对值的几何意义法求最小值由||x a 是数轴上数x 表示的点到数a 表示的点的距离,得()|||3||3|f x x a x a ,故|3|a a ,下同解法一.[方法三]:分类讨论+分段函数法当3a 时,23,,()3,3,23,3,x a x a f x a a x x a x则min [()]3 f x a ,此时3 a a ,无解.当3a 时,23,3,()3,3,23,,x a x f x a x a x a x a则min [()]3 f x a ,此时,由3a a 得,32a .综上,a 的取值范围为32a .[方法四]:函数图象法解不等式由方法一求得 min 3f x a 后,构造两个函数|3| y a 和y a ,即3,3,3,3a a y a a和y a ,如图,两个函数的图像有且仅有一个交点33,22M ,由图易知|3|a a ,则32a .【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法.方法一采用几何意义方法,适用于绝对值部分的系数为1的情况,方法二使用零点分段求解法,适用于更广泛的情况,为最优解;(2)方法一,利用绝对值不等式的性质求得 3min f x a ,利用不等式恒成立的意义得到关于a 的不等式,然后利用绝对值的意义转化求解;方法二与方法一不同的是利用绝对值的几何意义求得 f x 的最小值,最有简洁快速,为最优解法方法三利用零点分区间转化为分段函数利用函数单调性求 f x 最小值,要注意函数 f x 中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;方法四与方法一的不同在于得到函数 f x 的最小值后,构造关于a 的函数,利用数形结合思想求解关于a 的不等式.2.(1)图像见解析;(2)112a 【分析】(1)分段去绝对值即可画出图像;(2)根据函数图像数形结和可得需将 y f x 向左平移可满足同角,求得 y f x a 过1,42A时a 的值可求.【详解】(1)可得2,2()22,2x x f x x x x ,画出图像如下:34,231()232142,2214,2x g x x x x x x,画出函数图像如下:(2)()|2|f x a x a ,如图,在同一个坐标系里画出 ,f x g x 图像, y f x a 是 y f x 平移了a 个单位得到,则要使()()f x a g x ,需将 y f x 向左平移,即0a ,当 y f x a 过1,42A 时,1|2|42a ,解得112a 或52 (舍去),则数形结合可得需至少将 y f x 向左平移112个单位,112a .【点睛】关键点睛:本题考查绝对值不等式的恒成立问题,解题的关键是根据函数图像数形结合求解.3.(1)详解解析;(2)7,6.【分析】(1)根据分段讨论法,即可写出函数 f x 的解析式,作出图象;(2)作出函数 1f x 的图象,根据图象即可解出.【详解】(1)因为 3,1151,1313,3x x f x x x x x,作出图象,如图所示:(2)将函数 f x 的图象向左平移1个单位,可得函数 1f x 的图象,如图所示:由 3511x x ,解得76x .所以不等式()(1)f x f x 的解集为7,6.【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题.4.(1)见解析(2)5【详解】分析:(1)将函数写成分段函数,再画出在各自定义域的图像即可.(2)结合(1)问可得a ,b 范围,进而得到a+b 的最小值详解:(1) 13,,212,1,23, 1.x x f x x x x xy f x 的图像如图所示.(2)由(1)知, y f x 的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a 且2b 时, f x ax b 在 0, 成立,因此a b 的最小值为5.点睛:本题主要考查函数图像的画法,考查由不等式求参数的范围,属于中档题.5.(1)见解析(2)11353x x x x或或【详解】试题分析:(Ⅰ)化为分段函数作图;(Ⅱ)用零点分区间法求解.试题解析:(Ⅰ)的图像如图所示.(Ⅱ)由的表达式及图像,当时,可得或;当时,可得或,故的解集为;的解集为,所以的解集为.【考点】分段函数的图像,绝对值不等式的解法【名师点睛】不等式选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写成集合的形式.6.(1)32x x 或112x ;(2) ,13, .【分析】(1)分别在3x 、34x 和4x 三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到 21f x a ,由此构造不等式求得结果.【详解】(1)当2a 时, 43f x x x .当3x 时, 43724f x x x x ,解得:32x ≤;当34x 时, 4314f x x x ,无解;当4x 时, 43274f x x x x ,解得:112x;综上所述: 4f x 的解集为32x x 或112x .(2) 22222121211f x x a x a x a x a a a a (当且仅当221a x a 时取等号), 214a ,解得:1a 或3a ,a 的取值范围为 ,13, .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.7.(1)(,1) ;(2)[1,)【分析】(1)根据1a ,将原不等式化为|1||2|(1)0x x x x ,分别讨论1x ,12x ,2x 三种情况,即可求出结果;(2)分别讨论1a 和1a 两种情况,即可得出结果.【详解】(1)当1a 时,原不等式可化为|1||2|(1)0x x x x ;当1x 时,原不等式可化为(1)(2)(1)0x x x x ,即2(1)0x ,显然成立,此时解集为(,1) ;当12x 时,原不等式可化为(1)(2)(1)0x x x x ,解得1x ,此时解集为空集;当2x 时,原不等式可化为(1)(2)(1)0x x x x ,即2(10)x ,显然不成立;此时解集为空集;综上,原不等式的解集为(,1) ;(2)当1a 时,因为(,1)x ,所以由()0f x 可得()(2)()0a x x x x a ,即()(1)0x a x ,显然恒成立;所以1a 满足题意;当1a 时,2(),1()2()(1),x a a x f x x a x x a,因为1a x 时,()0f x 显然不能成立,所以1a 不满足题意;综上,a 的取值范围是[1,) .【点睛】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型.8.(1)1>2x x;(2) 0,2.【分析】(1)方法一:将=1a 代入函数解析式,求得 11f x x x ,利用零点分段法将解析式化为 2,1,=2,1<<1,2, 1.x f x x x x,分类讨论即可求得不等式的解集;(2)方法一:根据题中所给的 0,1x ,其中一个绝对值符号可以去掉,不等式 f x x 可以化为 0,1x 时11ax ,分情况讨论即可求得结果.【详解】(1)[方法一]:【通性通法】零点分段法当=1a 时, 11f x x x ,即 2,1=2,1<<12,1x f x x x x,所以不等式 1f x 等价于12>1x或1<<12>1x x 或12>1x ,解得:12x .故不等式 1f x 的解集为1>2x x.[方法二]:【最优解】数形结合法如图,当=1a 时,不等式()1f x 即为|1||1|1x x.由绝对值的几何意义可知,|1||1|x x 表示x 轴上的点到1 对应的点的距离减去到1应点的距离.结合数轴可知,当1=2x 时,|1||1|1x x ,当12x 时,|1||1|1x x .故不等式()1f x 的解集为1,2.(2)[方法一]:【通性通法】分类讨论当 0,1x 时,11x ax x 成立等价于当 0,1x 时,11ax 成立.若0a ,则当 0,1x 时,111ax ax ;若0a ,由11ax 得,111ax ,解得:20x a ,所以21a,故02a .综上,a 的取值范围为 0,2.[方法二]:平方法当(0,1)x 时,不等式|1||1|x ax x 成立,等价于(0,1)x 时,11ax 成立,即2211ax 成立,整理得(2)0ax ax .当=0a 时,不等式不成立;当0a 时,(2)0ax ax ,不等式解集为空集;当0a 时,原不等式等价于220a x x a,解得20x a .由>021a a,解得02a .故a 的取值范围为(0,2].[方法三]:【最优解】分离参数法当(0,1)x 时,不等式|1||1|x ax x 成立,等价于(0,1)x 时,|1|1ax 成立,即111ax ,解得:20a x,而22x ,所以02a .故a 的取值范围为(0,2].【整体点评】(1)方法一:利用零点分段法是解决含有两个以及以上绝对值不等式的常用解法,是通性通法;方法二:利用绝对值的几何意义解决特殊类型的绝对值不等式,直观简洁,是该题的最优解.(2)方法一:分类讨论解出绝对值不等式,利用 0,1是不等式解集的子集求出,是通性通法;方法二:本题将绝对值不等式平方,转化为解含参的不等式,利用 0,1是不等式解集的子集求出,虽可解出,但是增加了题目的难度;方法三:利用分离参数,将不等式问题转化为恒成立最值问题,思想简单常见,是该题的最优解.9.(1)[2,3] ;(2) ,62, .【详解】分析:(1)先根据绝对值几何意义将不等式化为三个不等式组,分别求解,最后求并集,(2)先化简不等式为|||2|4x a x ,再根据绝对值三角不等式得|||2|x a x 最小值,最后解不等式|2|4a 得a 的取值范围.详解:(1)当1a 时,24,1,2,12,26, 2.x x f x x x x可得 0f x 的解集为{|23}x x .(2) 1f x ≤等价于24x a x .而22x a x a ,且当2x 时等号成立.故 1f x ≤等价于24a .由24a 可得6a 或2a ,所以a 的取值范围是 ,62, .点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.10.(1) 1, ;(2)5,4.【分析】(1)由于f(x)=|x+1|﹣|x﹣2|31211232xx xx,<,,>,解不等式f(x)≥1可分﹣1≤x≤2与x>2两类讨论即可解得不等式f(x)≥1的解集;(2)依题意可得m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x,分x≤1、﹣1<x<2、x≥2三类讨论,可求得g(x)max54,从而可得m的取值范围.【详解】解:(1)∵f(x)=|x+1|﹣|x﹣2|31211232xx xx,<,,>,f(x)≥1,∴当﹣1≤x≤2时,2x﹣1≥1,解得1≤x≤2;当x>2时,3≥1恒成立,故x>2;综上,不等式f(x)≥1的解集为{x|x≥1}.(2)原式等价于存在x∈R使得f(x)﹣x2+x≥m成立,即m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x.由(1)知,g(x)22231311232x x xx x xx x x,,<<,,当x≤﹣1时,g(x)=﹣x2+x﹣3,其开口向下,对称轴方程为x121,∴g(x)≤g(﹣1)=﹣1﹣1﹣3=﹣5;当﹣1<x<2时,g(x)=﹣x2+3x﹣1,其开口向下,对称轴方程为x32∈(﹣1,2),∴g(x)≤g(32)9942154;当x≥2时,g(x)=﹣x2+x+3,其开口向下,对称轴方程为x12<2,∴g(x)≤g(2)=﹣4+2+3=1;综上,g(x)max5 4 ,∴m的取值范围为(﹣∞,54 ].【点睛】本题考查绝对值不等式的解法,去掉绝对值符号是解决问题的关键,突出考查分类讨论思想与等价转化思想、函数与方程思想的综合运用,属于难题.11.(1){|1x x;(2)[1,1].【详解】试题分析:(1)分1x ,11x ,1x 三种情况解不等式()()f x g x ;(2)()()f x g x 的解集包含[1,1] ,等价于当[1,1]x 时()2f x ,所以(1)2f 且(1)2f ,从而可得11a .试题解析:(1)当1a 时,不等式 f x g x 等价于21140x x x x .①当1x 时,①式化为2340x x ,无解;当11x 时,①式化为220x x ,从而11x ;当1x 时,①式化为240x x,从而112x .所以 f x g x 的解集为1{|1}2x x .(2)当 1,1x 时, 2g x .所以 f x g x 的解集包含 1,1 ,等价于当 1,1x 时 2f x .又 f x 在 1,1 的最小值必为 1f 与 1f 之一,所以 12f 且 12f ,得11a .所以a 的取值范围为 1,1 .点睛:形如||||x a x b c (或c )型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(,]a ,(,]a b ,(,)b (此处设a b )三个部分,将每部分去掉绝对值号并分别列出对应的不等式求解,然后取各个不等式解集的并集.(2)图像法:作出函数1||||y x a x b 和2y c 的图像,结合图像求解.12.(Ⅰ){|11}M x x ;(Ⅱ)详见解析.【详解】试题分析:(I )先去掉绝对值,再分12x ,1122x 和12x 三种情况解不等式,即可得 ;(II )采用平方作差法,再进行因式分解,进而可证当a ,b 时,1a b ab .试题解析:(I )12,,211(){1,,2212,.2x x f x x x x 当12x 时,由()2f x 得22,x 解得1x ;当1122x 时,()2f x ;当12x 时,由()2f x 得22,x 解得1x .所以()2f x 的解集{|11}M x x .(Ⅱ)由(Ⅰ)知,当,a b M 时,11,11a b ,从而22222222()(1)1(1)(1)0a b ab a b a b a b ,因此1.a b ab 【考点】绝对值不等式,不等式的证明.【名师点睛】形如x a x b c (或c )型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应的方程的根,将数轴分为(,]a ,(,]a b ,(,)b (此处设a b )三个部分,在每个部分去掉绝对值号并分别列出对应的不等式进行求解,然后取各个不等式解集的并集.(2)图象法:作出函数1y x a x b 和2y c 的图象,结合图象求解.13.(1){|13}x x ;(2)[2,) .【详解】试题分析:(1)当2a 时 ()|22|2f x x |22|26x 13x ;(2)由()()|2||12|f x g x x a a x |212|x a x a |1|a a ()()3f x g x 等价于|1|3a a ,解之得2a .试题解析:(1)当2a 时,()|22|2f x x .解不等式|22|26x ,得13x .因此,()6f x 的解集为.(2)当x R 时,()()|2||12|f x g x x a a x |212|x a x a |1|a a ,当12x 时等号成立,所以当x R 时,()()3f x g x 等价于|1|3a a .①当1a 时,①等价于13a a ,无解.当1a 时,①等价于13a a ,解得2a .所以a 的取值范围是[2,) .考点:不等式选讲.14.(1)见解析;(2)见解析【分析】(1)利用1abc 将所证不等式可变为证明:222a b c bc ac ab ,利用基本不等式可证得 2222222a b c ab bc ac ,从而得到结论;(2)利用基本不等式可得3333a b b c c a a b b c c a ,再次利用基本不等式可将式转化为333a b b c c a .【详解】(1)1abc 111111abc bc ac ab a b c a b c2222222222222a b c a b b c c a ab bc ac当且仅当a b c 时取等号22211122a b c a b c,即:222111a b c a b c≥(2) 3333a b b c c a a b b c c a ,当且仅当a b c 时取等号又a b b c a c a b c 时等号同时成立)3333a b b c c a 又1abc 33324a b b c c a 【点睛】本题考查利用基本不等式进行不等式的证明问题,考查学生对于基本不等式的变形和应用能力,需要注意的是在利用基本不等式时需注意取等条件能否成立.15.(1)见解析(2)见解析【分析】(1)方法一:根据 22222242a b c a b c ,利用柯西不等式即可得证;(2)由(1)结合已知可得043a c ,即可得到1143a c ,再根据权方和不等式即可得证.【详解】(1)[方法一]:【最优解】柯西不等式由柯西不等式有 222222221112a b c a b c,所以23a b c ,当且仅当21a b c 时,取等号,所以23a b c .[方法二]:基本不等式由222a b ab ,2244b c bc ,2244a c ac ,222222224244349a b c a b c ab bc ac a b c ,当且仅当21a b c 时,取等号,所以23a b c .(2)证明:因为2b c ,0a ,0b ,0c ,由(1)得243a b c a c ,即043a c ,所以1143a c ,由权方和不等式知 22212111293444a c a c a c a c,当且仅当124a c,即1a ,12c 时取等号,所以113a c.【点睛】(1)方法一:利用柯西不等式证明,简洁高效,是该题的最优解;方法二:对于柯西不等式不作为必须掌握内容的地区同学,采用基本不等式累加,也是不错的方法.16.(1)证明见解析(2)证明见解析【分析】(1)利用三元均值不等式即可证明;(2)利用基本不等式及不等式的性质证明即可.【详解】(1)证明:因为0a ,0b ,0c ,则320a ,320b ,320c ,所以3332223a b c ,即 1213abc,所以19abc ,当且仅当333222a b c ,即a b c (2)证明:因为0a ,0b ,0c ,所以b c a c ,a b ,所以32a b c 32b ac 32c c a b333333222222a b c a b c a b c b c a c a b 当且仅当a b c 时取等号.17.(1)证明见解析(2)证明见解析.【分析】(1)方法一:由 22222220a b c a b c ab ac bc 结合不等式的性质,即可得出证明;(2)方法一:不妨设 max ,,a b c a ,因为0,1a b c abc ,所以0,a 0,b 0,ca b c34,a a 【详解】(1)[方法一]【最优解】:通性通法 22222220a b c a b c ab ac bc ,22212ab bc ca a b c.1,,,abc a b c 均不为0,则2220a b c , 222120ab bc ca a b c.[方法二]:消元法由0a b c 得 b a c ,则ab bc ca b a c ca 2a c ac22a ac c223024c a c,当且仅当0a b c 时取等号,又1abc ,所以0ab bc ca .[方法三]:放缩法方式1:由题意知0,a 0,a b c ,a c b 222224a c b c b cb bc ,又ab bc ca a b c bc 2a bc 224a a 2304a ,故结论得证.方式2:因为0a b c ,所以 22220222a b c a b c ab bc ca22222212222a b b c c a ab bc ca122222232ab bc ca ab bc ca ab bc ca.即0ab bc ca ,当且仅当0a b c 时取等号,又1abc ,所以0ab bc ca .[方法四]:因为0,1a b c abc ,所以a ,b ,c 必有两个负数和一个正数,不妨设0,a b c 则 ,a b c 20ab bc ca bc a c b bc a .[方法五]:利用函数的性质方式1: 6b a c ,令 22f c ab bc ca c ac a ,二次函数对应的图像开口向下,又1abc ,所以0a ,判别式222Δ430a a a ,无根,所以 0f c ,即0ab bc ca .方式2:设 31f x x a x b x c x ab bc ca x ,则 f x 有a ,b ,c 三个零点,若0ab bc ca ,则 f x 为R 上的增函数,不可能有三个零点,所以0ab bc ca .(2)[方法一]【最优解】:通性通法不妨设 max ,,a b c a ,因为0,1a b c abc ,所以0,a 0,b 0,ca b c则34,a a .故原不等式成立.[方法二]:不妨设 max ,,a b c a ,因为0,1a b c abc ,所以0a ,且,1,b c a bc a则关于x 的方程210x ax a有两根,其判别式24Δ0a a,即a 故原不等式成立.[方法三]:不妨设 max ,,a b c a ,则0,a ,b a c 1,abc 1,a c ac 2210ac a c ,关于c的方程有解,判别式 22Δ40a a ,则34,a a .故原不等式成立.[方法四]:反证法假设 max ,,a b c 0a b1ab ca b c ,又1132a bmax ,,a b c 证.【整体点评】(1)方法一:利用三项平方和的展开公式结合非零平方为正数即可证出,证法常规,为本题的通性通法,也是最优解法;方法二:利用消元法结合一元二次函数的性质即可证出;方法三:利用放缩法证出;方法四:利用符号法则结合不等式性质即可证出;方法五:利用函数的性质证出.(2)方法一:利用基本不等式直接证出,是本题的通性通法,也是最优解;方法二:利用一元二次方程根与系数的关系以及方程有解的条件即可证出;方法三:利用消元法以及一元二次方程有解的条件即可证出;方法四:利用反证法以及基本不等式即可证出.。
高三数学不等式选讲试题

高三数学不等式选讲试题1.设函数(m>0)(1)证明:f(x)≥4;(2)若f(2)>5,求m的取值范围.【答案】(1)见解析;(2)(0,1)∪(,+∞)【解析】(1)利用绝对值基本性质:|x-a|+|x-b|≥|a-b|及基本不等式可得;(2)分类写出f(2)关于m的解析式,解相关分式不等式即可试题解析:(Ⅰ)由m>0,有f(x)=|x-|+|x+m|≥|-(x-)+x+m|=+m≥4,当且仅当=m,即m=2时取“=”.所以f(x)≥4. 4分(Ⅱ)f(2)=|2-|+|2+m|.当<2,即m>2时,f(2)=m-+4,由f(2)>5,得m>.当≥2,即0<m≤2时,f(2)=+m,由f(2)>5,0<m<1.综上,m的取值范围是(0,1)∪(,+∞). 10分考点:绝对值不等式2.设,且满足:,,求证:.【答案】详见解析【解析】根据题中所给条件:,,结合柯西不等式可得出:,由此可推出:,即可得出三者的关系:,问题即可求解.,,,又,,. 10分【考点】不等式的证明3.已知关于x的不等式(其中),若不等式有解,则实数a的取值范围是()A.B.C.D.【答案】C【解析】∵设故,即的最小值为,所以有解,则解得,即的取值范围是,选C.4.对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是()A.[-2,+∞)B.(-∞,-2)C.[-2,2]D.[0,+∞)【答案】A【解析】由题意a|x|≥-x2-1,∴a≥=(x≠0).∵≤-2,∴a≥-2.当x=0时,a∈R,综上,a≥-2,选A5.设函数,其中。
(1)当时,求不等式的解集;(2)若不等式的解集为,求a的值。
【答案】(1)或(2)【解析】(1)当时,可化为。
由此可得或。
故不等式的解集为或。
(2)由得此不等式化为不等式组或即或因为,所以不等式组的解集为由题设可得= ,故6.不等式x2﹣4x+a<0存在小于1的实数解,则实数a的取值范围是()A.(﹣∞,4)B.(﹣∞,4]C.(﹣∞,3)D.(﹣∞,3]【答案】C【解析】不等式x2﹣4x+a<0可化为:x2﹣4x<﹣a,设y=x2﹣4x,y=﹣a,分别画出这两个函数的图象,如图,由图可知,不等式x2﹣4x+a<0存在小于1的实数解,则有:﹣a>﹣3.故a<3.故选C.7.已知,,,.求证.【答案】详见解析【解析】利用分析法或作差法证明不等式. 即,而显然成立,【证明】因为,,所以,所以要证,即证.即证, 5分即证,而显然成立,故. 10分【考点】不等式相关知识8.若不等式的解集为,则的取值范围为________;【答案】【解析】令,则;若不等式的解集为,则的取值范围为.【考点】绝对值不等式的解法、恒成立问题.9.已知,且,求的最小值.【答案】1.【解析】观察已知条件与所求式子,考虑到柯西不等式,可先将条件化为,此时,由柯西不等式得,即,当且仅当,即,或时,等号成立,从而可得的最小值为1.试题解析:, ,,,当且仅当,或时的最小值是1.【考点】柯西不等式.10.若a,b,c∈R,a>b,则下列不等式成立的是(填上正确的序号).①<;②a2>b2;③>;④a|c|>b|c|.【答案】③【解析】①,当a是正数,b是负数时,不等式<不成立,②当a=-1,b=-2时,a>b成立,a2>b2不成立;当a=1,b=-2时,a>b成立,a2>b2也不成立,当a,b是负数时,不等式a2>b2不成立.③在a>b两边同时除以c2+1,不等号的方向不变,故③正确,④当c=0时,不等式a|c|>b|c|不成立.综上可知③正确.11.已知-1<a+b<3,且2<a-b<4,求2a+3b的取值范围.【答案】-<2a+3b<【解析】设2a+3b=x(a+b)+y(a-b)=(x+y)a+(x-y)b.则解得所以2a+3b=(a+b)-(a-b).因为-1<a+b<3,2<a-b<4,所以-<(a+b)<,-2<-(a-b)<-1.所以--2<2a+3b<-1,即-<2a+3b<.12.设x,y∈R,且x+y=5,则3x+3y的最小值为()A.10B.6C.4D.18【答案】D【解析】选D.3x+3y≥2=2=2=18,当且仅当x=y=2.5时,等号成立.13.已知等比数列{an}的各项均为正数,公比q≠1,设P=,Q=,则P与Q的大小关系是()A.P>Q B.P<QC.P=Q D.无法确定【答案】A【解析】选A.由等比知识,得Q==,而P=,且a3>0,a9>0,q≠1,a 3≠a9,所以>,即P>Q.14.若a,b,c为正数,且a+b+c=1,则++的最小值为()A.9B.8C.3D.【答案】A【解析】选A.因为a,b,c为正数,且a+b+c=1,所以a+b+c≥3,所以0<abc≤,≥27,所以++≥3≥3=9.当且仅当a=b=c=时等号成立.15.已知x+2y+3z=6,则2x+4y+8z的最小值为()A.3B.2C.12D.12【答案】C【解析】选C.因为2x>0,4y>0,8z>0,所以2x+4y+8z=2x+22y+23z≥3=3=3×4=12.当且仅当2x=22y=23z,即x=2y=3z,即x=2,y=1,z=时取等号.16.当0≤x≤时,函数y=x2(1-5x)的最大值为()A.B.C.D.无最大值【答案】C【解析】选C.y=x2(1-5x)=x2=x·x·.因为0≤x≤,所以-2x≥0,所以y≤=,=.当且仅当x=-2x,即x=时,ymax17.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是()A.|a+b|+|a-b|>2B.|a+b|+|a-b|<2C.|a+b|+|a-b|=2D.不能比较大小【答案】B【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2,当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.18.若关于x的不等式|x-2|+|x+3|<a的解集为,则实数a的取值范围为()A.(-∞,1]B.(-∞,1)C.(-∞,5]D.(-∞,5)【答案】C【解析】选C.因为|x-2|+|x+3|≥|x-2-x-3|=5,又关于x的不等式|x-2|+|x+3|<a的解集为,所以a≤5.19.已知函数f(x)=x2-x+13,|x-a|<1.求证:|f(x)-f(a)|<2(|a|+1).【答案】见解析【解析】证明:|f(x)-f(a)|=|x2-x+13-(a2-a+13)|=|x2-a2-x+a|=|(x-a)(x+a-1)|=|x-a||x+a-1|<|x+a-1|=|x-a+2a-1|≤|x-a|+|2a-1|<1+|2a|+1=2(|a|+1),所以|f(x)-f(a)|<2(|a|+1).20.若关于实数x的不等式|x-5|+|x+3|<a无解,求实数a的取值范围.【答案】(-∞,8]【解析】因为不等式|x-5|+|x+3|的最小值为8,所以要使不等式|x-5|+|x+3|<a无解,则a≤8,即实数a的取值范围是(-∞,8].21.已知x,y,z∈R+,且x+y+z=1(1)若2x2+3y2+6z2=1,求x,y,z的值.(2)若2x2+3y2+tz2≥1恒成立,求正数t的取值范围.【答案】(1)x=,y=,z=(2)t≥6【解析】(1)∵(2x2+3y2+6z2)()≥(x+y+z)2=1,当且仅当时取“=”.∴2x=3y=6z,又∵x+y+z=1,∴x=,y=,z=.=.(2)∵(2x2+3y2+tz2)≥(x+y+z)2=1,∴(2x2+3y2+tz2)min∵2x2+3y2+tz2≥1恒成立,∴≥1.∴t≥6.22.若关于x的不等式的解集为(-1,4),则实数a的值为_________.【答案】【解析】由已知得,,,当时,不等式解集为,故,无解;当时,不等式解集为,故,解得.【考点】绝对值不等式解法.23.设a,b,c均为正数,证明:++≥a+b+c.【答案】见解析【解析】证明:方法一:+++a+b+c=(+b)+(+c)+(+a)≥2a+2b+2c,当且仅当a=b=c时等号成立.即得++≥a+b+c.方法二:利用柯西不等式的一般形式得|a1b1+a2b2+a3b3|≤.取a1=,a2=,a3=,b1=,b2=,b3=代入即证.24.已知正数x,y,z满足5x+4y+3z=10.(1)求证:++≥5.(2)求+的最小值.【答案】(1)见解析 (2) 18【解析】(1)根据柯西不等式,得[(4y+3z)+(3z+5x)+(5x+4y)](++)≥(5x+4y+3z)2,当且仅当==,即x=,y=,z=时取等号.因为5x+4y+3z=10,所以++≥=5.(2)根据平均值不等式,得+≥2=2·,当且仅当x2=y2+z2时,等号成立.根据柯西不等式,得(x2+y2+z2)(52+42+32)≥(5x+4y+3z)2=100,即x2+y2+z2≥2,当且仅当==时,等号成立.综上,+≥2·32=18.当且仅当x=1,y=,z=时,等号成立.所以+的最小值为18.25.设n∈N*,求证:++…+<.【答案】见解析【解析】证明:由=<=(-)可知<(1-),<(-),…,<(-),从而得++…+<(1-)<.26.设0< a,b,c <1,求证:(1-a)b,(1-b)c,(1-c)a,不可能同时大于.【答案】见解析【解析】证明:假设(1-a)b >,(1-b)c >,(1-c)a>,则三式相乘:(1-a)b·(1-b)c·(1-c)a>①.又∵0< a,b,c <1,∴0<(1-a)a≤[]2=.同理:(1-b)b≤,(1-c)c≤,以上三式相乘:(1-a)a·(1-b)b·(1-c)c≤,与①矛盾,∴(1-a)b,(1-b)c,(1-c)a不可能同时大于.27.设函数f(x)=|x+1|+|x-a|(a>0).若不等式f(x)≥5的解集为(-∞,-2]∪(3,+∞),则a的值为________.【答案】a=2【解析】由题意知,f(-2)=f(3)=5,即1+|2+a|=4+|3-a|=5,解得a=2.28.已知函数f(x)=|2x-a|+a.若不等式f(x)≤6的解集为{x|-2≤x≤3},则实数a的值为________.【答案】a=1【解析】由|2x-a|+a≤6得,|2x-a|≤6-a,∴a-6≤2x-a≤6-a,即a-3≤x≤3,∴a-3=-2,∴a=1.29.若对任意的a∈R,不等式|x|+|x-1|≥|1+a|-|1-a|恒成立,则实数x的取值范围是________.【答案】x≤-或x≥【解析】由|1+a|-|1-a|≤2得|x|+|x-1|≥2,当x<0时,-x+1-x≥2,x≤-;当0≤x≤1时,x+1-x≥2,无解;当x>1时,x+x-1≥2,x≥.综上,x≤-或x≥30.已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)(bm+an)的最小值为________.【答案】2【解析】由柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时“=”成立,得(am+bn)(bm+an)≥=mn(a+b)2=2.31.若正数x,y满足x+3y=5xy,则3x+4y的最小值是().A.B.C.5D.6【答案】C【解析】∵x>0,y>0,由x+3y=5xy,得=5.∴5(3x+4y)=(3x+4y) =13+≥13+2=25.因此3x+4y≥5,当且仅当x=2y时等号成立.∴当x=1,y=时,3x+4y的最小值为5.32.(Ⅰ)(坐标系与参数方程)直线与圆相交的弦长为.(Ⅱ)(不等式选讲)设函数>1),且的最小值为,若,则的取值范围【答案】(Ⅱ)【解析】解:将直线2ρcosθ=1化为普通方程为:2x=1.∵ρ=2cosθ,∴ρ2=2ρcosθ,化为普通方程为:x2+y2=2x,即(x-1)2+y2=1.∴直线与圆相交的弦长=解:∵函数f(x)=|x-4|+|x-a|≥|x-4+a-x|=|a-4|,∵f(x)的最小值为3,∴|a-4|=3,∴a=1或7,∵a>1,∴a=7,∴f(x)=|x-4|+|x-7|≤5,①若x≤4,f(x)=4-x+7-x=11-2x≤5,解得x≥3,故3≤x≤4;②若4<x<7,f(x)=x-4+7-x=3,恒成立,故4<x<7;③若x≥7,f(x)=x-4+x-7=2x-11≤5,解得x≤8,故7≤x≤8;综上3≤x≤8,故答案为:3≤x≤8.【考点】坐标系与参数方程,不等式选讲点评:主要是考查了不等式选讲以及坐标系与参数方程的运用,属于基础题。
数学分析试题库-选择题

数学分析题库(1-22章)一.选择题1.函数712arcsin162-+-=x x y 的定义域为( ). (A )[]3,2; (B)[]4,3-; (C)[)4,3-; (D)()4,3-.2.函数)1ln(2++=x x x y ()+∞<<∞-x 是( ).(A )偶函数; (B)奇函数; (C)非奇非偶函数; (D)不能断定. 3.点0=x 是函数xe y 1=的( ).(A )连续点; (B)可去间断点; (C)跳跃间断点; (D)第二类间断点.4.当0→x 时,x 2tan 是( ).(A )比x 5sin 高阶无穷小 ; (B) 比x 5sin 低阶无穷小; (C) 与x 5sin 同阶无穷小; (D) 与x 5sin 等价无穷小.5.xx x x 2)1(lim -∞→的值( ).(A )e; (B)e1; (C)2e ;(D)0.6.函数f(x)在x=0x 处的导数)(0'x f 可定义 为( ). (A )0)()(x x x f x f -- ; (B)x x f x x f x x ∆-∆+→)()(lim 0 ;(C) ()()x f x f x ∆-→∆0lim; (D)()()xx x f x x f x ∆∆--∆+→∆2lim 000. 7.若()()2102lim0=-→x f x f x ,则()0f '等于( ).(A )4; (B)2; (C)21; (D)41,8.过曲线xe x y +=的点()1,0处的切线方程为( ).(A )()021-=+x y ; (B)12+=x y ; (C)32-=x y ; (D)x y =-1. 9.若在区间()b a ,内,导数()0>'x f ,二阶导数()0>''x f ,则函数()x f 在区间内是( ).(A )单调减少,曲线是凹的; (B) 单调减少,曲线是凸的; (C) 单调增加,曲线是凹的; (D) 单调增加,曲线是凸的. 10.函数()x x x x f 933123+-=在区间[]4,0上的最大值点为( ). (A )4; (B)0; (C)2; (D)3.11.函数()x f y =由参数方程⎪⎩⎪⎨⎧==-ttey ex 35确定,则=dx dy ( ). (A )te 253; (B)t e 53; (C) t e --53 ; (D) t e 253-. 12设f ,g 为区间),(b a 上的递增函数,则)}(),(max{)(x g x f x =ϕ是),(b a 上的( )(A ) 递增函数 ; ( B ) 递减函数; (C ) 严格递增函数; (D ) 严格递减函数. 13.()n =(A ) 21; (B) 0; (C ) ∞ ; (D ) 1; 14.极限01lim sin x x x→=( )(A ) 0 ; (B) 1 ; (C ) 2 ; (D ) ∞+.15.狄利克雷函数⎩⎨⎧=为无理数为有理数x x x D 01)(的间断点有多少个( )(A )A 没有; (B) 无穷多个; (C ) 1 个; (D )2个. 16.下述命题成立的是( )(A ) 可导的偶函数其导函数是偶函数; (B) 可导的偶函数其导函数是奇函数; (C ) 可导的递增函数其导函数是递增函数; (D ) 可导的递减函数其导函数是递减函数. 17.下述命题不成立的是( ) (A ) 闭区间上的连续函数必可积; (B) 闭区间上的有界函数必可积; (C ) 闭区间上的单调函数必可积; (D ) 闭区间上的逐段连续函数必可积. 18 极限=-→xx x 10)1(lim ( )(A ) e ; (B) 1; (C ) 1-e ; (D ) 2e . 19.0=x 是函数 xxx f sin )(=的( ) (A )可去间断点; (B )跳跃间断点; (C )第二类间断点; (D ) 连续点. 20.若)(x f 二次可导,是奇函数又是周期函数,则下述命题成立的是( ) (A ) )(x f ''是奇函数又是周期函数 ; (B) )(x f ''是奇函数但不是周期函数;(C ) )(x f ''是偶函数且是周期函数 ; (D ) )(x f ''是偶函数但不是周期函数.21.设xx x f 1sin1=⎪⎭⎫ ⎝⎛,则)(x f '等于 ( ) (A )2cos sin x x x x - ; (B)2sin cos x xx x - ;(C )2sin cos x x x x + ; (D ) 2cos sin xxx x +. 22.点(0,0)是曲线3x y =的 ( )(A ) 极大值点; (B)极小值点 ; C .拐点 ; D .使导数不存在的点. 23.设x x f 3)(= ,则ax a f x f ax --→)()(lim等于 ( )(A )3ln 3a; (B )a3 ; (C )3ln ; (D )3ln 3a.24. 一元函数微分学的三个中值定理的结论都有一个共同点,即( )(A ) 它们都给出了ξ点的求法; (B ) 它们都肯定了ξ点一定存在,且给出了求ξ的方法; (C ) 它们都先肯定了ξ点一定存在,而且如果满足定理条件,就都可以用定理给出的公式计算ξ的值 ; (D ) 它们只肯定了ξ的存在,却没有说出ξ的值是什么,也没有给出求ξ的方法 . 25.若()f x 在(,)a b 可导且()()f a f b =,则( )(A ) 至少存在一点(,)a b ξ∈,使()0f ξ'=; (B ) 一定不存在点(,)a b ξ∈,使()0f ξ'=; (C ) 恰存在一点(,)a b ξ∈,使()0f ξ'=; (D )对任意的(,)a b ξ∈,不一定能使()0f ξ'= .26.已知()f x 在[,]a b 可导,且方程f(x)=0在(,)a b 有两个不同的根α与β,那么在(,)a b 内() ()0f x '=. (A ) 必有; (B ) 可能有; (C ) 没有; (D )无法确定.27.如果()f x 在[,]a b 连续,在(,)a b 可导,c 为介于 ,a b 之间的任一点,那么在(,)a b内()找到两点21,x x ,使2121()()()()f x f x x x f c '-=-成立.(A )必能; (B )可能;(C )不能; (D )无法确定能 .28.若()f x 在[,]a b 上连续,在(,)a b 内可导,且(,)x a b ∈ 时,()0f x '>,又()0f a <,则( ). (A ) ()f x 在[,]a b 上单调增加,且()0f b >; (B ) ()f x 在[,]a b 上单调增加,且()0f b <; (C ) ()f x 在[,]a b 上单调减少,且()0f b <;(D ) ()f x 在[,]a b 上单调增加,但()f b 的 正负号无法确定. 29.0()0f x '=是可导函数()f x 在0x 点处有极值的( ). (A ) 充分条件; (B ) 必要条件 (C ) 充要条件; (D ) 既非必要又非充 分 条件.30.若连续函数在闭区间上有唯一的极大值和极小值,则( ). (A )极大值一定是最大值,且极小值一定是最小值; (B )极大值一定是最大值,或极小值一定是最小值; (C )极大值不一定是最大值,极小值也不一定是最小值; (D )极大值必大于极小值 .31.若在(,)a b 内,函数()f x 的一阶导数()0f x '>,二阶导数()0f x ''<,则函数()f x 在此区间内( ).(A ) 单调减少,曲线是凹的; (B ) 单调减少,曲线是凸的; (C ) 单调增加,曲线是凹的; (D ) 单调增加,曲线是凸的.32.设lim ()lim ()0x ax af x F x →→==,且在点a 的某邻域中(点a 可除外),()f x 及()F x 都存在,且()0F x ≠,则()lim ()x a f x F x →存在是''()lim ()x a f x F x →存在的( ).(A )充分条件; (B )必要条件;(C )充分必要条件;(D )既非充分也非必要条件 . 33.0cosh 1lim1cos x x x→-=-().(A )0; (B )12-; (C )1; (D )12. 34.设a x n n =∞→||lim ,则 ( )(A) 数列}{n x 收敛; (B) a x n n =∞→lim ;(C) a x n n -=∞→lim ; (D) 数列}{n x 可能收敛,也可能发散。
高三数学不等式选讲试题

高三数学不等式选讲试题1.设a、b、c为正数,a+b+9c2=1,则的最大值是,此时a+b+c= .【答案】【解析】由柯西不等式得,所以,当且仅当且,即,所以的最大值是,此时.【考点】柯西不等式.2.已知函数.(1)解不等式:;(2)当时,不等式恒成立,求实数的取值范围.【答案】(1);(2)【解析】(1)由函数,及解不等式,通过将x的区间分为3类可解得结论.(2)由当时,不等式恒成立,令函数.所以原题等价于,由.通过绝对值不等式的公式即可得到函数的最大值,再通过解绝对值不等式可得结论.(1)原不等式等价于:当时,,即.当时,,即当时,,即.综上所述,原不等式的解集为. 4分(2)当时,=所以 7分【考点】1.绝对值不等式.2.恒成立问题.3.分类的数学思想.3.若对任意正实数,不等式恒成立,则实数的最小值为.【答案】【解析】因为对任意正实数,不等式恒成立,所以,因此【考点】不等式恒成立4.设,则的最小值为。
【答案】9【解析】由柯西不等式可知。
5.设a,b,c均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤(2).【答案】(1)见解析;(2)见解析.【解析】(1)由得.由题设得,即.所以3(ab+bc+ca)≤1,即.(2)因为+b≥2a,+c≥2b,+a≥2c,故+(a+b+c)≥2(a+b+c),即≥a+b+c,所以.6.已知函数f(x)=|x-a|,其中a>1.(1)当a=2时,求不等式f(x)≥4-|x-4|的解集;(2)已知关于x的不等式|f(2x+a)-2f(x)|≤2的解集为{x|1≤x≤2},求a的值.【答案】(1){x|x≤1或x≥5}.(2)3【解析】(1)当a=2时, f(x)+|x-4|=当x≤2时,由f(x)≥4-|x-4|得-2x+6≥4,解得x≤1;当2<x<4时, f(x)≥4-|x-4|无解;当x≥4时,由f(x)≥4-|x-4|得2x-6≥4,解得x≥5;所以f(x)≥4-|x-4|的解集为{x|x≤1或x≥5}.(2)记h(x)=f(2x+a)-2f(x),则h(x)=由|h(x)|≤2,解得≤x≤又已知|h(x)|≤2的解集为{x|1≤x≤2}.所以=1且=2于是a=3.7.满足不等式的的取值范围是________.【答案】{或}【解析】不等式等价于,即,故的取值范围是.【考点】解不等式.8.不等式2x2﹣x﹣1>0的解集是()A.B.(1,+∞)C.(﹣∞,1)∪(2,+∞)D.∪(1,+∞)【答案】D【解析】原不等式同解于(2x+1)(x﹣1)>0∴x>1或x<故选:D9.如图,有一块锐角三角形的玻璃余料,欲加工成一个面积不小于cm2的内接矩形玻璃(阴影部分),则其边长(单位:cm)的取值范围是()A.B.C.D.【答案】D【解析】设矩形的另一边长为,由图,三角形相似可知,,解得,则矩形面积,解得,故选D.【考点】1.一元二次不等式的求解.10.下列不等式成立的是()A.log32<log25<log23B.log32<log23<log25C.log23<log32<log25D.log23<log25<log32【答案】B【解析】选B.因为log32<log33=1,log23>log22=1,所以log32<log23,又因为log23<log25,所以log32<log23<log25.11.设a,b∈R,若a-|b|>0,则下列不等式正确的是()A.b-a>0B.a3+b3<0C.a2-b2<0D.b+a>0【答案】D【解析】选D.因为a-|b|>0,所以a>|b|≥0.所以不论b正或b负均有a+b>0.12.已知a,b,c为三角形的三边长,则a2与ab+ac的大小关系是.【答案】a2<ab+ac【解析】因为a,b,c为三角形的三边长,所以a<b+c,又因为a>0,所以a2<a(b+c),即a2<ab+ac.13.实数x,y,z满足x2-2x+y=z-1且x+y2+1=0,试比较x,y,z的大小.【答案】z≥y>x【解析】x2-2x+y=z-1⇒z-y=(x-1)2≥0⇒z≥y;x+y2+1=0⇒y-x=y2+y+1=+>0⇒y>x,故z≥y>x.14.若正数a,b满足ab=a+b+3,则ab的取值范围是.【答案】[9,+∞)【解析】令=t(t>0),由ab=a+b+3≥2+3,则t2≥2t+3,所以t≥3或t≤-1(舍去),所以≥3,ab≥9,当a=b=3时取等号.15.若a,b,c为正数,且a+b+c=1,则++的最小值为()A.9B.8C.3D.【答案】A【解析】选A.因为a,b,c为正数,且a+b+c=1,所以a+b+c≥3,所以0<abc≤,≥27,所以++≥3≥3=9.当且仅当a=b=c=时等号成立.16.已知x+2y+3z=6,则2x+4y+8z的最小值为()A.3B.2C.12D.12【答案】C【解析】选C.因为2x>0,4y>0,8z>0,所以2x+4y+8z=2x+22y+23z≥3=3=3×4=12.当且仅当2x=22y=23z,即x=2y=3z,即x=2,y=1,z=时取等号.17.若记号“*”表示求两个实数a与b的算术平均的运算,即a*b=,则两边均含有运算“*”和“+”,且对任意3个实数a,b,c都能成立的一个等式可以是.【答案】a+(b*c)=(a+b)*(a+c)【解析】由题意知a+(b*c)=a+=,(a+b)*(a+c)==,所以a+(b*c)=(a+b)*(a+c).18.已知x,y均为正数,且x>y,求证:2x+≥2y+3.【答案】见解析【解析】【证明】因为x>0,y>0,x-y>0,2x+-2y=2(x-y)+=(x-y)+(x-y)+≥3=3,所以2x+≥2y+3.19.已知函数f(x)=|x-3|-2,g(x)=-|x+1|+4.若函数f(x)-g(x)≥m+1的解集为R,求m的取值范围.【答案】(-∞,-3]【解析】【解题指南】本题关键是转化题中的条件为求f(x)-g(x)的最小值,求解时结合绝对值三角不等式.f(x)-g(x)=|x-3|+|x+1|-6,解:因为x∈R,由绝对值三角不等式得f(x)-g(x)=|x-3|+|x+1|-6=|3-x|+|x+1|-6≥|(3-x)+(x+1)|-6=4-6=-2,于是有m+1≤-2,得m≤-3,即m的取值范围是(-∞,-3].20.已知函数f(x)=|x-a|.(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.【答案】(1)a=2(2){m|m≤5}【解析】(1)由f(x)≤3得|x-a|≤3,解得a-3≤x≤a+3.又已知不等式f(x)≤3的解集为{x|-1≤x≤5},所以解得a=2.(2)当a=2时,f(x)=|x-2|,设g(x)=f(x)+f(x+5),于是g(x)=|x-2|+|x+3|≥|(2-x)+(x+3)|=5,当且仅当(2-x)(x+3)≥0即当-3≤x≤2时等号成立.所以实数m的取值范围是{m|m≤5}.21.设a、b∈R+,试比较与的大小.【答案】≥【解析】∵()2-=≥0,∴≥22.若a、b、c∈R+,且a+b+c=1,求++的最大值.【答案】【解析】(1·+1·+1·)2≤(12+12+12)(a+b+c)=3,即++的最大值为23.若a、b∈R+,且a≠b,M=+,N=+,求M与N的大小关系.【答案】M>N【解析】∵a≠b,∴+>2,+>2,∴+++>2+2,即+>+,即M>N.24.已知a>0,求证:-≥a+-2.【答案】见解析【解析】要证-≥a+-2,只需证+2≥a++,只需证a2++4+4≥a2++2+2+2,即证2≥,只需证4≥2,即证a2+≥2,此式显然成立.∴原不等式成立.25.已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].(1)求m的值;(2)若a,b,c∈R,且=m,求证:a+2b+3c≥9.【答案】(1)m=1(2)见解析【解析】(1)∵f(x+2)=m-|x|≥0,∴|x|≤m,∴m≥0,-m≤x≤m,∴f(x+2)≥0的解集是[-1,1],故m=1.(2)由(1)知=1,a、b、c∈R,由柯西不等式得a+2b+3c=(a+2b+3c)≥(·+·+·)2=9.26.已知x,y,z∈R+,且x+y+z=1(1)若2x2+3y2+6z2=1,求x,y,z的值.(2)若2x2+3y2+tz2≥1恒成立,求正数t的取值范围.【答案】(1)x=,y=,z=(2)t≥6【解析】(1)∵(2x2+3y2+6z2)()≥(x+y+z)2=1,当且仅当时取“=”.∴2x=3y=6z,又∵x+y+z=1,∴x=,y=,z=.(2)∵(2x2+3y2+tz2)≥(x+y+z)2=1,∴(2x2+3y2+tz2)min=.∵2x2+3y2+tz2≥1恒成立,∴≥1.∴t≥6.27.设a,b,c均为正数,证明:++≥a+b+c.【答案】见解析【解析】证明:方法一:+++a+b+c=(+b)+(+c)+(+a)≥2a+2b+2c,当且仅当a=b=c时等号成立.即得++≥a+b+c.方法二:利用柯西不等式的一般形式得|a1b1+a2b2+a3b3|≤.取a1=,a2=,a3=,b1=,b2=,b3=代入即证.28.已知a,b,c∈(1,2),求证:++≥6.【答案】见解析【解析】证明:∵≥=,≥=,≥=.∴y=++≥++.又由柯西不等式可得[(a-b+1)+(b-c+1)+(c-a+1)](++)≥18,即++≥=6.∴y=6,当且仅当a=b=c=时取到最小值,min原不等式得证.29.“a<4”是“对任意的实数x,|2x-1|+|2x+3|≥a成立”的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分也非必要条件【答案】B【解析】因为|2x-1|+|2x+3|≥a,所以,根据不等式的几何意义可知,在数轴上点x到点和-的距离之和≥2,所以当a<4时,有<2,所以不等式成立,此时为充分条件要使|2x-1|+|2x+3|≥a恒成立,即恒成立,则有≤2,即a≤4综上,“a<4”是“|2x-1|+|2x+3|≥a成立”的充分不必要条件,故选B.30.已知函数f(x)=|2x-a|+a.若不等式f(x)≤6的解集为{x|-2≤x≤3},则实数a的值为________.【答案】a=1【解析】由|2x-a|+a≤6得,|2x-a|≤6-a,∴a-6≤2x-a≤6-a,即a-3≤x≤3,∴a-3=-2,∴a=1.31.已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)·(bm+an)的最小值为________.【答案】2.【解析】∵a,b,m,n∈R+,且a+b=1,mn=2,∴(am+bn)( bm+an)=abm2+a2mn+b2mn+abn2=ab(m2+n2)+2(a2+b2)≥2ab·mn+2(a2+b2) =4ab+2(a2+b2)=2(a2+b2+2ab)=2(a+b)2=2,当且仅当m=n=时,取“=”.∴所求最小值为2.32.设函数f(x)=|x-1|+|x-2|.(1)画出函数y=f(x)的图象;(2)若不等式|a+b|+|a-b|≥|a|f(x)( a≠0,a,b∈R)恒成立,求实数x的取值范围.【答案】(1)(2)≤x≤【解析】(1)f(x)=图象如图.(2)由|a+b|+|a-b|≥|a|f(x)得≥f(x).又因为≥=2.则有2≥f(x).解不等式2≥|x-1|+|x-2|得≤x≤. 即x的取值范围为≤x≤33. (1)设x≥1,y≥1,证明x+y+≤++xy;(2)1<a≤b≤c,证明loga b+logbc+logca≤logba+logcb+logac.【答案】(1)见解析(2)见解析【解析】(1)由于x≥1,y≥1,要证x+y+≤++xy,只需证xy(x+y)+1≤y+x+(xy)2.因为[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy+1)(xy-1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1).由条件x≥1,y≥1,得(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立.(2)设loga b=x,logbc=y,由对数的换底公式得logca=,logba=,logcb=,logac=xy.于是,所要证明的不等式即为x+y+≤++xy.其中x=loga b≥1,y=logbc≥1.故由(1)可知所要证明的不等式成立.34.若对任意的a∈R,不等式|x|+|x-1|≥|1+a|-|1-a|恒成立,则实数x的取值范围是________.【答案】x≤-或x≥【解析】由|1+a|-|1-a|≤2得|x|+|x-1|≥2,当x<0时,-x+1-x≥2,x≤-;当0≤x≤1时,x+1-x≥2,无解;当x>1时,x+x-1≥2,x≥.综上,x≤-或x≥35.在R上定义运算,若关于的不等式的解集是的子集,则实数a的取值范围是()A.B.C.或D.【答案】D【解析】,设A为关于的不等式的解集,当A为时,则即;当即时,,则即,所以;当即时,,则即,所以;综上可知.【考点】新定义、含参数不等式的解法.36.设实数均不小于1,且,则的最小值是.(是指四个数中最大的一个)【答案】9【解析】设,则,当时上式两等号都能取到,所以的最小值为9.【考点】多元函数最值的求法.37.[选修4 - 5:不等式选讲](本小题满分10分)设,实数满足,求证:.【答案】.【解析】,,又. 10分【考点】本题主要考查绝对值不等式的证明,绝对值不等式的性质。
十年(2012-2021)高考数学真题分项汇编(全国通用)-专题16 选修4-5不等式选讲(学生版)

专题16 选修4-5不等式选讲【2021年】1.(2021年全国高考乙卷数学(文)试题)已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.2.(2021年全国高考甲卷数学(理)试题)已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像;(2)若()()f x a g x +≥,求a 的取值范围.3.(2021年全国新高考Ⅰ卷数学试题)已知函数()()1ln f x x x =-.(1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<.【2012年——2020年】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知函数()|31|2|1|f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集.2.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.3.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .4.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知a ,b ,c 为正数,且满足abc =1.证明:(1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.5.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.6.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-. 7.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))已知()11f x x ax =+--. (1)当1a =时,求不等式()1f x >的解集;(2)若()0,1x ∈时不等式()f x x >成立,求a 的取值范围.8.(2018年全国普通高等学校招生统一考试理数(全国卷II ))设函数()52f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集;(2)若()1f x ≤恒成立,求a 的取值范围.9.(2018年全国卷Ⅰ理数高考试题)设函数()211f x x x =++-.(1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b ≤+,求+a b 的最小值.10.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围.11.(2017年全国普通高等学校招生统一考试理科数学(新课标2卷))已知0a >,0b >,332a b +=,证明:(1)()()554a b a b ++≥;(2)2a b +≤.12.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))已知函数()f x =│x +1│–│x –2│. (1)求不等式()f x ≥1的解集;(2)若不等式()f x ≥x 2–x +m 的解集非空,求实数m 的取值范围.13.(2016年全国普通高等学校招生统一考试文科数学(新课标1卷))(2016高考新课标Ⅰ,理24)选修4-5:不等式选讲已知函数f (x )=|x +1|−|2x −3|.(Ⅰ)画出y =f (x )的图象;(Ⅰ)求不等式|f (x )|>1的解集.14.(2016年全国普通高等学校招生统一考试文科数学(新课标2卷))选修4-5:不等式选讲已知函数11()22f x x x =-++,M 为不等式()2f x <的解集. (Ⅰ)求M ; (Ⅰ)证明:当a ,b M ∈时,1a b ab +<+.15.(2016年全国普通高等学校招生统一考试)已知函数()|2|f x x a a =-+.(1)当a=2时,求不等式()6f x ≤的解集;(2)设函数()|21|g x x =-.当x ∈R 时,()()3f x g x +≥,求a 的取值范围.16.(2015年全国普通高等学校招生统一考试理科数学(新课标))已知函数()|1|2||,0f x x x a a =+-->.(1)当1a =时,求不等式()1f x >的解集;(2)若()f x 的图象与x 轴围成的三角形面积大于6,求a 的取值范围.17.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))选修4-5不等式选讲设a b c d ,,,均为正数,且a b c d +=+,证明:(Ⅰ)若ab cd >>;(Ⅰ>是a b c d -<-的充要条件.18.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))若且 (I )求的最小值; (II )是否存在,使得?并说明理由.19.(2014年全国普通高等学校招生统一考试文科数学(全国Ⅰ卷))设函数1()|(0)f x x x a a a=++- (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.20.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷))选修4—5:不等式选讲 已知函数f (x )=|2x -1|+|2x +a|,g (x )=x +3.(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当xⅠ1,22a ⎛⎫-⎪⎝⎭时,f (x )≤g (x ),求a 的取值范围.21.(2013年全国普通高等学校招生统一考试文科数学(新课标2卷))设a ,b ,c 均为正数,且a+b+c=1,证明:(Ⅰ)ab+bc+ac ≤13; (Ⅰ)2221a b c b c a++≥.22.(2012年全国普通高等学校招生统一考试文科数学(课标卷))已知函数()f x =2x a x ++-. (Ⅰ)当3a =-时,求不等式()f x ≥3的解集;(Ⅰ) 若()f x ≤4x -的解集包含[1,2],求a 的取值范围.(命题意图)本题主要考查含绝对值不等式的解法,是简单题.。
2016年-2017年普通高等学校招生全国统一考试数学文试题(全国卷2,参考版解析)

高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
2016年高考新课标Ⅱ卷文数试题参考解析一、 选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
1. 已知集合{123}A =,,,2{|9}B x x =<,则A B =I (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12},【答案】D【解析】由29x <得,33x -<<,所以{|33}B x x =-<<,所以{1,2}A B =I ,故选D. 2. 设复数z 满足i 3i z +=-,则z =(A )12i -+ (B )12i - (C )32i + (D )32i - 【答案】C【解析】由3z i i +=-得,32z i =-,故选C. 3. 函数=sin()y A x ωϕ+ 的部分图像如图所示,则(A )2sin(2)6y x π=-(B )2sin(2)3y x π=-(C )2sin(2+)6y x π=(D )2sin(2+)3y x π=【答案】A4. 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 (A )12π (B )323π (C )8π (D )4π 【答案】A【解析】因为正方体的体积为8,所以正方体的体对角线长为233,所以球面的表面积为243)12ππ⋅=,故选A.5. 设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k = (A )12 (B )1 (C )32(D )2【答案】D【解析】(1,0)F ,又因为曲线(0)ky k x=>与C 交于点P ,PF x ⊥轴,所以21k =,所以2k =,选D.6. 圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a =(A )−43 (B )−34(C )3 (D )2 【答案】A【解析】圆心为(1,4),半径2r =,所以2211a =+,解得43a =-,故选A.7. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π 【答案】C【解析】因为原几何体由同底面一个圆柱和一个圆锥构成,所以其表面积为28S π=,故选C.8. 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯 ,则至少需要等待15秒才出现绿灯的概率为 (A )710 (B )58 (C )38 (D )310【答案】B【解析】至少需要等待15秒才出现绿灯的概率为40155408-=,故选B. 9. 中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17 (D )34【答案】C【解析】第一次运算,a=2,s=2,n=2,k=1,不满足k>n; 第二次运算,a=2,s=2226⨯+=,k=2,不满足k>n; 第三次运算,a=5,s=62517⨯+=,k=3,满足k>n , 输出s=17,故选C .10. 下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是 (A )y =x (B )y =lg x (C )y =2x(D )y x=【答案】D 【解析】lg 10xy x ==,定义域与值域均为()0,+∞,只有D 满足,故选D .11. 函数π()cos 26cos()2f x x x =+-的最大值为 (A )4 (B )5(C )6(D )7【答案】B【解析】因为2311()2(sin )22f x x =--+,而sin [1,1]x ∈-,所以当sin 1x =时,取最大值5,选B.12. 已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数 y =|x 2-2x -3| 与 y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑(A)0 (B)m (C) 2m (D) 4m 【答案】B【解析】因为2(),y |23|y f x x x ==--都关于1x =对称,所以它们交点也关于1x =对称,当m 为偶数时,其和为22m m ⨯=,当m 为奇数时,其和为1212m m -⨯+=,因此选B. 二.填空题:共4小题,每小题5分.13. 已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________. 【答案】6-【解析】因为a ∥b ,所以2430m --⨯=,解得6m =-.14. 若x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则z =x -2y 的最小值为__________.【答案】5-15. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a =1,则b =____________. 【答案】2113【解析】因为45cos ,cos 513A C ==,且,A C 为三角形内角,所以312sin ,sin 513A C ==,13sin sin(C)sin cos cos sin 65B A AC A C =+=+=,又因为sin sin a b A B =,所以sin 21sin 13a Bb A ==.16. 有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________. 【答案】1和3【解析】由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2. 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)等差数列{n a }中,34574,6a a a a +=+= (I )求{n a }的通项公式;(II)设nb =[na ],求数列{nb }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2【试题分析】(I )先设{}n a 的首项和公差,再利用已知条件可得1a 和d ,进而可得{}n a 的通项公式;(II )根据{}n b 的通项公式的特点,采用分组求和法,即可得数列{}n b 的前10项和.18. (本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I )记A 为事件:“一续保人本年度的保费不高于基本保费”。
高三数学不等式选讲试题

高三数学不等式选讲试题1.已知函数.(Ⅰ)解不等式: ;(Ⅱ)当时, 不等式恒成立,求实数a的取值范围.【答案】(1);(2).【解析】本题主要考查绝对值不等式的解法、不等式的性质等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,由于,可以转化为,所以分3种情况,,进行讨论去掉绝对值符号解不等式;第二问,,所以利用不等式的性质得到最大值代入上式,解不等式,得到a的取值范围.试题解析:(Ⅰ)原不等式等价于:当时, ,即;当时, ,即;当时, ,即.综上所述,原不等式的解集为. (5分)(Ⅱ)当时,=所以(10分)【考点】绝对值不等式的解法、不等式的性质.2.不等式的解集是【答案】【解析】原不等式可化为,解得.考点:绝对值不等式解法3.若不等式|x-a|-|x|<2-a2对x∈R恒成立,则实数a的取值范围是。
【答案】【解析】,所以原式恒成立,即,即,解得【考点】不等式恒成立问题4.对于,当非零实数a,b满足,且使最大时,的最小值为 .【答案】【解析】法一:判别式法:令,则,代入到中,得,即……①因为关于的二次方程①有实根,所以,可得,取最大值时,或,当时,,当时,,综上可知当时,法二:柯西不等式:由可得:,当且仅当时取等号,即时,取等号,这时或当时,,当时,,综上可知当时,【考点】柯西不等式.5.(5分)(2011•陕西)(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若不等式|x+1|+|x﹣2|≥a对任意x∈R恒成立,则a的取值范围是.B.(几何证明选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE= .C.(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1:(θ为参数)和曲线C2:p=1上,则|AB|的最小值为.【答案】(﹣∞,3] 2 1【解析】A.首先分析题目已知不等式|x+1|+|x﹣2|≥a恒成立,求a的取值范围,即需要a小于等于|x+1|+|x﹣2|的最小值即可.对于求|x+1|+|x﹣2|的最小值,可以分析它几何意义:在数轴上点x 到点﹣1的距离加上点x到点2的距离.分析得当x在﹣1和2之间的时候,取最小值,即可得到答案;B.先证明Rt△ABE∽Rt△ADC,然后根据相似建立等式关系,求出所求即可;C.先根据ρ2=x2+y2,sin2+cos2θ=1将极坐标方程和参数方程化成直角坐标方程,根据当两点连线经过两圆心时|AB|的最小,从而最小值为两圆心距离减去两半径.解:A.已知不等式|x+1|+|x﹣2|≥a恒成立,即需要a小于等于|x+1|+|x﹣2|的最小值即可.故设函数y=|x+1|+|x﹣2|.设﹣1、2、x在数轴上所对应的点分别是A、B、P.则函数y=|x+1|+|x﹣2|的含义是P到A的距离与P到B的距离的和.可以分析到当P在A和B的中间的时候,距离和为线段AB的长度,此时最小.即:y=|x+1|+|x﹣2|=|PA|+|PB|≥|AB|=3.即|x+1|+|x﹣2|的最小值为3.即:k≤3.故答案为:(﹣∞,3].B.∵∠B=∠D,AE⊥BC,∠ACD=90°∴Rt△ABE∽Rt△ADC而AB=6,AC=4,AD=12,根据AD•AE=AB•AC解得:AE=2,故答案为:2C.消去参数θ得,(x﹣3)2+y2=1而p=1,则直角坐标方程为x2+y2=1,点A在圆(x﹣3)2+y2=1上,点B在圆x2+y2=1上则|AB|的最小值为1.故答案为:1点评:A题主要考查不等式恒成立的问题,其中涉及到绝对值不等式求最值的问题,对于y=|x﹣a|+|x﹣b|类型的函数可以用分析几何意义的方法求最值.本题还考查了三角形相似和圆的参数方程等有关知识,同时考查了转化与划归的思想,属于基础题.6.不等式的解集为 .【答案】.【解析】解不等式,得,解得,故不等式的解集为.【考点】绝对值不等式的求解7.已知函数.(1)解不等式:;(2)当时,不等式恒成立,求实数的取值范围.【答案】(1);(2)【解析】(1)由函数,及解不等式,通过将x的区间分为3类可解得结论.(2)由当时,不等式恒成立,令函数.所以原题等价于,由.通过绝对值不等式的公式即可得到函数的最大值,再通过解绝对值不等式可得结论.(1)原不等式等价于:当时,,即.当时,,即当时,,即.综上所述,原不等式的解集为. 4分(2)当时,=所以 7分【考点】1.绝对值不等式.2.恒成立问题.3.分类的数学思想.8.阅读:已知、,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数、、,,求证:.【答案】(1)9;(2)18;(3)证明见解析.【解析】本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出.(1), 2分而,当且仅当时取到等号,则,即的最小值为. 5分(2), 7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分【考点】阅读材料问题,“1”的代换,基本不等式.9.(2012•广东)不等式|x+2|﹣|x|≤1的解集为_________.【答案】【解析】∵|x+2|﹣|x|=∴x≥0时,不等式|x+2|﹣|x|≤1无解;当﹣2<x<0时,由2x+2≤1解得x≤,即有﹣2<x≤;当x≤﹣2,不等式|x+2|﹣|x|≤1恒成立,综上知不等式|x+2|﹣|x|≤1的解集为故答案为10.已知函数f(x)=|x-a|,其中a>1.(1)当a=2时,求不等式f(x)≥4-|x-4|的解集;(2)已知关于x的不等式|f(2x+a)-2f(x)|≤2的解集为{x|1≤x≤2},求a的值.【答案】(1){x|x≤1或x≥5}.(2)3【解析】(1)当a=2时, f(x)+|x-4|=当x≤2时,由f(x)≥4-|x-4|得-2x+6≥4,解得x≤1;当2<x<4时, f(x)≥4-|x-4|无解;当x≥4时,由f(x)≥4-|x-4|得2x-6≥4,解得x≥5;所以f(x)≥4-|x-4|的解集为{x|x≤1或x≥5}.(2)记h(x)=f(2x+a)-2f(x),则h(x)=由|h(x)|≤2,解得≤x≤又已知|h(x)|≤2的解集为{x|1≤x≤2}.所以=1且=2于是a=3.11.设a>1>b>-1,则下列不等式中恒成立的是()A.<B.>C.a>b2D.a2>2b【答案】C【解析】选C.令a=2,b=-,验证可得选项A不正确,令a=2,b=,则B不正确,若a=1.1,b=0.9,则D 不正确,对选项C,由-1<b<1得:0≤b2<1,又a>1,故b2<a,故C项正确.12.已知a,b,c为三角形的三边长,则a2与ab+ac的大小关系是.【答案】a2<ab+ac【解析】因为a,b,c为三角形的三边长,所以a<b+c,又因为a>0,所以a2<a(b+c),即a2<ab+ac.13.设x,y∈R,且x+y=5,则3x+3y的最小值为()A.10B.6C.4D.18【答案】D【解析】选D.3x+3y≥2=2=2=18,当且仅当x=y=2.5时,等号成立.14.已知点P(x,y)在经过A(3,0),B(1,1)两点的直线上,那么2x+4y的最小值为()A.2B.4C.16D.不存在【答案】B【解析】选B.过A,B两点的直线方程为y=-(x-3),所以x=3-2y,所以2x+4y=+4y≥4,当且仅当=4y时,等号成立.,x,y为变量,a,b为常数,且a+b=10,+=1,x+y的最小值为18,求a,b.15.已知a,b,x,y∈R+【答案】或【解析】因为x+y=(x+y)=a+b++≥a+b+2=(+)2,=(+)2=18,当且仅当=时取等号.又(x+y)min即a+b+2=18,①又a+b=10,②由①②可得或16.若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是.【答案】(-∞,-3]∪[3,+∞)【解析】因为f (x)=|x+1|+|x-2|=所以f(x)≥3,要使|a|≥|x+1|+|x-2|有解,故|a|≥3,即a≤-3或a≥3.17.已知a、b、m、n均为正数,且a+b=1,mn=2,求(am+bn)(bm+an)的最小值.【答案】2【解析】利用柯西不等式求解,(am+bn)(an+bm)≥()2=mn·(a+b)2=2·1=2,且仅当即m=n时取最小值2.18.已知x,y,z∈R+,且x+y+z=1(1)若2x2+3y2+6z2=1,求x,y,z的值.(2)若2x2+3y2+tz2≥1恒成立,求正数t的取值范围.【答案】(1)x=,y=,z=(2)t≥6【解析】(1)∵(2x2+3y2+6z2)()≥(x+y+z)2=1,当且仅当时取“=”.∴2x=3y=6z,又∵x+y+z=1,∴x=,y=,z=.=.(2)∵(2x2+3y2+tz2)≥(x+y+z)2=1,∴(2x2+3y2+tz2)min∵2x2+3y2+tz2≥1恒成立,∴≥1.∴t≥6.19.若对恒成立,则实数的取值范围是___________.【答案】【解析】当为偶数时,,而;当为奇数时,,而.所以的取值范围是.【考点】不等式.20.若关于x的不等式的解集为(-1,4),则实数a的值为_________.【答案】【解析】由已知得,,,当时,不等式解集为,故,无解;当时,不等式解集为,故,解得.【考点】绝对值不等式解法.21.已知函数,m∈R,且的解集为.(1)求的值;(2)若,且,求的最小值.+【答案】(1).(2)的最小值为9.【解析】(1)由已知,得到所以根据的解集是,得到.(2)由(1)知,,由柯西不等式即得所求.试题解析:(1)因为,所以.所以又的解集是,故. 5分(2)由(1)知,,由柯西不等式得∴的最小值为9 10分【考点】绝对值不等式解法,柯西不等式.22.已知a,b,c,d均为正实数,且a+b+c+d=1,求证:+++≥.【答案】见解析【解析】证明:因为[(1+a)+(1+b)+(1+c)+(1+d)]·(+++)≥(·+·+·+·)2=(a+b+c+d)2=1,当且仅当===即a=b=c=d=时取等号.又(1+a)+(1+b)+(1+c)+(1+d)=4+(a+b+c+d)=5,所以5(+++)≥1.所以+++≥.23.设不等式|x-2|<a(a∈N*)的解集为A,且∈A,∉A.(1)求a的值;(2)求函数f(x)=|x+a|+|x-2|的最小值.【答案】(1)a=1(2)3.【解析】(1)因为∈A,且∉A,所以<a,且≥a,解得<a≤.又因为a∈N*,所以a=1.(2)因为|x+1|+|x-2|≥|(x+1)-(x-2)|=3,当且仅当(x+1)(x-2)≤0,即-1≤x≤2时取到等号,所以f(x)的最小值为3.24. (1)设x≥1,y≥1,证明x+y+≤++xy;(2)1<a≤b≤c,证明loga b+logbc+logca≤logba+logcb+logac.【答案】(1)见解析(2)见解析【解析】(1)由于x≥1,y≥1,要证x+y+≤++xy,只需证xy(x+y)+1≤y+x+(xy)2.因为[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy+1)(xy-1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1).由条件x≥1,y≥1,得(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立.(2)设loga b=x,logbc=y,由对数的换底公式得logca=,logba=,logcb=,logac=xy.于是,所要证明的不等式即为x+y+≤++xy.其中x=loga b≥1,y=logbc≥1.故由(1)可知所要证明的不等式成立.25.已知函数f(x)=|2x-a|+a.若不等式f(x)≤6的解集为{x|-2≤x≤3},则实数a的值为________.【答案】a=1【解析】由|2x-a|+a≤6得,|2x-a|≤6-a,∴a-6≤2x-a≤6-a,即a-3≤x≤3,∴a-3=-2,∴a=1.26.若正数x,y满足x+3y=5xy,则3x+4y的最小值是().A.B.C.5D.6【答案】C【解析】∵x>0,y>0,由x+3y=5xy,得=5.∴5(3x+4y)=(3x+4y) =13+≥13+2=25.因此3x+4y≥5,当且仅当x=2y时等号成立.∴当x=1,y=时,3x+4y的最小值为5.27.设实数均不小于1,且,则的最小值是.(是指四个数中最大的一个)【答案】9【解析】设,则,当时上式两等号都能取到,所以的最小值为9.【考点】多元函数最值的求法.28.已知(x+1)n=a0+a1(x﹣1)+a2(x﹣1)+a3(x﹣1)3+…+an(x﹣1)n,(其中n∈N*)(1)求a及;(2)试比较Sn与(n﹣2)2n+2n2的大小,并说明理由.【答案】(1)Sn=3n﹣2n(2)当n=1时,3n>(n﹣1)2n+2n2;当n=2,3时,3n<(n﹣1)2n+2n2;当n≥4,n∈N*时,3n>(n﹣1)2n+2n2【解析】(1)令x=1,则a=2n,令x=2,则,∴Sn=3n﹣2n;(3分)(2)要比较Sn与(n﹣2)2n+2n2的大小,即比较:3n与(n﹣1)2n+2n2的大小,当n=1时,3n>(n﹣1)2n+2n2;当n=2,3时,3n<(n﹣1)2n+2n2;当n=4,5时,3n>(n﹣1)2n+2n2;(5分)猜想:当n≥4时n≥4时,3n>(n﹣1)2n+2n2,下面用数学归纳法证明:由上述过程可知,n=4n=4时结论成立,假设当n=k(k≥4)n=k,(k≥4)时结论成立,即3n>(n﹣1)2n+2n2,两边同乘以3 得:3k+1>3[(k﹣1)2k+2k2]=k2k+1+2(k+1)2+[(k﹣3)2k+4k2﹣4k﹣2]而(k﹣3)2k+4k2﹣4k﹣2=(k﹣3)2k+4(k2﹣k﹣2)+6=(k﹣2)2k+4(k﹣2)(k+1)+6>0∴3k+1>[(k+1)﹣1]2k+1+2(k+1)2即n=k+1时结论也成立,∴当n≥4时,3n>(n﹣1)2n+2n2成立.综上得,当n=1时,3n>(n﹣1)2n+2n2;当n=2,3时,3n<(n﹣1)2n+2n2;当n≥4,n∈N*时,3n>(n﹣1)2n+2n2﹣﹣(10分)【考点】用数学归纳法证明不等式;数列的求和;二项式定理的应用点评:本题是中档题,考查与n有关的命题,通过赋值法解答固定项,前n项和,以及数学归纳法的应用,考查逻辑推理能力,计算能力,常考题型29.选修4—5:不等式选讲已知函数(1)若不等式的解集为,求实数a,m的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有关函数通性的试题选讲
【内容综述】
函数是数学上的一个基本而又重要的概念,在现代数学中,它几乎渗透到各个分支中。
函数的性质主要指函数的对称性、单调性和周期性。
函数图象的对称性反映了函数图象的局部与整体的关系,恰当地运用函数的对称性,往往可使问题简化。
函数的奇偶性是对称性中最重要的特殊情形。
函数的单调性可用函数值的比较给出证明,利用函数的单调性,可以比较实数的大小,证明一些不等式和确定某些函数的值域及最值。
设f是D上的函数,如果存在常数T≠0,使得对每个x∈D,都有f(x+T)=f(x-T)=f(x)成立,则称f(x)为周期函数,T为f(x)的一个周期,如果f(x)的所有正周期中存在最
小值,称为周期函数f(x)的最小正周期,一般说函数的周期都是指最小正周期。
例题分析:
例1 已知函数y=f(x)(x∈R,且x≠0),对任意非零实数都有
,试判定f(x)的奇偶性。
分析:欲判别f(x)的奇偶性,即找出f(-x)与f(x)之间的关系,可令
,为此必求出f(-1),而求f(-1),又可令,,为此又必先求出f(1),而f(1)不难求得。
解令,则f(1)=2f(1),所以f(1)=0。
令,,则f(1)=f(-1)+f(-1),所以f(-1)=0。
于是,在已知等式中,以-1,x分别代替,则f(-x)=f(-1)+f(x),即
f(-x)=f(x),故f(x)为偶函数。
说明在以抽象的函数等为条件的问题中,常常先考虑x取0,-1,1等的特殊值,再利用f(0),f(±1)的值来研究函数f(x)的性质。
例2 设a是大于0的实数,f(x)是定义在全体实数R上的一个实函数,并且对每一实数x满足条件:
1.试证明:函数f(x)是周期函数,也就是,存在一个实数b>0,使得对每一x 都有f(x+b)=f(x)。
2.就a=1举出一个这种函数f(x)的例子,但f(x)不能是常数。
分析这是一道探索存在性的问题,题中给出的已知条件只有唯一的一个含有a 的方程,直觉告诉我们,f(x)的周期定与a有关,于是,我们可从原方程出发,边递推边探索。
解1,由①
有
②
将②代入①
但
故f(x+a)=f(x-a)
即f(x)是一个周期函数,且周期b=2a。
2.现在我们来构造一个周期为2的,满足(1)式的函数f(x),由于(1)式可化为
这使我们想到最熟悉的周期函数:正余弦,但同时应注意到2f(x)-1非负、周期
为2,所以可令
即
不难证实它的确满足条件。
说明 f(x)不唯一,显然,函数也是满足条件的一个函数。
例3 证明:函数可以表示为两个单调递增的多项式函数之差。
证:注意到恒等式
而函数都是单调递增的多项式函数,从而命题得证。
说明一般地,任意实系数多项式可表示为两个单调递增的多项式函数之差。
例4 设二次函数的图象以y轴为对称轴,已知,
而且若点在的图象上,则点在函数的图象上。
(1)求的解析式
(2)设,问是否存在实数,使内是减
函数,在内是增函数。
分析由已知条件的解析式不难求得,欲求,可按定义分别求出
内分别是减函数,增函数的的范围,求出它们的交即可。
解(1)因的对称轴为y轴,故,从而。
设在的图象上,即,则点在
的图象上,即。
故,因此,。
(2)由(1)可得。
设,则
要使在内为减函数,只需,但,
故只要,所以。
然而当时,,因此,我们只要,在
,内是减函数。
同理,当时,内是增函数。
综上讨论,存在唯一的实数,使得对应的满足要求。
例5 奇函数的定义域为R,当时,,设函数
的值域为,,求a,b的值。
分析可先由已知条件写出在R上的解析式,再根据二次函数的单调性分情
形讨论的最大值和最小值,从而得到关于a、b的方程。
解:是奇函数
时,函数式为
因为与同时存在,
所以
同号
分以下情形讨论:
(1)时,由
(2)时,由
(3)时,由
无解
(5)时,由
矛盾
(6),由
与矛盾。
综上分析
说明本题源自第四届“希望杯”第二试解答题,重在考查学生的分类讨论问题能力和运用函数性质的解题能力。
例6 函数的定义域关于原点对称,但不包括数0,对定义域中的任意实数x,
在定义域中存在使,,且满足以下3个条件。
(1)定义域中的数,,或,则。
(2),(a是一个正常数)
(3)当0<x<2a时,f(x)>0。
证明(i)f(x)是奇函数;(ii)f(x)是周期函数,并求出其周期;(iii)f(x)在(0,4a)内为减函数。
证:(i)对定义域中的x,由题设知在定义域中存在使,
,则
∴f(x)为奇函数
(ii)因f(a)=1,∴f(-a)=-f(a)=-1,于是
若f(x)≠0,则
若f(x)=0,则
仍有 f(x+4a)=f(x)。
∴f(x)为周期函数,4a是它的一个周期。
(iii)先证在(0,2a)内f(x)为减函数,事实上,设,则
,则(当)。
所以
当时,
,于是
即在(2a,4a)内,f(x)也是减函数,从而命题得证。