长江口非均匀沙沉速研究

合集下载

长江口径流来沙量减小对河口含沙量的影响

长江口径流来沙量减小对河口含沙量的影响

长江口径流来沙量减小对河口含沙量的影响付桂【摘要】针对近年来长江流域来沙量大幅减小对长江河口含沙量的影响问题进行统计分析、对比研究.利用大通站来沙量数据,统计分析1950-2011年输沙量的变化,得出长江口近期径流来沙量大幅减少.对长江口各汊道1978-2011年实测含沙量进行统计分析,得知长江口径流来沙量减小对河口含沙量的影响.研究结果表明:1)长江口来沙量减小,使得口内段南支、南港总体含沙量水平明显减小,口外含沙量亦有所减小,但拦门沙区段的含沙量基本不变.减小幅度从内、外两侧向拦门沙降低.2)拦门沙区段水体含沙量主要与河口区滩地泥沙来源丰富、泥沙活动规模大、潮汐动力强以及盐淡水混合综合影响形成河口最大浑浊带等密切相关,上游来沙量减小对该区段含沙量变化规律的影响尚不明显.%In view of the influence of the sharp decrease of sediment discharge in the Yangtze River on sediment concentration in the Yangtze estuary, we carry out a statistical analysis and comparative research. The hydrologic data of Datong station are used to analyze the changes of sediment discharge between 1950 and 2011. It is concluded that the recent decrease of sediment discharge in the Yangtze estuary has influences on the sediment concentration of the Yangtze estuary. Based on the statistical analysis of measured sediment concentration over the Yangtze estuary from 1978 to 2011, the change of sediment concentration field in the Yangtze estuary is obtained.The results show that sediment discharge of the Yangtze estuary is reduced, thus total sediment concentration decreases in the South Branch and South channel, and the sediment concentration is also decreased at the mouth of Yangtzeestuary.However, the sediment concentration in the river mouth bar is basically unchanged.It decreases from both sides to the mouth bar. The sediment concentration of the river mouth bar is closely related to the rich sand source of bottomland, large-scale movement of sediment, strong tidal dynamics and estuarine turbidity maximum zone. The decrease of sediment discharge upstream has not an obvious influence on the sediment concentration in the mouth bar.【期刊名称】《水运工程》【年(卷),期】2018(000)005【总页数】7页(P138-144)【关键词】长江口;来沙量;涨潮含沙量;落潮含沙量【作者】付桂【作者单位】交通运输部长江口航道管理局, 上海200003;上海长升工程管理有限公司, 上海200137【正文语种】中文【中图分类】TV141;U61长江河口是受径、潮流共同作用的中等潮汐河口,它以丰富的泥沙供应、大量的细颗粒泥沙而著称,是典型的高浊度河口。

长江河口潮滩悬浮泥沙输移规律研究进展

长江河口潮滩悬浮泥沙输移规律研究进展

长江河口潮滩悬浮泥沙输移规律研究进展王初;贺宝根【摘要】通过阅读和研究大量有关文献,对长江口潮滩悬移泥沙的输移规律有了较全面的了解.目前,长江口潮滩、潮沟、以及两者之间的悬浮泥沙输移基本规律的研究已经比较深入,但对于动力过程的探讨仍然局限在少数几个因子,而悬浮泥沙对重金属、氮、磷等营养元素吸附的研究则刚刚开始.由于在潮滩上获取实测资料的难度较大,使潮沟构成的微地貌系统动力结构和悬浮泥沙运动的研究不足,因此,需要在浅层测流的基础上,进一步探讨其规律.【期刊名称】《上海师范大学学报(自然科学版)》【年(卷),期】2003(032)002【总页数】5页(P96-100)【关键词】潮滩;长江河口;悬浮泥沙【作者】王初;贺宝根【作者单位】上海师范大学,城市与旅游学院,上海,200234;上海师范大学,城市与旅游学院,上海,200234【正文语种】中文【中图分类】S332长江河口地区广泛分布着淤泥质潮滩,徐六泾以下的潮滩面积约有800km2.潮滩和其上分布的潮沟构成了河口地区最主要的地貌类型.本文拟对长江河口潮滩及潮沟的悬浮泥沙输移规律研究进行梳理,以便寻找有关长江口潮滩研究的不足之处,为深入研究探明方向.1 长江口水文概况长江河口是一个丰水多沙的大型河口,多年平均径流量29300m3/s ,最大径流量92600 m3/s(1954.8.1),年径流总量达9240亿m3 (资料取自大通水文站).5~10月是长江洪水期,径流量占全年的71.7%,其中尤以7月的径流量最大;11月~翌年4月是长江枯水期,径流量仅占全年的28.3%,2月的径流量最小.1.1 长江口地貌类型长江河口又是一个多汊河口,自徐六泾开始分别被崇明岛,长兴与横沙岛,九段沙分为南北支,南北港及南北槽,为三级分汊、四口入海.长江河口由悬浮泥沙沉积而成的主要地貌类型有:暗沙、拦门沙、水下三角洲和潮滩[1].长江口的潮滩一般可分为河口心滩(白茆沙、扁担沙、九段沙等)和边滩(南汇、崇明东滩及边滩).杨世伦[2,3]根据岸滩形状及其与水下地形的关系将长兴、横沙岛及九段沙的岸滩分为“江岸型”、“洲头型” 及“潮滩型”,并分析了其成因,根据潮滩的冲淤状况又可以分为“淤进型”“蚀退型”“稳定型”(或“准稳定型”).1.2 长江口动力条件长江口是一个中等潮差河口,口门处中浚站测得的多年平均潮差为2.66m,最大潮差为4.62m,最小潮差为0.17m.潮流是长江口主要的动力因子[1,2].由于受科氏力的影响,在口门外潮流表现为旋转流,口门内受到地形约束多为往复流,洪季的涨潮流速大于枯季流速.径流同样是河口重要的动力因子,由于径流作用口门内的落潮流速一般大于涨潮流速,涨潮流上溯过程中受径流顶托及地形的阻碍使潮波变形,造成涨落潮历时不一致,落潮历时大于涨潮历时[1].长江口波浪受风控制的特征较为明显,波浪对开敞的河口潮滩地貌短期演变起着重要作用[4].2 悬浮泥沙输移形式长江河口来沙量巨大且水动力条件复杂,悬浮泥沙的输移形式很多,河口段泥沙的输移形式通常可以分为槽内输移、涨落槽间输移、滩槽间输移和滩面输移[2,7];口门处最大浑浊带泥沙在径、潮流和盐度锋的作用下发生垂直输移[7~9].2.1 槽内悬浮泥沙输移长江口河槽是长江向海输送水、沙的主要途径.根据优势流理论长江河口分成落潮优势流河段、涨潮优势流河段,口门以内径流的作用较强,槽内悬浮泥沙整体向口外输移[1].2.2 滩、槽间悬浮泥沙输移长江系多汊河口,在口门处呈现出滩、槽交替出现的特点.滩、槽之间的平面环流实现了在滩、槽之间悬浮泥沙输移交流.河槽中水、沙向海净输移,在口门处由于水面展宽,径流作用减弱和相应潮流势力加强,两者达到动力平衡;盐水锋作用令泥沙作垂直输移使悬沙滞留于口门附近并在此大量沉积下来[2].在无风或微风条件下,潮滩上径流作用很小,涨潮流的作用占主导地位,泥沙净向陆地输移,口门处的泥沙又被携至潮滩并沉积下来,这样便形成了一个完整的环流.在大风天气条件下,特别是有风暴潮出现时潮滩沉积物大量被冲刷,泥沙又进入河槽,形成了与前者相反的平面环流.2.3 滩面及潮沟的泥沙输移以前对泥沙输移的研究多集中于对槽内及滩、槽间泥沙输移模式的探讨[1,8],对于在潮滩、潮沟这样的浅层面流、线流条件下的泥沙输移研究(包括潮滩和潮沟间的泥沙交换)十分有限,而且也局限于对一两个动力因子的探讨[4,10~12],对其系统的研究则显得相当不够.主要原因在于:(1)潮滩上设立长期的观察点较为困难,野外实测获取第一手资料的难度极大;(2)即使设立了长期观察点,受到滩沟形态演变的影响,资料的稳定性和代表性也存有疑问;(3)潮滩及潮沟中的动力条件和地形地貌十分复杂,研究难度较大.但这方面的研究却是深入研究潮滩演变规律及物质循环规律的基础和关键,所以有着极大的研究价值.3 水动力对潮滩悬浮泥沙输移的作用长江口是水动力条件十分复杂的区域,潮流、径流、波浪、风暴潮等动力因子交织在一起极大影响了悬浮泥沙在潮滩上的输移[1,8].3.1 潮流在长江三角洲的发育过程中,潮流是一个重要的动力因子.它在长江口的悬浮泥沙输移过程中起着重要作用,也是现代潮滩地貌发育的重要动力因素[1,13,14].沉降滞后和侵蚀滞后的概念基本描述了潮滩上悬浮泥沙输移特征[13].对潮锋的研究是对浅层面流作用下滩面上泥沙输移规律有价值的研究[10,11].潮流对河口泥沙的输移作用可以分为两个阶段:潮锋作用过程和锋后水流过程.潮锋是水流在滩坡平缓的淤泥质潮间带涨潮水体前锋历时数十分钟的水流加速过程[10].通过对1979~1992年间各种类型潮滩水沙数据的分析发现从涨潮前锋到达滩面至该处达到一定水深期间会出现一段历时数10 min左右的水流高速期.其流速比随后水流的平均流速高1~3倍.相应的水体含沙量也较高,如长江口南边滩和杭州湾湾口及北岸的潮滩在风浪平静的涨潮过程中潮锋带水体的含沙量亦可达10kg/m3,相对于区域水体0.5~2.5 kg/m3的含沙量要高得多[10].究其原因是较薄水层(数10 cm)短时期内的流速脉动引起的水体高紊动状态使滩面沉积物出现再悬浮,加之从潮间带外携来的泥沙使得潮锋带水体含沙量高于锋后水体.潮锋作用的强弱由潮滩的潮位变率及滩面坡度决定[10,11].3.2 径流径流不仅为长江河口带来了巨量泥沙,同时也是河口复杂动力环境的重要组成部分.但径流对潮滩上的悬浮泥沙输移所起的作用远没有潮流大,它主要加强了落潮流的势力并改变流速不对称性从而影响悬沙的输移[8].根据优势流理论,以径流作用为主的河段称作落潮优势流河段.洪季时除了长江北支,长江口横沙岛以西的水域以径流作用为主,表层及近底层的悬沙向海输移[1].如通过对南槽上首的径流占优落潮优势流河段的输沙量的研究,发现在表层0.2水深和0.6水深的悬沙均向海发生输移.在径流作用不强的河段即涨潮优势流河段表层及近底层的悬沙输移则与落潮流优势流河段正好相反,表现为向陆地输移[1].3.3 波浪一般观点认为潮流是潮滩发育的主要动力,但在长江口一些面向开敞海域(如南汇东滩等地)的潮滩,波浪塑造滩面的作用也是不可忽视的[4,5,8,12].茅志昌[12]研究了南汇东滩的波浪作用及其对滩面冲淤的影响,发现风速、波浪与滩面冲淤之间的关系是:小于或等于5级风速引起的波浪场常使滩地发生淤积,而大于6级的风速产生的波浪则会对滩面进行冲刷.通过用能量法分析认为,影响滩面冲淤性质的波浪破碎水深和破波带宽度会随波高、潮位及底坡坡度发生变化.杨世伦[4]就波浪对开敞潮滩的作用进行了研究,以引水船站的风、浪相关性为依据,结合南汇东滩的实测数据认为风浪是控制开敞潮滩短期演变的主要动力因子,它决定了潮滩(特别是光滩)泥沙的起动或沉降.3.4 风暴潮风暴潮是台风、低气压、海啸等事件引起的短时期内造成水位陡然上升的自然灾害.长江河口在夏、秋季多有台风侵袭,此时如遇天文大潮,就会出现特大风暴潮.风暴潮虽然是短期的动力因子,但其对潮滩地貌的迅速改变却影响巨大.许世远等[16,17]研究了长江三角洲的风暴潮沉积系列,发现从长江三角洲的滨后沼泽低地到前三角洲均发育风暴沉积,在沉积剖面中的比例可达30%~40%, 与常态沉积形成韵律性层理.邵虚生[21]等也认为上海潮滩沉积物原生沉积构造中的韵律性层理是常年低能期和大潮台风高能期交替作用的产物.对风暴沉积系列研究也揭示了其动力及泥沙输移的过程.风暴沉积的底部冲刷面清晰保存,沉积结构较粗且自下而上粒度变细等显示出风暴沉积是风暴潮高峰期及随后消退期快速堆积的产物,反映了期间水动力有弱—突强—渐弱的过程变化[16,17].4 潮滩植物对悬浮泥沙输移过程的影响近年来,植物影响潮滩动力环境及泥沙输移过程的研究成为河口学的研究热点[24].当淤泥质潮滩达到一定的高程后便会有植物的出现.植物的出现会改变潮滩的动力条件,从而改变滩面的冲淤作用[19~22].4.1 植物对水动力条件的影响植物对水动力有两方面作用.一是缓流作用:植被是一种粗糙的下垫面,潮间带植物会阻滞水流[19,20].通过对南汇东滩植被带和刈割地流速的对比,发现植被带的流速在任何情况下都小于刈割地,对平均流速的缓流系数(植被带流速/无植被地流速)为0.71.通过对南汇东滩相同高程但不同植被覆盖的地区实地观测,发现沼泽的近底层流速总是小于相邻的光滩,流速可降低20%~60%.并认为植物缓流作用的大小与植株的覆盖率及测点距沼泽外缘的距离成正相关[20].另一是消浪作用:波浪对开敞型潮滩短期内演变起着重要影响,主要表现为对滩面的冲蚀,而植被却有削减波浪波高及波能的作用,特别在植被完全被淹没之前作用最为明显.涨潮初期植物冠顶未被淹没,沼泽中的平均波高及波能都只有光滩的43%和19%,并发现在正常天气条件下,波能传入沼泽后50m左右便完全消失.4.2 植物对潮滩悬沙输移的影响植物的消浪、缓流作用能改变水动力条件,再加上植物本身的特性,植物对潮滩悬浮泥沙输移有着不可忽视的影响.植被带在洪季时,悬浮泥沙浓度总的来说要小于光滩.如“沼泽岛”的悬浮泥沙浓度为相邻光滩的71%[22].其主要原因是植被对潮流及波浪的削弱作用使水体的挟沙能力大减,至使悬沙大量下沉引起的.从植被带沉积物的组成来看,不难推断出悬浮泥沙的粒度大小与光滩的差别.据杨世伦[19]的研究,沉积物在光滩—海三棱镳草—互花米草的植被变化过程中平均粒径逐渐减小,从5.83Φ减小至8.27Φ,而粘土含量则由12%增为43%.植物对潮滩上悬浮泥沙输移影响的研究仍需深入,此外,营养元素随悬沙的输移、积累对潮滩植物生长的影响,以及潮滩悬沙输移对植物生长状况的反馈也是很值得深入探讨的.5 潮滩悬沙输移的环境效应通过对上海滨岸潮滩4个具有代表性的采样断面潮滩表层沉积物中重金属含量的季节性变化的分析[28],发现在水动力作用较弱的地貌部位,表层沉积物中重金属元素趋于富集.并发现在东海农场表层沉积物中重金属含量的季节变化与其它地区不同,认为是受长江冲谈水的影响[28].刘敏等[29,30]对长江口滨岸潮滩表层沉积物中各种形态的磷进行了研究,发现沉积物粒径与形态磷之间有密切联系,粒径越小形态磷的含量越高.高效江等[31]通过对上海滨岸潮滩的表层沉积物,上覆水和间隙水中的无机氮的研究总结出了无机氮浓度的季节性变化规律,认为水动力条件的变化对潮滩无机氮的分布有很大影响.同时滩-水界面的各类形态的N、P的垂向输移、扩散也有了一定的研究[29,31].但对于整个潮滩(包括潮沟)中的营养元素随悬沙的输移、沉积过程和机制,及其通量的研究还未涉及,潮滩对于营养元素迁移的影响仍很难确定,故这方面的研究急待深入.6 展望当前对长江口悬浮泥沙输移规律的研究取得了一系列的成果,但仍然存在着一些问题.长江口潮滩、潮沟、以及两者之间的悬浮泥沙输移基本规律的研究已经比较深入,但对于悬沙输移动力过程的探讨仍然局限在少数几个因子,系统的研究还很不够.悬浮泥沙对重金属、氮、磷等营养元素吸附的研究则刚刚开始,悬沙输移对重金属、氮、磷等物质的迁移、积累及分布的影响仍难以确定.对潮沟构成的微地貌系统动力结构和悬浮泥沙运动的研究不足是造成以上问题的主要原因.浅水条件下泥沙输移规律研究是潮滩物质循环研究的基础,所以要在长期浅层测流的基础上,进一步对浅水环境中的潮滩悬浮泥沙输移规律进行深入研究.[1] 茅志昌,潘定安,沈焕庭. 长江河口悬沙的运动方式与沉积形态特征分析[J]. 地理研究,2001(2): 170-177.[2] 杨世伦,徐海根. 长江口长兴、横沙岛潮滩沉积特征及其影响机制[J]. 地理学报,1994 ,49(5):450-456.[3] 杨世伦,姚炎明,贺松林. 长江口冲积岛岸滩剖面形态和冲淤规律[J]. 海洋与湖沼,1999,(6):764-769.[4] 杨世伦. 风浪在开敞潮滩短期演变中的作用——以南汇东滩为例[J]. 海洋科学,1991,(2):59-64.[5] 沈焕庭,潘定安. 长江口最大浑浊带[M]. 北京:海洋出版社,2000.38-61.[6] 沈焕庭,李九发,朱慧芳,等. 长江河口悬沙输移特性[J]. 泥沙研究, 1986,(1):1-12.[7] 杨世伦,姚炎明,贺松林.长江口冲积岛岸滩剖面形态和冲淤规律[J]. 海洋与湖沼,1999,30(6):764-769[8] 杨世伦,谢文辉,朱骏,赵庆英. 大河口潮滩地貌动力过程的研究[J]. 地理学与国土研究,2001 ,17(3):44-48.[9] 李九发,时伟荣,沈焕庭. 长江河口最大浑浊带的泥沙特性和输移规律[J]. 地理研究,1994 ,13 (1):51-59.[10] 徐元,王宝灿,章可奇. 上海淤泥质潮滩潮锋作用及其形成机制初步探讨[J].地理研究,1994,13(3): 60-68.[11] 徐元. 淤泥质潮滩潮锋的形成机制及其作用[J]. 海洋与湖沼, 1998 , 29(2):148-155.[12] 茅志昌. 南汇东滩的波浪作用和滩面冲淤分析[J]. 上海水利, 1992,(3):1-6.[13] 时钟,陈吉余. 中国淤泥质潮滩沉积研究的进展[J]. 地球科学进展,1996 , (6):[14] 朱玉荣. 潮流在长江三角洲形成发育过程中所起作用的探讨[J]. 海洋通报,1999 ,18(2):1-10.[15] 徐元,王宝灿. 淤泥质潮滩表层沉积物稳定性时空变化的探讨[J]. 海洋学报,1996 ,18(6):50-60.[16] 许世远,邵虚生. 杭州湾北岸滨岸的风暴沉积[J]. 中国科学,1984,(12):1136-1143.[17] 许世远,严钦尚,陈中原. 长江三角洲风暴沉积系列研究[J]. 中国科学(B辑),1989(7):767-763.[18] 李九发,何青,徐海根. 长江河口浮泥形成机理及变化过程[J]. 海洋与湖沼,2001 ,32(3):302-310.[19] 杨世伦,时钟,赵庆英. 长江口潮沼植物对动力沉积过程的影响[J]. 海洋学报,2001,23(4):75-80.[20] 时钟,陈吉余. 盐沼的侵蚀、堆积和沉积动力[J]. 地理学报,1995,50(6):562-567.[21] 贺宝根,左本荣. 九段沙微地貌演变与芦苇的生长[J]. 上海师范大学学报(自然科学版),2000,29(4):86-90.[22] 度武艺,谢佩尔 J. 海草对潮滩沉积作用的影响[J]. 海洋学报,1991,13(2):230-239.[23] 杨世伦,陈吉余. 试论植物在潮滩发育演变中的作用[J].海洋与湖沼,1994,25(6):631-635.[24] 陈卫跃. 潮滩泥沙输移及沉积动力环境-以杭州湾北岸、长江口南岸部分潮滩为例[J].海洋学报,1991,13(6):813-821.[25] 李九发,时伟荣,沈焕庭. 长江河口最大浑浊带的泥沙特性和输移规律[J].1994,13(1):51-59.[26] 沈健,沈焕庭,潘定安,等. 长江河口最大浑浊带水沙输运机制分析[J]. 1995,50(5):411-420.[27] 陈宝冲. 长江口北支河势的变化与水、沙、盐的输移[J]. 地理科学,1993 ,13(4): 346-352[28] 毕春娟,陈振搂,许世远. 水动力作用对潮滩表层沉积物重金属时空分布的影响[J]. 上海环境科学,2002,21(6):330-333.[29] 刘敏,侯立军,许世远,欧冬妮,张斌亮,刘巧梅,杨毅. 长江河口潮滩表层沉积物对磷酸盐的吸附特征[J]. 地理学报,2002 ,57(4): 397-406.[30] 刘敏,许世远,侯立军,欧冬妮. 长江口滨岸潮滩沉积物中磷的存在形态和分布特征[J]. 海洋通报,2001,20(5):10-17.[31] 高效江,张念礼,陈振楼,许世远,陈立民. 上海滨岸潮滩水沉积物中无机氮的季节性变化[J]. 地理学报,2002 ,57(4): 407-412.。

长江口—杭州湾悬沙浓度的空间分布特征研究

长江口—杭州湾悬沙浓度的空间分布特征研究

长江口—杭州湾悬沙浓度的空间分布特征研究杨海飞;张志林;李伯昌【摘要】本文通过搜集长江口—杭州湾水域23个测点,2011年洪、枯季大潮悬沙浓度数据,研究了该区域的悬沙浓度空间分布特征.结果表明:长江口—杭州湾的悬沙浓度存在明显的空间分布差异,北支大于南支,南支拦门沙区域大于南支上段,杭州湾区域则整体上大于长江口区域;长江口-杭州湾区域悬沙浓度自内向外整体呈先增大后减小的趋势.长江口—杭州湾泥沙虽基本来自长江径流输沙,但水体的悬沙浓度更多地受海洋动力作用控制,泥沙的再悬浮作用对水体含沙量的补充决定了该区域悬沙浓度的空间分布,故该区域的悬沙浓度主要表现为海洋性.【期刊名称】《上海国土资源》【年(卷),期】2019(040)002【总页数】5页(P70-74)【关键词】长江口;杭州湾;悬沙浓度;空间分布【作者】杨海飞;张志林;李伯昌【作者单位】长江水利委员会水文局长江口水文水资源勘测局,上海 200136;长江水利委员会水文局长江口水文水资源勘测局,上海 200136;长江水利委员会水文局长江口水文水资源勘测局,上海 200136【正文语种】中文【中图分类】P737.14流域来沙是河口地貌形成的物质基础,地貌形态的变化主要依靠水动力作用。

悬沙浓度是泥沙和水动力耦合作用的直接体现,其分布特征反映了泥沙在水动力作用下的搬运、沉积和再悬浮过程,是河口地貌演变的重要影响因子[1-2]。

在长江口地区,泥沙的回淤问题一直困扰着航道和港口工程。

细颗粒的泥沙还易吸附营养盐、污染物等,在河口区汇集,对河口水域环境产生很大影响[3-5]。

作为中国最大的河流入海口,长江口的河流和海洋动力的相互作用十分强烈[6]。

据大通站(长江入海前最后一个控制性水文站)多年数据统计,上世纪七十年代(流域来沙大幅降低前)长江年均入海径流量和输沙量分别约为9×1011m3和5×108t,分别位列同期世界河流的第五和第四位[7]。

长江口细颗粒泥沙沉降速度室内试验研究

长江口细颗粒泥沙沉降速度室内试验研究

口细颗粒 泥 沙沉 降机理 的试 验 , 研 究 的主要 目的有 : ①
以长江 口原状 水样 和 天然 沙样 ( 非均 匀 沙 ) 为对象 , 复
演 和确认 关 于细颗 粒 泥沙沉 降规 律 的定 性 认识 ; ② 定
量 给 出含沙 量和 泥沙 粒 径对 沉 速 的影 响 , 加 深 对 细 颗 粒 泥沙 沉 降机理 复杂性 的认 识 。
收 稿 日期 : 2 0 1 3— 0 8— 3 1
长江 口北 槽现 场 , 两 组沙样 的中值粒 径分 别 约为 8 L L m 和3 O m, 各 代表 北槽 悬沙 和底 沙 , 试 验 时的盐 度 统一
为 1 2 p s u , 每组试 验水 温一 律 控 制在 2 6- 4 - 0 . 5 c C, 试 验 的初 始含 沙量 约 为 0 . 5~1 8 k g / m 。泥 沙 沉 降 速度 的
沙学科 很多 悬 而未 决 的 问题 息 息 相 关 。 同时 , 随 着 人
验、 现 场测 量 、 理 论分 析 与 数 值 模 拟 , 已经 建 立 了许 多
或 以絮凝 粒径 或 以含 沙量 为 主要 因子 的细颗 粒泥 沙经
验 一半经 验公式 。 在前 人 大量 已有 研究 的基 础 上 , 本 文 开 展 了长 江
凝沉降的过程可能是一个絮凝体、 絮 网结构“ 网捕 一重 构 ” 的过 程 。


词: 细颗 粒 泥 沙 ;沉 降 速 度 ; 絮 凝 ;长 江 口
文献标志码 : A
中图法分类号 : T V 1 4
近几 十 年来 , 细颗 粒泥沙 的物 理 、 化学 、 生物 、 动力 等 特性越 来 越受 到不 同领域 、 不 同学科 专家 的关 注 , 并 对 其开 展 了深入 的研究 。它 所体 现 出来 的复杂性 与 泥

潮汐环境下细颗粒泥沙沉降速度研究述评Ⅱ——计算方法与公式

潮汐环境下细颗粒泥沙沉降速度研究述评Ⅱ——计算方法与公式

潮汐环境下细颗粒泥沙沉降速度研究述评Ⅱ——计算方法与公式万远扬;吴华林;沈淇;顾峰峰【摘要】作为“潮汐环境下细颗粒泥沙沉降速度研究述评”的第二部分,详细介绍了在潮汐环境下确定细颗粒泥沙沉降速度的计算公式与相关方法.通过正式文献可以考证的,关于细颗粒泥沙沉速的计算公式逾百种,每个公式均有其一定理论或经验的背景,本文系统地分析并对比了不同背景的计算公式和方法:1)以粒径为主要因子的半经验公式(武水公式、Stocks公式等),忽略了细颗粒泥沙的基本沉降特性;2)以合沙量为主要变量的泥沙沉速经验公式,不同研究者得到的结果或者公式的参数差异较大,在没有确认其计算条件、计算方法、测量工具、适用条件前,需谨慎选择,不能简单吸纳,尤其是在盐淡水混合的潮汐环境下,其相关关系和影响因子具有较强的特定性;3)劳斯公式拟合法所得的“有效沉速”,在计算过程把不同因子导致的泥沙颗粒向下的运动均归为泥沙重力沉降过程,物理概念不清晰;4)麦克劳林公式计算细颗粒泥沙沉速,符合沉速的物理定义,其理论性和物理意义也较强.【期刊名称】《水运工程》【年(卷),期】2014(000)004【总页数】5页(P16-20)【关键词】潮汐环境;细颗粒泥沙;沉降速度;经验公式;长江口【作者】万远扬;吴华林;沈淇;顾峰峰【作者单位】上海河口海岸科学研究中心,上海201201;联合国教科文组织—水教育学院,代尔夫特2601DA,荷兰;上海河口海岸科学研究中心,上海201201;上海河口海岸科学研究中心,上海201201;上海河口海岸科学研究中心,上海201201【正文语种】中文【中图分类】TV856本文作为“潮汐环境下细颗粒泥沙沉降速度研究述评”的第2部分,主要汇总介绍已有的、在潮汐环境下确定细颗粒泥沙沉降速度的计算公式及计算方法。

对于细颗粒泥沙而言,一般难以通过记录其运动轨迹来直接计算沉速,因此只能通过间接方法推求。

到目前为止,在工程实际和相关应用中,细颗粒泥沙沉降速度的计算公式或方法大致可分为以下几类。

水流挟沙力计算公式研究综述

水流挟沙力计算公式研究综述
S= K U2 h
[5] [4 ]
U ω
0.23
1
Δ h h
0 .04
d2 5 d7 5
0.1 06
(9 )
赵龙保[1 1]根据椒江口的实测资料,引入前期含沙量的概 念,获得了较为理想的挟沙力经验公式: S f (e ) = a ( U f (e ) ) (Se ( f ) )
m n
(10 )
(2 )
ρ Uh m η
U
2
U
0 . 33
B h
0 .3 2 . 85 μ r
gh
ω
舒安平[35 ]从挟沙水 流紊动能量平衡时均方程理论出发, 建立了高含沙水流挟沙能力公式:
Sv = P f (μ ) r k2 fm 8
3/ 2 N
γ U3 m γ γ gR ω s m
曹如轩[ 3 6]利用南科所以及黄河等室内外实测资料,分粒 径组考虑,分别讨论了高含沙水流,建立了以下公式:
/( gR ω )
3
]
1.5 1.5
]
(2 1 )
S*i = k μ r
α
ω i
β
(Pi
+ P KDPbi )
U3
2.波、流共同作用下的挟沙力公式
刘家驹
[21 ]
γ γ s gRω i γ
(32 )
认为淤泥 质海岸的主要动力因素是以特征流速 吴伟明[3 1]运用床面泥沙交换机理对平衡输沙水流挟沙力 进行了探讨, 建立了平衡输沙时的非均匀沙分组挟沙力公式: (2 2 )
Z
第 11 卷
泉与窦国仁的研究,得出的长江口半潮平均挟沙力公式为:
S * = K1 U U + K2 gh ghω

长江口粘性细泥沙有效沉速与相关因素的关系

长江口粘性细泥沙有效沉速与相关因素的关系
第3 9卷 第 2 0期 2008年 1 月 0
人 民 长 江
Ya gz Rie n te vr
Vo _ 9. . O l 3 No 2 0c . t. 2 0 08
文章编号 :O 1 4 7 (0 8 2 0 4 I0 — 19 2 0 0— 0 5—0 J 2
点绘 含沙量 C与

的关 系直线 , 直线斜 率 即悬浮 指数 z 此
量 的细颗粒泥沙 的静水沉 降特性 的实验 研究 , 国内也在这 方面 做 了许多工作 。② 现场试验法 。O e w nM.W 首次 于 17 9 1年
在 T a s 口采用 O e 直 接从 河 口 中取 得未 搅 动的 水样 hme 河 w n管
行 专 门 的研 究 J 。
l 用 R ue o s 公式拟合法计算悬沙有效沉速
R ue os 公式是在二维恒定均 匀流平衡 输沙 条件下 导出 的悬
沙浓度垂线分布公式 , 其形式 为 :
C ( ) () 1
式 中 c为含沙量 ; 。 C 为参考高度 0处的含沙量 ; H为水深 ; 为 。 参考高度 ; 为垂 向坐标 ; z k 为可变卡 门常数 ;
江 口悬 沙有 效沉速为 20— . m s ; . 5 0m / 陈沈 良得到 长江 口南
? 近岸水域悬沙有 效沉 速为 2 1 [ .4~4 3 / 。本文 采 用 . 8mm s 收稿 B期 :0 8— 6—1 20 0 6 基金项 目: 同济 大学“ 8 9 5工程” 二期 建设项 目( 20 4 0 5 上 海市 9 8项 目( J ) 0 0 14 0 ) 0 P4 作者简 介 : 钟建 军, , 男 同济大学土木工程学院水利工程 系, 士研 究生。 硕

文献综述-长江口水文、泥沙计算分析

文献综述-长江口水文、泥沙计算分析

长江口水文、泥沙计算分析文献综述1研究背景河口地区是海陆相互作用最为典型的区域,其水动力条件复杂,如径流、潮汐、波浪、沿岸流以及地转科氏力等作用强烈;人类活动也颇为活跃,其作为经济发展的强势地位集中体现在沿江、沿海等地域优势上。

众所周知,河流泥沙资料是为防治水土流失、减轻泥沙灾害、合理开发水土资源、维护生态平衡等方面的宏观分析与决策研究,以及流域水利水电工程建设规划、设计和水库运用、调度管理等提供科学依据的重要基础工作。

我国属于多河流、广流域的国家,据统计,在我国长达21000多公里的海岸线上,分布着大小不同、类型各异的河口1800多个,其中河流长度在100公里以上的河口有60多个(沈焕庭等,2001)。

长江是我国第一大河,水量丰沛,输沙量大,全长约6300km,流域面积约180万km2,占全国面积的1/5。

其河流长度仅次于尼罗河与亚马孙河,入海水量仅次于亚马孙河与刚果河,均居世界第三位。

据长江大通站资料(1950~2004),流域平均每年汇集于河道的径流总量达9.00 X 1011m3,并挟带约3. 78 X 108t泥沙(中华人民共和国泥沙公报,2004),由长江河口的南槽、北槽、北港和北支等四条汉道输送入海。

根据长江口水流动力性质和形态特征,可分为径流段、过渡段、潮流段和口外海滨段。

过渡段是径流与潮流相互消长的河段,它自五峰山镇至徐六径,长约184km。

潮流段是潮流势力逐渐增强,径流势力相对减弱,风浪与风暴潮对河道的影响大增的河段,它自徐六径至河口,长约174km。

口外海滨段是诸多水动力因素非常活跃的场所,又受到海岸、海底等边界条件的制约,水流动力情况比较复杂。

它的大致范围是西起长江口拦门沙前端、东至水下三角洲前缘,南自南汇嘴附近、北达江苏省篙枝港(胡辉,1988;沈焕庭2000,2001;宋兰兰,2002)。

每个典型河段都有其固有的且相互影响的悬移质含沙量分布特性,它们在长江口地貌形态、河口演变过程中扮演着重要角色。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与传统沉速测量方法相比,高速摄像法具有高精度计时能力和记录能力,因而其精度更高。通过多次重复的单颗粒静水沉降试验以测定非均匀沙中各粒级最大粒径颗粒的沉速。
由于非均匀沙级配连续,重复测试所得沉速的最大值为该分级泥沙中最大颗粒的沉速,且为上一粒级最小颗粒沉速。试验结果表明,过渡区沉速实测值比规范公式计算值明显偏大,粒径越小,增幅越大。
根据沉降时外力平衡,实测沉速越大,意味着一般阻力公式中沉速的次方越小。为此考虑过渡区阻力跟紊流阻力与滞性阻力的几何平均值成正比,据此推导过渡区单颗粒泥沙的静水沉速公式。
用沉降试验数据确定沉速公式的系数,发现沉速公式得到的计算值与试验值吻合度良好,说明该公式适用于过渡区单颗粒泥沙的静水沉速。非均匀沙沉降试验在含原样本沙样的混合液中进行,取分级染色沙样本进行沉降,根据高速摄像法测定沉降最快的颗粒速度,即分级染色沙中最大颗粒的沉速。
取长江口泥沙为试验用沙,测定了4种低浓度溶液中5个粒径染色沙的静水沉速。试验结果表明,非均匀沙沉速大于单颗粒沉速,系不同粒级颗粒之间的相互作用即隐暴效应所致。
非均匀沙的隐暴效应可用相对粒径和几何方差来反映,在过渡区修正沉降公式的基础上,引入隐暴系数,通过试验数据确定相对粒径和几何方差的指数,建立起非均匀沙过渡区沉降速度公式。计算结果与试验值符合良好,表明本文提出的非均匀沙过渡区沉速公式精度较高。
长江口非均匀沙沉速研究
沉速是输沙力学的重要课题和泥沙数学模型的主要参数之一。沉速是研究泥沙运动规律和河道冲淤的关键内容,其重要性不言而喻。
由于泥沙运动的复杂性,现有沉速研究多限于均匀沙,而天然水流中均为非均匀沙。因而,对非均匀沙沉ຫໍສະໝຸດ 进行研究有着重要的科学意义与应用价值。
纵观国内外对于泥沙沉速的研究,滞性区和紊流区的均匀沙沉速已基本解决,过渡区的沉速一直是薄弱环节,特别由于非均匀沙沉降运动的复杂性,至今针对非均匀沙过渡区沉速的研究甚少,尚无统一的计算方法。本文提出一种新的基于高速摄像测量泥沙沉降速度的试验方法,即高速摄像法。
相关文档
最新文档