023空间几何体体积作业纸1
高中数学第一章空间几何体1.3.2球的体积和表面积课时作业新人教A版必修20222522

1.3.2 球的体积和表面积【选题明细表】1.两个球的表面积之差为48π,它们的大圆周长之和为12π,这两个球的半径之差为( C )(A)4 (B)3 (C)2 (D)1解析:令S球1=4πR2,S球2=4πr2,由题可知4πR2-4πr2=48π, ①又2πR+2πr=12π, ②得R-r=2.2.长方体ABCD-A1B1C1D1的八个顶点落在球O的表面上,已知AB=3, AD=4,BB1=5,那么球O的表面积为( D )(A)25π (B)200π(C)100π(D)50π解析:由长方体的体对角线为外接球的直径,设球半径为r,则2r==5,则r=,4πr2=4×()2π=50π.3.(2018·湖南师大附中高一测试)某几何体的三视图如图所示,它的体积为( C )(A)72π (B)48π (C)30π (D)24π解析:由三视图可知,该几何体的上方是一个以3为半径的半球,下方是以3为底面半径,以5为母线长的圆锥,所以其体积V=×π×33+×π×32×=18π+12π=30π.4.若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为S1、S2,则S1∶S2等于( C )(A)1∶1 (B)2∶1 (C)3∶2 (D)4∶1解析:由题意可得圆柱的底面直径和高都与球的直径相等,设球的半径为1,则S1=6π,S2=4π.所以S1∶S2=3∶2,故选C.5.将一钢球放入底面半径为 3 cm的圆柱形玻璃容器中,水面升高 4 cm,则钢球的半径是.解析:圆柱形玻璃容器中水面升高了4 cm,则钢球的体积为V=π×32×4=36π,即有πR3=36π,所以R=3.答案:3 cm6.(2018·黑龙江伊春高一测试)边长为4的正方形ABCD的四个顶点在半径为5的球O的表面上,则四棱锥O-ABCD的体积是.解析:因为ABCD外接圆的半径r==4,又因为球的半径为5,所以球心O到平面ABCD的距离d==3,所以=×(4)2×3=32.答案:327.如图所示(单位:cm)四边形ABCD是直角梯形,求图中阴影部分绕AB旋转一周所成几何体的表面积和体积.解:S球=×4π×22=8π(cm2),S圆台侧=π(2+5)=35π(cm2),S圆台下底=π×52=25π(cm2),即该几何体的表面积为8π+35π+25π=68π(cm2).又V圆台=×(22+2×5+52)×4=52π(cm3),V半球=××23=(cm3).所以该几何体的体积为V圆台-V半球=52π-=(cm3).能力提升8.如果一个球的外切圆锥的高是这个球的半径的3倍,则圆锥的侧面面积和球的表面积之比为( C )(A)4∶3 (B)3∶1 (C)3∶2 (D)9∶4解析:作轴截面如图,则PO=2OD,∠CPB=30°,CB=PC=r,PB=2r,圆锥侧面积S1=6πr2,球的面积S2=4πr2,S1∶S2=3∶2.故选C.9.圆柱形容器内盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图),则球的半径是( D )(A) cm(B)2 cm(C)3 cm(D)4 cm解析:设球的半径为r,则V水=8πr2,V球=4πr3,加入小球后,液面高度为6r,所以πr2·6r=8πr2+4πr3,解得r=4.故选D.10.(2018·陕西咸阳二模)已知一个三棱锥的所有棱长均为,求该三棱锥的内切球的体积.解:如图,AE⊥平面BCD,设O为正四面体A-BCD内切球的球心,则OE为内切球的半径,设OA=OB=R,又正四面体A BCD的棱长为,在等边△BCD中,BE=,所以AE==.由OB2=OE2+BE2,得R2=(-R)2+,解得R=,所以OE=AE-R=,即内切球的半径是,所以内切球的体积为π×()3=π.探究创新11.将半径都为1的4个钢球完全装入形状为正四面体(四面体的每个面都是正三角形)的容器里,求这个正四面体的高的最小值.名师点拨:四个小球在正四面体内一定是两两相切的,球心连起来构成一个正四面体.解:由题意,如图所示,在正四面体S-ABC的底面上放三个钢球,上面再放一个钢球时,正四面体的高最小.且连接小钢球的球心又得到一个棱长为2的小正四面体M-NEF,且两个正四面体的中心重合于点O,取△NEF的中心O1,连接NO1,则NO1=,MO1==.由正四面体的性质知其中心O与O1的距离OO1=MO1=.从而OO2=OO1+1=+1.故正四面体的高的最小值为4OO2=+4.精美句子1、善思则能“从无字句处读书”。
高中数学第1章立体几何初步1.3空间几何体的表面积与体积1.3.1空间几何体的表面积课时作业苏教版

2018-2019学年高中数学第1章立体几何初步1.3 空间几何体的表面积与体积1.3.1 空间几何体的表面积课时作业苏教版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第1章立体几何初步1.3 空间几何体的表面积与体积1.3.1 空间几何体的表面积课时作业苏教版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第1章立体几何初步1.3 空间几何体的表面积与体积1.3.1 空间几何体的表面积课时作业苏教版必修2的全部内容。
1。
3.1 空间几何体的表面积[学业水平训练]1.(课本改编题)棱长都是1的三棱锥的表面积为________.解析:棱长都相等的三棱锥四个面均为等边三角形,也叫正四面体.故棱长都是1的三棱锥的表面积为4×错误!=错误!。
答案:32.给出下列命题:①用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③若有两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体;⑤棱台的侧棱延长后交于一点.其中正确命题的序号是________.解析:①错误,必须用平行于底面的平面去截棱锥,才能得到棱台;②正确,因为三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如正方体ABCD-A1B1C1D1中的三棱锥C1-ABC,四个面都是直角三角形;⑤正确,由棱台的概念可知.因此,正确命题的序号是②③④⑤。
高一数学寒假作业第03天空间几何体的表面积与体积新人教A版(2021学年)

2017-2018学年高一数学寒假作业第03天空间几何体的表面积与体积新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高一数学寒假作业第03天空间几何体的表面积与体积新人教A版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高一数学寒假作业第03天空间几何体的表面积与体积新人教A版的全部内容。
第03天空间几何体的表面积与体积高考频度:★★★☆☆难易程度:★★☆☆☆典例在线已知某几何体的三视图如图所示,则该几何体的表面积等于A.4π+28 ﻩﻩﻩﻩ B.4π+24ﻩﻩC.5π+30ﻩﻩﻩﻩﻩﻩﻩD.5π+20【参考答案】A【试题解析】由三视图可知该几何体是一个由半圆柱(左端)、正四棱柱(中间)以及半球(右端)所组成的组合体,其中半圆柱的底面半径r=1,高h1=2;正四棱柱的底面边长a=2,高h2=3;半球所在球的半径R=1.半圆柱的侧面积S1=12×2πrh1=πrh1=π×1×2=2π;半圆柱的两个底面面积之和S2=2×12πr2=π×12=π;正四棱柱的侧面积S3=4ah2=4×2×3=24;半球的表面积S4=12×4πR2=2πR2=2π×12=2π;正四棱柱的底面除去半球的底面部分的面积S5=a2-πR2=22-π×12=4—π.综上,该几何体的表面积S=S1+S2+S3+S4+S5=2π+π+24+2π+(4-π)=4π+28.【名师点睛】1.柱体(1)柱体的侧面展开图是矩形,解决其侧面积问题时,先求出相应的底面周长和高,再代入侧面积公式求解即可. (2)牢记公式:2S S S =+棱柱表面积棱柱侧面积棱柱底面面积,2π()S =r r l +圆柱表面积,()V =Sh S h 柱体为底面面积,为高. 2.锥体(1)求解棱锥的表面积和体积时,注意高、斜高、底面边心距所成的直角三角形的应用. (2)求解圆锥的表面积和体积时,注意扇形的有关知识和圆锥的轴截面是等腰三角形的应用. (3)求三棱锥的体积时,注意等积变换法的应用,即通过选择合适的底面来求几何体体积的一种方法.(4)牢记公式:S =S +S 棱锥表面积棱锥侧面积底面积,π()S =r r l +圆锥表面积,1()3V =Sh S h 锥体为底面面积,为高.3.台体(1)求解正棱台的表面积和体积时,注意两个直角梯形的应用:高、侧棱、上下底面外接圆半径所成的直角梯形和高、斜高、上下底面边心距所成的直角梯形.求解时,一般把基本量转化到这两个直角梯形中求解.(2)求解圆台的表面积和体积时,注意轴截面是等腰梯形的运用. (3)不管是棱台还是圆台,还台为锥是常用的解题思路.(4)牢记公式:S S +S +S =棱台表面积棱台侧面积上底面面积下底面面积,22)S r r r l rl ''=π+++圆台表面积(,1()(,)3V =S S h S S h ''台体分别为上、下底面面积,为高 .4.球体343V R =π球;24S R =π球.学霸推荐1.已知圆锥的高为5,底面圆的半径为5,它的顶点和底面的圆周都在同一个球的球面上,则该球的表面积为A .4πﻩﻩ ﻩB.36πﻩﻩC .48πﻩﻩﻩD .24π2.已知正方体的体积是64,则其外接球的表面积是A.323πﻩ B.192πﻩﻩ C.48π ﻩﻩﻩD .无法确定3.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πﻩ B.34πﻩﻩﻩ C.2πﻩﻩﻩﻩ D.4π3.【答案】B【解析】∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r =22131()22-=,∴该圆柱的体积:V =S h=233()124ππ⨯⨯=.故选B .以上就是本文的全部内容,可以编辑修改。
高中数学 第1章 立体几何初步 1.31.3.2 空间几何体的

1.3.2 空间几何体的体积A 组 基础巩固1.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,则三棱锥D 1-ACD 的体积是( )A.16 B.13 C.12D .1解析:三棱锥D 1-ADC 的体积V =13S △ADC ·D 1D =13×12×AD ·DC ·D 1D =13×12=16.答案:A2.某几何体的三视图如图所示,则该几何体的体积为( )A.5603 B.5803C .200D .240解析:先将三视图还原为空间几何体,再根据体积公式求解.由三视图知该几何体为直四棱柱,其底面为等腰梯形,上底长为2,下底长为8,高为4,故面积为S =(2+8)×42=20.又棱柱的高为10,所以体积V =Sh =20×10=200. 答案:C3.(2014·浙江卷)某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .72 cm 3B .90 cm 3C .108 cm 3D .138 cm 3解析:先根据三视图画出几何体,再利用体积公式求解.该几何体为一个组合体,左侧为三棱柱,右侧为长方体,如图所示.V =V 三棱柱+V 长方体=12×4×3×3+4×3×6=18+72=90(cm 3).答案:B4.已知直角三角形的两直角边长为a ,b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 2解析:以长为a 的直角边所在直线旋转得到圆锥体积V =13πb 2a ,以长为b 的直角边所在直线旋转得到的圆锥体积V =13πa 2b .所以13πb 2a ∶13πa 2b =b ∶a .答案:B5.设正方体的表面积为24,那么其外接球的体积是( ) A.43π B.8π3C .43πD .323π解析:由题意可知,6a 2=24,所以a =2. 设正方体外接球的半径为R ,则3a =2R ,所以R =3,所以V 球=43πR 3=43π.答案:C6.两个球的半径之比为1∶3,那么两个球的表面积之比为( ) A .1∶9 B .1∶27 C .1∶3D .1∶1解析:S 1S 2=4πr 214πr 22=⎝ ⎛⎭⎪⎫r 1r 22=⎝ ⎛⎭⎪⎫132=19.答案:A7.(2014·天津卷)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析:根据三视图知,该几何体上部是一个底面直径为4 m ,高为2 m 的圆锥,下部是一个底面直径为2 m ,高为4 m 的圆柱.故该几何体的体积V =13π·22×2+π·12×4=203π(m 3).答案:203π8.已知高为3的直棱柱ABC -A 1B 1C 1的底面是边长为1的正三角形(如图所示),则三棱锥B 1-ABC 的体积为________.解析:因为S △ABC =34×12=34,B 1到底面ABC 的距离即为三棱锥的高等于3, 所以VB 1-ABC =13S △ABC ·h =13×34×3=34.答案:349.圆锥的母线长为l ,高为12l ,则过圆锥顶点的最大截面面积为________.解析:易得圆锥底面半径为32l ,故轴截面的顶角为23π,从而过圆锥顶点的最大截面是顶角为π2的等腰直角三角形.答案:12l 2B 级 能力提升10.某几何体三视图如图所示,则该几何体的体积为( )A .8-2πB .8-πC .8-π2D .8-π4解析:这是一个正方体切掉两个14圆柱后得到的几何体,如图所示,几何体的高为2,V =23-14×π·12×2×2=8-π.答案:B11.若与球外切的圆台的上、下底面半径分别为r ,R ,则球的表面积为( ) A .4π(r +R )2B .4πr 2R 2C .4πRrD .π(R +r )2解析:如图所示,设球的半径为r 1,则在Rt △CDE 中,DE =2r 1,CE =R -r ,DC =R +r .由勾股定理得4r 21=(R +r )2-(R -r )2,解得r 1=Rr .故球的表面积为S 球=4πr 21=4πRr .答案:C12.如图所示,在上、下底面对应边的比为1∶2的三棱台中,过上底面一边A 1B 1作一个平行于对棱AB 的平面A 1B 1EF ,这个平面分三棱台成两部分的体积之比为________.解析:设棱台的高为h ,上底面积为S ,则下底面积为4S . 所以V 台=13h (S +4S +2S )=73Sh ,V 柱A 1B 1C 1-FEC =Sh .所以V 柱A 1B 1C 1FEC V 台-V 柱A 1B 1C 1FEC =Sh 73Sh -Sh=34.答案:3∶4或4∶313.把一个圆分为两个扇形,一个顶角为120°,另一个顶角为240°,把它们卷成两个圆锥,则两个圆锥的体积之比为________.解析:设圆的半径为R ,则第一个圆锥底面周长为C 1=2πR3,所以r 1=R 3.同理,C 2=4πR 3,所以r 2=2R3.又母线为R ,所以h 1=223R ,h 2=53R .所以V 1=13πr 12h 1=2281πR 3,V 2=13πr 22h 2=4581πR 3.故V 1∶V 2=1∶10. 答案:1∶1014.如图所示,在等腰三角形ABC 中,E ,F 分别为两腰AB ,AC 的中点,AD ⊥BC ,EH ⊥BC ,FG ⊥BC ,D ,H ,G 分别为垂足,若将三角形ABC 绕AD 旋转一周所得的圆锥的体积为V ,求其中由阴影部分所产生的旋转体的体积与V 的比值.解:由题意画出图形,如图所示,设圆锥的高为h ,底面半径为r ,则圆柱的高为h2,底面半径为r2.所以V -V 柱V =1-V 柱V= 1-π⎝ ⎛⎭⎪⎫r 22·h 213πr 2h =1-38=58.15.如图所示,在边长为23的正方形中,剪下了一个扇形和一个圆,以此扇形和圆分别作圆锥的侧面和底面,求所围成的圆锥的体积.解:设扇形半径为x ,圆的半径为r ,则扇形弧长等于圆的周长,即14×2x =2r ,所以x=4r .又AC =x +r +2r =232,所以r =2325+2=52-2.所以圆锥的高h =x 2-r 2=15r =15×(52-2).所以圆锥体积V =13πr 2·h =13π·(52-2)2×15×(52-2)=153×(52-2)3π.。
空间几何体的表面积和体积1(共82张1)PPT课件

S直棱柱侧= ch.(类比矩形的面积)
②圆柱:如果圆柱的底面半径为r,母线长为l,那么
S圆柱侧= 2πr.(l 类比矩形的面积)
把直三棱柱侧面沿一条侧棱展开,得到什么图形? 侧面积怎么求?
h
cb
a
h
h
a
bc
S 直 棱 = 拄 a ( 侧 bc)hch
r1
l
r2
扇环
S 圆= 台 S 扇 侧 = 环 ( r1 r2)l
精选PPT课件
24
S(r'2r2r'lrl)
r' x
r xl
x 2r'
r 'O’
2r
l
rxr'xr'l
rO
S 侧 r ( l x ) r 'x ( r l r x r 'x )
(r'l rl)
圆柱、圆锥、圆台三者的表面积公式之间有什么关系?
有什么关系?
扇形
R扇= l
l扇=
nl
180
l
r
S圆 精选P锥 P= T课S 件侧 扇 = n 3l6 20 11 2 8 l扇 lrl
2r
l
圆锥的侧面展开图是扇形
rO
S r2 r l r(r l)
(3)台体的侧面积
①正棱台:设正n棱台的上底面、棱台的侧面积公
别是3cm和6cm,高是3/2cm,求三棱台
的侧面积.
分析:关键是 求出斜高,注
A1 O1 C1 B1 D1 C
意图中的直角 梯形
A
O ED
B
精选PPT课件
28
北师大版必修二 空间几何体的三视图、表面积与体积 课时作业

空间几何体的三视图表面积与体积课时作业一、选择题1.下列结论正确的是(D)(A)各个面都是三角形的几何体是三棱锥(B)一平面截一棱锥得到一个棱锥和一个棱台(C)棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥(D)圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:如图所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥,故A错误;一平行于底面的平面截一棱锥才能得到一个棱锥和一个棱台,因此B错误;若六棱锥的所有棱长都相等,则底面多边形是正六边形.由过底面中心和顶点的截面知,若以正六边形为底面,侧棱长必然要大于底面边长,故C错误;根据圆锥母线的定义知,D正确.故选D.2.下列几何体中为棱柱的是(A)解析:A中几何体有两个面互相平行,其余各个面都是平行四边形,是棱柱.故选A.3.(2018·嘉兴模拟)某几何体的三视图如图(单位: m),则该几何体的体积是(A)(A)m3 (B)m3 (C)2 m3 (D)4 m3解析:由三视图可得:该几何体是一个以俯视图为底面的三棱锥,底面的底边长为2 m,底面的高,即为三视图的宽1 m,故底面面积S=×2×1=1 m2,棱锥的高即为三视图的高,故h=2 m,故棱锥的体积V=×1×2=m3,故选A.4.(2018·台州4月调研考试)某几何体的三视图如图所示,其中俯视图是半径为1的圆,则该几何体的体积是(A)(A)π(B)(C)(D)解析:该几何体下部是一个底面半径为1,高为2的圆锥,上部是半径为1的四分之一球体,所以体积V=×π×12×2+××π×13=+=π.故选A.5.长方体ABCD-A1B1C1D1的八个顶点落在球O的表面上,已AB=3,AD=4,BB1=5,那么球O的表面积为(D)(A)25π(B)200π (C)100π (D)50π解析:因为长方体ABCD-A1B1C1D1的八个顶点都在球面上,所以长方体的体对角线为外接球的直径,设半径为r,则长方体的体对角线长为=5,则2r=5,则r=,所以外接球的表面积为4πr2=50π.故选D.6.母线长为1的圆锥的侧面展开图的圆心角等于120°,则该圆锥的体积为(A)(A)π(B)π(C)π(D)π解析:因为母线长为1的圆锥的侧面展开图的圆心角等于120°,120°=,所以侧面展开图的弧长为1×=,弧长=底面周长=2πr,所以r=,所以圆锥的高h==,所以圆锥体积V=×π×r2×h=π.故选A.7.(2018·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是(C)(A)2 (B)4 (C)6 (D)8解析:由几何体的三视图可知,该几何体是一个底面为直角梯形,高为2的直四棱柱,所以V=2×[×(2+1)×2]=6.故选C.8.已知三棱锥O ABC的顶点A,B,C都在半径为3的球面上,O是球心,∠AOB=150°,当△AOC与△BOC的面积之和最大时,三棱锥O-ABC的体积为(D)(A)(B)(C)(D)解析:设球O的半径为R,由S△AOC+S△BOC=R2(sin∠AOC+sin∠BOC)知,当sin∠AOC=sin∠BOC=90°时,S△AOC+S△BOC取得最大值,此时OA⊥OC,OB⊥OC,所以OC⊥平面AOB,==R3sin∠AOB=.故选D.二、填空题9.已知一个几何体的三视图如图所示,则此几何体的表面积是,体积是.解析:三视图的直观图如图所示.由题知正方体的棱长为2,点M为棱A′D′的中点,所以AM=B′M=,AB′=2,在等腰三角形AB′M中,底边AB′边上的高为,该几何体的表面积S=2(S正方形ABCD+S△ABB′+S△ADM+S△AB′M)=2×(2×2+×2×2+×2×2+×2×)=16+2,体积V=-2=2×2×2-2×××1×2×2=8-=.答案:16+210. 如图所示,四边形ABCD的直观图四边形A′B′C′D′是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是.解析:根据斜二测画法可知,原图形为直角梯形,其中上底AD=1,高AB=2A′B′=2,下底为BC=1+,所以×2=2+.即原平面图形的面积是+2.答案:+211.(2018·湖州、衢州、丽水三市高三联考)某几何体的三视图如图所示(单位:cm),则此几何体的体积是cm3,表面积是cm2.解析:由三视图可得直观图如图,体积V=×1=3(cm3),表面积S=2×1+(2+1)×2××2+1×1+1×2+1×=2+6+1+2+=(11+)cm2.答案:311+12.已知一个正三棱柱的侧面积为18,且侧棱长为底面边长的2倍,则该正三棱柱的体积为.解析:设底面边长为a,则高为2a,侧面积为S侧=3×(a×2a)=6a2=18,所以a=,该三棱柱的体积为V=Sh=(×××sin 60°)×2=.答案:13.体积为8的正方体的顶点都在同一个球面上,则该球的体积为.解析:由题意得球的直径等于正方体的体对角线长,设正方体的边长为a,球的半径为R,即2R=a,而a3=8,所以R=.该球的体积为πR3=π()3=4π.答案:4π14.(2018·杭州二模)一个几何体的三视图如图所示,则该几何体的体积是,表面积是.解析:由三视图知,该几何体是由四分之一球与半个圆锥组合而成,则该组合体的体积为V=·π·23+·π×22·3=π,表面积为S=·4π·22+·π·22+·4·3+··2π·2·=6+(6+)π,从而问题可得解.答案:π6+(6+)π15.(2018·天津卷) 已知正方体ABCD-A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH的体积为.解析:依题意,易知四棱锥M EFGH是一个正四棱锥,且底面边长为,高为.故=×()2×=.答案:16. 三棱锥P-ABC满足:AB⊥AC,AB⊥AP,AB=2,AP+AC=4,则该三棱锥的体积V的取值范围是.解析:由于AB⊥AP,AB⊥AC,AC∩AP=A,所以AB⊥平面APC,V=S△APC·AB=S△APC,在△APC中,AP+AC=4,要使△APC面积最大,只需AP=AC,∠PAC=90°,AP·AC≤()2=4,所以S△APC的最大值为×4=2,V的最大值为,该三棱锥的体积V的取值范围是(0,].答案:(0,]三、解答题17. 一个多面体的直观图和三视图如下:(其中M,N分别是AF,BC中点)(1)求证:MN∥平面CDEF;(2)求多面体A-CDEF的体积.(1)证明:由三视图知,该多面体是底面为直角三角形的直三棱柱,且AB=BC=BF=2,DE=CF=2,所以∠CBF=90°.取BF中点G,连MG,NG,由M,N分别是AF,BC中点,可得:NG∥CF,MG∥EF,所以平面MNG∥平面CDEF,所以MN∥平面CDEF.(2)解:作AH⊥DE于H,由于三棱柱ADE BCF为直三棱柱,所以AH⊥平面CDEF,且AH=,所以=SCDEF·AH=×2×2×=.巩固提高B一、选择题1. 水平放置的△ABC,用斜二测画法作出的直观图是如图所示的△A′B′C′,其中O′A′=O′B′=2,O′C′=,则△ABC绕AB所在直线旋转一周后形成的几何体的表面积为(B)(A)8π(B)16π(C)(8+3)π (D)(16+12)π解析:根据斜二测画法可知,AB=4,OC=2,可知△ABC为等边三角形.△ABC绕AB所在直线旋转一周后形成的几何体是两个对着底的圆锥,其两个侧面积就是这个几何体的表面积,表面积为S=2×π×2×4=16π.故选B.2.(2018·全国Ⅲ卷) 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是(A)解析:由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.3.三棱锥P-ABC三条侧棱两两垂直,三个侧面面积分别为,,,则该三棱锥的外接球的表面积为(B)(A)4π(B)6π(C)8π(D)10π解析:三棱锥P-ABC的三条侧棱PA,PB,PC两两互相垂直,它的外接球就是它扩展为长方体的外接球,设PA=a,PB=b,PC=c,则ab=,bc=,ca=,所以①×②×③÷②2得=,即a2=2,所以a=,同理b=1,c=.则长方体的体对角线的长为=.所以球的直径是,半径长R=,则球的表面积S=4πR2=6π.故选B.4.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的侧面积为(C)(A)2 (B)4+2(C)4+4(D)4+6解析:由三视图知几何体为一三棱柱,底面为一等腰直角三角形,高为1,则底面三角形腰长为,底边长为2,三棱柱高为2,所以侧面积为2×2+2××2=4+4.故选C.5.如图是一个底面半径为1的圆柱被平面截开所得的几何体,截面与底面所成的角为45°,过圆柱的轴的平面截该几何体所得的四边形ABB′A′为矩形,若沿AA′将其侧面剪开,其侧面展开图形状大致为(A)解析:截面方程为x2+=1,截面在轴截面A′ABB′上的投影为圆x2+y2=1,沿AA′剪开,其展开图不可能是B,C,D.故选A.6.正方体ABCD-A1B1C1D1的棱长为1,点E,F分别是棱D1C1,B1C1的中点,过E,F作一平面α,使得平面α∥平面AB1D1,则平面α截正方体的表面所得平面图形为(D)(A)三角形(B)四边形(C)五边形(D)六边形解析:由题意,在正方体ABCD-A1B1C1D1中,E,F分别为棱D1C1,B1C1的中点,取BB1,AB,AD,DD1的中点G,H,M,N,可得正六边形EFGHMN,此时平面AB1D1∥平面EFGHMN.故选D.7.祖暅是南北朝时期的伟大科学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖出一个圆锥所得的几何体;图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为(D)(A)①②(B)①③(C)②④(D)①④解析:设截面与底面的距离为h,则①中截面内圆半径为h,则截面圆环的面积为π(R2-h2);②中截面圆的半径为R-h,则截面圆的面积为π(R-h)2;③中截面圆的半径为R-,则截面圆的面积为π(R-)2;④中截面圆的半径为,则截面圆的面积为π(R2-h2),所以①④中截面的面积相等.故选D.8.(2018·宁波5月模拟)已知x,y均为非负实数,且x+y≤1,则4x2+4y2+(1-x-y)2的取值范围为(A)(A) [,4](B)[1,4] (C)[2,4] (D)[2,9]解析:因为x,y≥0,所以≤x2+y2≤(x+y)2.令t=x+y,则0≤t≤1.4x2+4y2+(1-x-y)2≤4t2+(1-t)2=5t2-2t+1≤4.当xy=0且t=1,即x=0,y=1或x=1,y=0时取等号;另一方面,4x2+4y2+(1-x-y)2≥2t2+(1-t)2=3t2-2t+1≥.当x=y=时取等号.所以4x2+4y2+(1-x-y)2∈[,4].故选A.二、填空题9.(2018·温州模拟)如图,一个简单几何体三视图的正视图与侧视图,都是边长为1的正三角形,其俯视图的轮廓为正方形,则该几何体的体积是,表面积是.解析:由正视图和侧视图为等边三角形可得此几何体为锥体,由俯视图为四边形可得此几何体为四棱锥,因为正视图为边长为1的正三角形,所以正三角形的高,也就是棱锥的高为,俯视图的边长为1,所以正四棱锥的体积为V=×1×1×=,表面积为S=1+4××1×1=3.答案: 310.在四面体P-ABC中,PA=PB=PC=BC=1,则该四面体体积的最大值为.解析:由于平面PBC是边长为1的正三角形,=,底面面积固定,要使体积最大,只需高最大,故当PA⊥平面PBC时体积最大,V=××12×1=.答案:11.已知圆锥的母线长为5 cm,侧面积为15πcm2,则此圆锥的体积为cm3.解析:已知圆锥的母线长为5 cm,侧面积为15πcm2,所以圆锥的底面周长为6πcm,底面半径是3 cm,圆锥的高是4 cm,此圆锥的体积为×9π×4=12π(cm3). 答案:12π12.(2018·全国Ⅱ卷)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为5,则该圆锥的侧面积为.解析:如图,因为SA与底面成45°角,所以△SAO为等腰直角三角形.设OA=r,则SO=r,SA=SB=r.在△SAB中,cos∠ASB=,所以sin∠ASB=,所以S△SAB=SA·SB·sin∠ASB=(r)2·=5,解得r=2,所以SA=r=4,即母线长l=4,所以S圆锥侧=πr·l=π×2×4=40π.答案:40π13.有三个球,第一个球内切于正方体,第二个球与这个正方体的各条棱相切,第三个球过这个正方体的各个顶点.则这三个球的半径之比为.解析:设正方体的棱长为a,则正方体的内切球直径为a,则半径为.第二个球与正方体的各条棱相切,由截面知球直径为a,则半径为 a.正方体的外接球,过正方体的各个顶点,其直径为a,则半径为 a.可得三个球的半径之比为1∶∶.答案:1∶∶14.若圆锥的底面直径和高都与一个球的直径相等,圆锥、球的表面积分别记为S1,S2,则的值是. 解析:设球的直径为2R,由题意可知,S1=πR2+πR×=(+1)πR2,S2=4πR2,据此可得=.答案:15. 如图,在棱长为1的正方体ABCD A1B1C1D1中,点P是线段BD1上的动点.当△PAC在平面DC1,BC1,AC上的正投影都为三角形时,将它们的面积分别记为S1,S2,S3.(1)S1S2(填“>”“=”或“<”);(2)S1+S2+S3的最大值为.解析:如图,因=,=,故PO=QN,同理可得RM=PO,所以RM=QN,则S1=S2,特别地当点P与点D1重合时,三个投影面的面积都最大,都是,所以S1+S2+S3=,即最大值是.答案:=三、解答题16. 如图四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=,F是BC的中点.(1)求证:DA⊥平面PAC;(2)点G为线段PD的中点,证明CG∥平面PAF;(3)求三棱锥A-CDG的体积.(1)证明:因为四边形ABCD是平行四边形,∠ACB=∠DAC=90°,因为PA⊥平面ABCD,所以PA⊥DA,又AC⊥DA,AC∩PA=A,所以DA⊥平面PAC.(2)证明:PD的中点为G,在平面PAD内作GH⊥PA于H,则GH平行且等于AD,连接FH,则四边形FCGH为平行四边形,所以GC∥FH,因为FH⊂平面PAF,CG⊄平面PAF,所以CG∥平面PAF.(3)解:设S为AD的中点,连结GS,则GS平行且等于PA=,因为PA⊥平面ABCD,所以GS⊥平面ABCD,所以==S△ACDGS=.。
3空间几何体的表面积与体积含答案
1.3空间几何体的表面积与体积1图形2(1)柱体:柱体的底面面积为S,高为h,则V=______.(2)锥体:锥体的底面面积为S,高为h,则V=______.(3)台体:台体的上、下底面面积分别为S′、S,高为h,则V=13(S′+S′S+S)h.3.球的表面积设球的半径为R,则球的表面积S=_____,即球的表面积等于它的大圆面积的_____倍.4.球的体积设球的半径为R,则球的体积V=________.知识梳理1.πr22πrlπr2πrlπr(r+l)πr′2πr2π(r′+r)l π(r′2+r2+r′l+rl)2.(1)Sh(2)13Sh3.4πR244.43πR3一、选择题1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为() A.8 B.8πC.4πD.2π2.已知直角三角形的两直角边长为a、b,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为()A.a∶b B.b∶a C.a2∶b2D.b2∶a23.几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积和体积分别为() A.24π cm2 12πcm3B.15π cm2 12πcm3C .24π cm 2 36πcm 3D .以上都不正确 4.三视图如图所示的几何体的全面积是( )A .7+ 2B .112+ 2C .7+ 3D .325.一个正方体与一个球表面积相等,那么它们的体积比是( )A .6π6B .π2C .2π2D .3ππ6.把球的表面积扩大到原来的2倍,那么体积扩大到原来的( )A .2倍B .22倍C .2倍D .32倍 二、填空题 7.圆柱的侧面展开图是长12 cm ,宽8 cm 的矩形,则这个圆柱的体积为____________ cm 3. 8.将一钢球放入底面半径为3 cm 的圆柱形玻璃容器中,水面升高4 cm ,则钢球的半径是________.9.(1)表面积相等的正方体和球中,体积较大的几何体是________;(2)体积相等的正方体和球中,表面积较小的几何体是________. 三、解答题10.圆台的上、下底面半径分别为10 cm 和20 cm .它的侧面展开图扇环的圆心角为180°,那么圆台的表面积和体积分别是多少?(结果中保留π)11.已知正四棱台(上、下底是正方形,上底面的中心在下底面的投影是下底面中心)上底面边长为6,高和下底面边长都是12,求它的侧面积.作业设计1.B [易知2πr =4,则2r =4π,所以轴截面面积=4π×2=8π.]2.B [以长为a 的直角边所在直线旋转得到圆锥体积V =13πb 2a ,以长为b 的直角边所在直线旋转得到圆锥体积V =13πa 2b .]3.A [该几何体是底面半径为3,母线长为5的圆锥,易得高为4,表面积和体积分别为24π cm 2,12π cm 3.]4.A [图中的几何体可看成是一个底面为直角梯形的直棱柱.直角梯形的上底为1,下底为2,高为1,棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,2,表面积S 表面=2S 底+S 侧面=12(1+2)×1×2+(1+1+2+2)×1=7+2.]5.A [先由面积相等得到棱长a 和半径r 的关系a =6π3r ,再由体积公式求得体积比为6π6.]6.B [由面积扩大的倍数可知半径扩大为原来的2倍,则体积扩大到原来的22倍.]7.288π或192π 解析 (1)12为底面圆周长,则2πr =12,所以r =6π,所以V =π·⎝⎛⎭⎫6π2·8=288π(cm 3). (2)8为底面圆周长,则2πr =8,所以r =4π,所以V =π·⎝⎛⎭⎫4π2·12=192π(cm 3). 8.3 cm 解析 设球的半径为r ,则36π=43πr 3,可得r =3 cm .9.(1)球 (2)球 解析 设正方体的棱长为a ,球的半径为r .(1)当6a 2=4πr 2时,V 球=43πr 3=6πa 3>a 3=V 正方体;(2)当a 3=43πr 3时,S 球=4πr 2=63π6a 2<6a 2=S 正方体.10.解 如图所示,设圆台的上底面周长为c ,因为扇环的圆心角是180°,故c =π·SA =2π×10,所以SA =20,同理可得SB =40, 所以AB =SB -SA =20, ∴S 表面积=S 侧+S 上+S 下=π(r 1+r 2)·AB +πr 21+πr 22=π(10+20)×20+π×102+π×202=1 100π(cm 2). 故圆台的表面积为1 100π cm 2.h =AB 2-(OB -O 1A )2=202-102=103,V =13πh(r 21+r 1r 2+r 22) =13π×103×(102+10×20+202)=7 00033π (cm 3). 即圆台的表面积为1 100π cm 2,体积为7 00033π cm 3.11.解 如图,E 、E 1分别是BC 、B 1C 1的中点,O 、O 1分别是下、上底面正方形的中心,则O 1O 为正四棱台的高,则O 1O =12.连接OE 、O 1E 1,则OE =12AB=12×12=6,O 1E 1=12A 1B 1=3. 过E 1作E 1H ⊥OE ,垂足为H ,则E 1H =O 1O =12,OH =O 1E 1=3, HE =OE -O 1E 1=6-3=3.在Rt △E 1HE 中,E 1E 2=E 1H 2+HE 2=122+32 =32×42+32=32×17, 所以E 1E =317.所以S 侧=4×12×(B 1C 1+BC)×E 1E=2×(12+6)×317=10817.。
空间几何体的面积体积(含答案)
11.空间几何体的表面积和体积要点归纳表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径。
典例解析题型1:柱体的体积和表面积例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:4cm 变式:一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是(D ) A .23B .32C .6D .6例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD=3π。
(1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上;(2)求这个平行六面体的体积。
解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。
作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。
由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。
∵∠A 1AM=∠A 1AN ,∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N ,从而OM=ON 。
∴点O 在∠BAD 的平分线上。
PACDOE图1 图2(2)∵AM=AA 1cos3π=3×21=23.∴AO=4cosπAM =223。
又在Rt △AOA 1中,A 1O 2=AA 12 – AO 2=9-29=29, ∴A 1O=223,平行六面体的体积为22345⨯⨯=V 230=。
题型2:锥体的体积和表面积例3.在四棱锥P -ABCD 中,底面是边长为2的菱形,∠DAB =60,对角线AC 与BD 相交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成的角为60,求四棱锥P -ABCD 的体积?解:在四棱锥P-ABCD 中,由PO ⊥平面ABCD,得∠PBO 是PB 与平面ABCD 所成的角,∠PBO=60°。
空间几何体的结构及其表面积、体积课时作业高考数学一轮复习
空间几何体的结构及其表面积、体积1.下列说法中正确的是()A.斜三棱柱的侧面展开图一定是平行四边形B.水平放置的正方形的直观图有可能是梯形C.一个直四棱柱的正视图和侧视图都是矩形,则该直四棱柱就是长方体D.用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分形成的几何体就是圆台2.一个球的表面积是16π,那么这个球的体积为()A.163πB.323πC.16πD.24π3.《九章算术》是我国古代数学名著,在《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”.若某“阳马”的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该“阳马”的表面积为()A.1+ 2 B.1+2 2C.2+ 2 D.2+2 24.用长为8,宽为4的矩形做侧面围成一个圆柱,则圆柱的轴截面的面积为()A.32 B.32πC.16πD.8π5.如图,正方体ABCD-A1B1C1D1的棱长为1,E为棱DD1上的点,F为AB 的中点,则三棱锥B1-BFE的体积为()A.13B.14C.112D.166.(多选)(2020·山东潍坊期末)已知等腰直角三角形的直角边长为1,现将该三角形绕其某一边所在直线旋转一周,则所形成的几何体的表面积可以为()A.2πB.(1+2)πC.22πD.(2+2)π7.(2020·全国卷Ⅱ)已知△ABC是面积为934的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A. 3 B.3 2C.1 D.3 28.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF =2,则该多面体的体积为()A.23B.33C.43D.329.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC=45°,AB=AD=1,DC⊥BC,则这块菜地的面积为________.10.(2021·全国统一考试模拟演练)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面半径分别为4和5,则该圆台的体积为________.11.根据不同的程序,3D打印既能打印实心的几何体模型,也能打印空心的几何体模型.如图所示的空心模型是体积为17176π cm3的球挖去一个三棱锥P-ABC后得到的几何体,其中P A⊥AB,BC⊥平面P AB,BC=1 cm.不考虑打印损耗,当用料最省时,AC=________cm.12.已知某圆锥的母线长为3,底面半径为1,则该圆锥的体积为________.设线段AB为该圆锥底面圆的一条直径,一质点从A出发,沿着该圆锥的侧面运动,到达B点后再沿侧面回到A点,则该质点运动路径的最短长度为________.能力提高1.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.26B.36C.23D.222.(多选)已知A,B,C三点均在球O的表面上,AB=BC=CA=2,且球心O到平面ABC的距离等于球半径的13,则下列结论正确的是()A.球O的表面积为6πB.球O的内接正方体的棱长为1C.球O的外切正方体的棱长为4 3D.球O的内接正四面体的棱长为2空间几何体的结构及其表面积、体积1.下列说法中正确的是( )A .斜三棱柱的侧面展开图一定是平行四边形B .水平放置的正方形的直观图有可能是梯形C .一个直四棱柱的正视图和侧视图都是矩形,则该直四棱柱就是长方体D .用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分形成的几何体就是圆台[答案] D2.一个球的表面积是16π,那么这个球的体积为( ) A .163π B .323π C .16πD .24πB [设球的半径为R ,则S =4πR 2=16π,解得R =2,则球的体积V =43πR 3=323π.]3.《九章算术》是我国古代数学名著,在《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”.若某“阳马”的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该“阳马”的表面积为( )A .1+ 2B .1+2 2C .2+ 2D .2+2 2C [由三视图可得该“阳马”的底面是边长为1的正方形,高为1,则表面积为1+2×12×1×1+2×12×2×1=2+2,故选C.]4.用长为8,宽为4的矩形做侧面围成一个圆柱,则圆柱的轴截面的面积为( )A .32B .32πC .16πD .8πB [若8为底面周长,则圆柱的高为4,此时圆柱的底面直径为8π,其轴截面的面积为32π;若4为底面周长,则圆柱的高为8,此时圆柱的底面直径为4π,其轴截面的面积为32π.]5.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 为棱DD 1上的点,F 为AB 的中点,则三棱锥B 1-BFE 的体积为( )A.13 B .14 C.112D .16C [由等体积法可知V B 1-BFE =V E -BFB 1=13S △BB 1F ·AD =16×1×12×1=112.故选C.] 6.(多选)(2020·山东潍坊期末)已知等腰直角三角形的直角边长为1,现将该三角形绕其某一边所在直线旋转一周,则所形成的几何体的表面积可以为( )A.2π B .(1+2)π C .22πD .(2+2)πAB [若以直角边所在直线为旋转轴,得到一个底面半径为1、高为1的圆锥,其表面积为π×1+π×1×2=(1+2)π;若以斜边所在直线为旋转轴,得到两个底面半径为22、高为22的圆锥所形成的组合体,其表面积为2×π×22×1=2π.故选AB.]7.(2020·全国卷Ⅱ)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A . 3B .32 C .1D .32C [由等边三角形ABC 的面积为934,得34×AB 2=934,得AB =3,则△ABC 的外接圆半径r =23×32AB =33AB = 3.设球的半径为R ,则由球的表面积为16π,得4πR 2=16π,得R =2,则球心O 到平面ABC 的距离d =R 2-r 2=1,故选C.]8.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A .23B .33C .43D .32A [(分割法)如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12, AG =GD =BH =HC =32,取AD 的中点O ,连接GO ,易得GO =22, ∴S △AGD =S △BHC =12×22×1=24,∴多面体的体积V =V 三棱锥E -ADG +V 三棱锥F -BCH +V 三棱柱AGD -BHC =2V 三棱锥E -ADG +V 三棱柱AGD -BHC=13×24×12×2+24×1=23.故选A.]9.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这块菜地的面积为________.2+22 [如图①,在直观图中,过点A 作AE ⊥BC ,垂足为E .图①图②在Rt△ABE中,AB=1,∠ABE=45°,∴BE=2 2.而四边形AECD为矩形,AD=1,∴EC=AD=1,∴BC=BE+EC=22+1.由此可还原原图形如图②.在原图形中,A′D′=1,A′B′=2,B′C′=2 2+1,且A′D′∥B′C′,A′B′⊥B′C′,∴这块菜地的面积S=12(A′D′+B′C′)×A′B′=12×⎝⎛⎭⎪⎫1+1+22×2=2+22.]10.(2021·全国统一考试模拟演练)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面半径分别为4和5,则该圆台的体积为________.61π[截面图如图所示,底面半径为5,圆周直径为10,则圆台的下底面位于圆周的直径上,OC=OB=5,O′C=4,∠OO′C=π2,则圆台的高为3,V=13h(S1+S1S2+S2)=25π+16π+20π=61π.]11.根据不同的程序,3D打印既能打印实心的几何体模型,也能打印空心的几何体模型.如图所示的空心模型是体积为17176π cm3的球挖去一个三棱锥P-ABC后得到的几何体,其中P A⊥AB,BC⊥平面P AB,BC=1 cm.不考虑打印损耗,当用料最省时,AC=________cm.3[设球的半径为R,由球的体积4π3R3=17176π,解得R=172cm.因为BC⊥平面P AB,所以BC⊥PB,BC⊥AB,BC⊥P A.因为P A⊥AB,AB∩BC=B,所以P A⊥平面ABC,所以P A⊥AC.由BC⊥AB可知,AC为截面圆的直径,故可设AC=x cm(1<x<17),取PC 的中点O ,连接OA ,OB (图略),则PO =OC =OA =OB ,故O 为球心,所以PC =17cm.在Rt △P AC 中,P A =17-x 2 cm ,在Rt △ABC 中,AB =x 2-1 cm , 所以V P -ABC =13×S △ABC ×P A =13×12×x 2-1×1×17-x 2=16(x 2-1)(17-x 2)≤16⎝ ⎛⎭⎪⎫x 2-1+17-x 222=43(cm 3),当且仅当x 2-1=17-x 2,即x =3时,等号成立. 所以当用料最省时,AC =3 cm.]12.已知某圆锥的母线长为3,底面半径为1,则该圆锥的体积为________.设线段AB 为该圆锥底面圆的一条直径,一质点从A 出发,沿着该圆锥的侧面运动,到达B 点后再沿侧面回到A 点,则该质点运动路径的最短长度为________.22π36 [该圆锥的高h =32-1=2 2. 所以该圆锥的体积V =13×π×12×22=223π. 将圆锥侧面沿母线SA 展开,如图所示.因为圆锥底面周长为2π,所以侧面展开后得到的扇形的圆心角∠ASA ′=2π3. 由题意知点B 是侧面展开后得到的扇形中弧AA ′的中点, 连接AB ,A ′B ,SB ,则∠ASB =π3,可得AB =A ′B =AS =3. 所以该质点运动路径的最短长度为AB +A ′B =6.]能力提高1.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26 B .36 C.23D .22A [由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如图所示, S △ABC =34×AB 2=34, 高OD =12-⎝ ⎛⎭⎪⎫332=63,∴V S -ABC =2V O -ABC =2×13×34×63=26.]2.(多选)已知A ,B ,C 三点均在球O 的表面上,AB =BC =CA =2,且球心O 到平面ABC 的距离等于球半径的13,则下列结论正确的是( )A .球O 的表面积为6πB .球O 的内接正方体的棱长为1C .球O 的外切正方体的棱长为43 D .球O 的内接正四面体的棱长为2AD [设球O 的半径为r ,△ABC 的外接圆圆心为O ′,半径为R .易得R =233.因为球心O 到平面ABC 的距离等于球O 半径的13,所以r 2-19r 2=43,得r 2=32.所以球O 的表面积S =4πr 2=4π×32=6π,选项A 正确;球O 的内接正方体的棱长a 满足3a =2r ,显然选项B 不正确;球O 的外切正方体的棱长b 满足b =2r ,显然选项C 不正确;球O 的内接正四面体的棱长c 满足c =263r =263×62=2,选项D 正确.故选AD.]。
新高考一轮复习人教版 空间几何体的表面积和体积 作业
专题八 立体几何8.1 空间几何体的表面积和体积基础篇 固本夯基考点一 空间几何体的结构特征1.(2022届山东烟台一中开学考,2)已知圆锥的表面积等于12πcm 2,其侧面展开图是一个半圆,则圆锥的底面半径为( )A.1cmB.2cmC.3cmD.32cm 答案 B2.(2021新高考Ⅰ,3,5分)已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为( )A.2B.2√2C.4D.4√2 答案 B3. (2020课标Ⅰ理(文),3,5分)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.√5−14B.√5−12C.√5+14D.√5+12答案 C4.(2020浙江,14,4分)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是 . 答案 1考点二 空间几何体的表面积与体积1.(2022届河北邢台入学考,4)六氟化硫,化学式为SF 6,在常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫分子结构为正八面体(每个面都是正三角形的八面体),如图所示,硫原子位于正八面体的中心,6个氟原子分别位于正八面体的6个顶点.若相邻两个氟原子间的距离为2a,则六氟化硫分子中6个氟原子构成的正八面体的体积是(不计氟原子的大小)( )A.4√23a 3 B.8√23a 3C.4√2a 3D.8√2a 3答案 B2.(2021全国甲理,11,5分)已知A,B,C 是半径为1的球O 的球面上的三个点,且AC ⊥BC,AC=BC=1,则三棱锥O-ABC 的体积为( ) A.√212B.√312C.√24D.√34答案 A3.(2018课标Ⅰ,10,5分)在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( )A.8B.6√2C.8√2D.8√3 答案 C4.(2020山东泰安期末,8)已知正三棱锥S-ABC 的侧棱长为4√3,底面边长为6,则该正三棱锥外接球的表面积是( )A.16πB.20πC.32πD.64π 答案 D5.(多选)(2021河北保定二模,9)如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R相等,则下列结论正确的是()A.圆柱的体积为4πR3B.圆锥的侧面积为√5πR2C.圆柱的侧面积与圆锥的表面积相等D.圆柱、圆锥、球的体积之比为3∶1∶2答案BD6.(2021福建泉州二模,6)如图是一个由6个正方形和8个正三角形围成的十四面体,其所有顶点都在球O 的球面上,若十四面体的棱长为1,则球O的表面积为()A.2πB.4πC.6πD.8π答案B7.(2021全国甲文,14,5分)已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为. 答案39π8.(2020新高考Ⅱ,13,5分)棱长为2的正方体ABCD-A1B1C1D1中,M,N分别为棱BB1,AB的中点,则三棱锥A1-D1MN 的体积为.答案 19.(2019江苏,9,5分)如图,长方体ABCD-A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是.10.(2020江苏,9,5分)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是 cm 3.答案(12√3−π2)11.(2018天津文,11,5分)如图,已知正方体ABCD-A 1B 1C 1D 1的棱长为1,则四棱锥A 1-BB 1D 1D 的体积为 .答案13综合篇 知能转换A 组考法一 空间几何体的表面积和体积1.(2021新高考Ⅱ,5,5分)正四棱台的上、下底面的边长为2,4,侧棱长为2,则四棱台的体积为( ) A.56 B.28√2 C.563 D.28√23答案 D2.(2021济南一模,7)已知菱形ABCD,AB=BD=2,将△ABD 沿BD 折起,使二面角A-BD-C 的大小为60°,则三棱锥A-BCD 的体积为( ) A.√32B.2√23 C.3√32D.2√2 答案 A3.(2018课标Ⅲ,文12,理10,5分)设A,B,C,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为9√3,则三棱锥D-ABC 体积的最大值为( ) A.12√3 B.18√3 C.24√3 D.54√34.(2020湖南衡阳联考,10)在三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,且AB=2.若三棱锥P-ABC的外接球体积为36π,则当该三棱锥的体积最大时,其表面积为()A.6+6√3B.8+6√3C.8+8√5D.6+8√5答案C5.(2022届浙江浙南名校联盟联考一,15)一圆锥母线长为定值a(a>0),母线与底面所成角大小为θ(0<θ<π2),当圆锥体积V最大时,sinθ=.答案√336.(2019天津,文12,理11,5分)已知四棱锥的底面是边长为√2的正方形,侧棱长均为√5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.答案π47.(2018课标Ⅱ理,16,5分)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为78,SA与圆锥底面所成角为45°.若△SAB的面积为5√15,则该圆锥的侧面积为.答案40√2π8.(2018天津理,11,5分)已知正方体ABCD-A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH的体积为.答案1129.(2017课标Ⅰ文,16,5分)已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA ⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为.答案36π考法二 与球有关的切、接问题1.(多选)(2022届河北神州智达省级联测二,12)已知三棱柱ABC-A 1B 1C 1的6个顶点全部在球O 的表面上,AB=AC,∠BAC=120°,三棱柱ABC-A 1B 1C 1的侧面积为8+4√3,则球O 的表面积可能是( ) A.4π B.8π C.16π D.32π 答案 CD2.(2020天津,5,5分)若棱长为2√3的正方体的顶点都在同一球面上,则该球的表面积为( ) A.12π B.24π C.36π D.144π 答案 C3.(2020课标Ⅱ理,10,5分)已知△ABC 是面积为9√34的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A.√3 B.32C.1D.√32答案 C4.(2019课标Ⅰ理,12,5分)已知三棱锥P-ABC 的四个顶点在球O 的球面上,PA=PB=PC,△ABC 是边长为2的正三角形,E,F 分别是PA,AB 的中点,∠CEF=90°,则球O 的体积为 ( ) A.8√6π B.4√6π C.2√6π D.√6π 答案 D5.张衡(78年—139年)是中国东汉时期伟大的天文学家、文学家、数学家,他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五.已知正方体的外接球与内切球上各有一个动点A,B,若线段AB 的最小值为√3-1,利用张衡的结论可得该正方体的外接球的表面积为( ) A.30 B.10√10 C.12√10 D.36 答案 C6.(2017天津理,10,5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 答案92π 7.(2017课标Ⅱ文,15,5分)长方体的长,宽,高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 . 答案 14π8.(2021山东烟台一模,16)已知正三棱锥P-ABC 的底面边长为2,侧棱长为√13,其内切球与两侧面PAB,PBC 分别切于点M,N,则MN 的长度为 . 答案56B 组(2022届江苏海安高级中学期中,8)如图所示,在直三棱柱ABC-A 1B 1C 1中,AA 1=1,AB=BC=√3,cos ∠ABC=13,P 是A 1B 上的一动点,则AP+PC 1的最小值为( )A.√5B.√7C.1+√3D.3 答案 B应用篇 知行合一应用 与立体几何有关的实际应用问题1.(多选)(2022届河北9月联考,10生活实践情境)“端午节”为中国国家法定节假日之一,已被列入世界非物质文化遗产名录,吃粽子是端午节的习俗之一.全国各地的粽子包法各有不同.如图,粽子可包成棱长为6cm 的正四面体状的三角粽,也可做成底面半径为32cm,高为6cm(不含外壳)的圆柱状竹筒粽.现有两碗馅料,若一个碗的容积等于半径为6cm 的半球的体积,则(参考数据:√2π≈4.44)( )A.这两碗馅料最多可包三角粽35个B.这两碗馅料最多可包三角粽36个C.这两碗馅料最多可做竹筒粽21个D.这两碗馅料最多可做竹筒粽20个 答案 AC2.(2021新高考Ⅱ,4,5分科技发展)卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨道高度为36000km(轨道高度指卫星到地球表面的最短距离),把地球看成一个球心为O,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道所在平面所成角的度数,地球表面能直接观测到的一颗地球静止同步轨道卫星的点的纬度的最大值记为α,该卫星信号覆盖的地球表面面积S=2πr 2(1-cos α)(单位:km 2),则S 占地球表面积的百分比约为( )A.26%B.34%C.42%D.50% 答案 C3.(多选)(2021辽宁开原三模,12生产实践)国家统计局公布的全国夏粮生产数据显示,2020年全国夏粮总产量达14281万吨,创历史新高.粮食储藏工作关系着军需民食,也关系着国家安全和社会稳定.某粮食加工企业设计了一种容积为63000π立方米的粮食储藏容器,如图1所示.已知该容器分上下两部分,其中上部分是底面半径和高都为r(r ≥10)米的圆锥,下部分是底面半径为r 米、高为h 米的圆柱体,如图2所示.经测算,圆锥的侧面每平方米的建造费用为√2a 元,圆柱的侧面、底面每平方米的建造费用均为a 元,设每个容器的制造总费用为y 元,则下面说法正确的是( )A.10≤r<40B.h 的最大值为1 8803C.当r=21时,y=7029a πD.当r=30时,y 有最小值,最小值为6300a π 答案 BCD4.(2021山东青岛二模,15劳动教育)某校学生去工厂进行劳动实践,加工制作某种零件.如图,将边长为10√2cm 的正方形铁皮剪掉阴影部分(四个全等的等腰三角形),然后将△P 1AB,△P 2BC,△P 3CD,△P 4DA 分别沿AB,BC,CD,DA 翻折,使得P 1,P 2,P 3,P 4重合并记为点P,制成正四棱锥P-ABCD 形状的零件.当该四棱锥体积最大时,AB= cm;此时该四棱锥外接球的表面积S= cm 2.答案 8;6765π 创新篇 守正出奇创新一 数学文化下的立体几何问题1.(2022届长沙长郡中学第一次月考,5)公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V)与它的直径(D)的立方成正比”,即V=kD 3,欧几里得未给出k 的值.17世纪日本数学家们对球的体积的方法还不了解,他们将体积公式V=kD 3中的常数k 称为“立圆率”或“玉积率”.类似地,对于等边圆柱(轴截面是正方形的圆柱),正方体也可利用公式V=kD 3求体积(在等边圆柱中,D 表示底面圆的直径;在正方体中,D 表示棱长).假设运用此体积公式求得球(直径为a),等边圆柱(底面圆的直径为a),正方体(棱长为a)的“玉积率”分别为k 1、k 2、k 3,那么k 1∶k 2∶k 3=( ) A.π3∶π2∶2 B.π6∶π4∶2 C.π3∶π2∶1 D.π6∶π4∶1 答案 D2.(2019课标Ⅱ理,16,5分)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .(本题第一空2分,第二空3分)图1图2答案26;√2-14.(2021河北张家口一模,16)早期的毕达哥拉斯学派学者注意到:用等边三角形或正方形为表面可构成四种规则的立体图形,即正四面体、正六面体、正八面体和正二十面体,它们的各个面和多面角都全等.如图,正二十面体是由20个等边三角形组成的正多面体,共有12个顶点,30条棱,20个面,是五个柏拉图多面体之计算,则该正二十面体的表面积与该正二十面体的外接球表面积之比等于.一.如果把sin36°按35答案55√336π创新二圆锥曲线与立体几何的综合1.(2021山东青岛二模,7)已知正方体ABCD-A1B1C1D1的棱长为2,点P在矩形ACC1A1区域(包含边界)内运动,且∠PBD=45°,则动点P的轨迹长度为()A.πB.√2πC.2πD.2√2π答案B2.(2021山东德州二模,7)我国南北朝时期的著名数学家祖暅提出了祖暅原理:“幂势既同,则积不容异.”意思是夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即12V 球=πR 2·R-13πR 2·R=23πR 3.现将椭圆x 24+y 29=1绕y 轴旋转一周后得一橄榄球形状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( )A.8πB.16πC.24πD.32π答案 B3.(2022届广东深圳七中10月月考,14)如图,已知正方体ABCD-A 1B 1C 1D 1的棱长为3,点H 在棱AA 1上,且HA 1=1,P 是侧面BCC 1B 1内一动点,HP=√13,则CP 的最小值为 .答案 √13-2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 空间几何体体积(一) 编号: 023 命题:许美娟 蒋同山 审核:常国庆 班级:____________ 姓名:___________
一、填空题:
1、正三棱柱的所有棱长都是2,则此三棱柱的体积是_________________
2、正方体的对角线是4㎝,则此正方体的体积是_________________
3、把边长为3和2的一个矩形绕其一边卷成一个圆柱的侧面,则圆柱的体积为____________
4、函数()
233x y a a a =-+⋅是指数函数,则a = 5、圆锥的全面积是6π,底面积是4π,则它的体积是_________________
6、圆台高
为,母线长为2,母线和下底的夹角为60°,则圆台的体积是________________
7、若干毫升水倒入底面半径为2cm 的圆柱形器皿中,量得水面的高度为8c m .若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是________________
8、,x y R ∈,a 与b 不共线,若(1)x y a +-+ ()0x y b -= ,则x=__________,y=________
9、圆柱的轴截面是边长为3㎝的正方形,则它的体积是 .
10、三棱锥的三条侧棱两两垂直,三个侧面面积分别为8、6、3,则这个锥体的体积为 .
二、解答题:
11、如图所示的三棱锥S-ABC 的三条侧棱两两垂直,且
求其体积.
12、在等比数列{}n a 中,若64a a -=216,31a a -=8,n S =40,求q ,a 及n 。
B A C
S
13如图所示,OA 是圆锥底面中心O 到母线的垂线,OA 绕轴旋转一周所得曲面将圆锥分成相等的两部分,求母线与轴的夹角的余弦值。
14、如图,三棱柱ABC -A 1B 1C 1中,E 、F 分别为AB 、AC 的中点,平面EB 1C 1F 将三棱柱分成体积为V 1V 2两部分,求V 1∶V 2的值.
C
A 1
B 1
C 1
F
E V 1
V 2
选、四边形ABCD A B C D ,,,,(,)(,)(,)(,)00102103,绕y 轴旋转一周,求所得 旋转体的体积.。