二级路沥青路面结构计算书

合集下载

2019最新规范二级公路沥青路面新建结构计算书

2019最新规范二级公路沥青路面新建结构计算书

哈亚公路尚志镇至一面坡段改扩建工程新建新建路面设计1. 项目概况与交通荷载参数该项目位于黑龙江省,属于二级公路,起点桩号为0,终点桩号为27251.019,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1615辆/日, 交通量年增长率为 6.5%, 方向系数取55.0%, 车道系数取100.0%。

根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表A.2.6-2得到车辆类型分布系数如表1所示。

表1. 车辆类型分布系数根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。

根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。

表3. 非满载车与满载车当量设计轴载换算系数根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为9,232,831, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为639,348,204。

本公路设计使用年限内设计车道累计大型客车和货车交通量为5,638,387,交通等级属于中等交通。

2. 初拟路面结构方案初拟路面结构如表4所示。

表4. 初拟路面结构路基标准状态下回弹模量取40MPa,回弹模量湿度调整系数Ks取1.50,干湿与冻融循环作用折减系数Kη取0.85,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为51MPa。

3. 路面结构验算3.1 沥青混合料层永久变形验算根据表G.1.2,基准等效温度Tξ为13.0℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为14.9℃。

可靠度系数为1.04。

根据B.3.1条规定的分层方法,将沥青混合料层分为7个分层,各分层厚度(hi)如表5所示。

利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。

版沥青路面结构计算书

版沥青路面结构计算书

新建路面设计1. 项目概况与交通荷载参数该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为%, 方向系数取%, 车道系数取%。

根据交通历史数据,按表确定该设计公路为TTC4类,根据表得到车辆类型分布系数如表1所示。

表1. 车辆类型分布系数根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。

表2. 非满载车与满载车所占比例(%)根据表,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。

根据附表,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。

表3. 非满载车与满载车当量设计轴载换算系数根据公式()计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。

本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。

2. 初拟路面结构方案初拟路面结构如表4所示。

表4. 初拟路面结构路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取,干湿与冻融循环作用折减系数Kη取,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。

3. 路面结构验算沥青混合料层永久变形验算根据表,基准等效温度Tξ为℃,由式()计算得到沥青混合料层永久变形等效温度为℃。

可靠度系数为。

根据条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。

利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。

根据式()和式(),计算得到d1=,d2=。

把d1和d2的计算结果带入式(),可得到各分层的永久变形修正系数(kRi),并进而利用式()计算各分层永久变形量(Rai)。

沥青路面计算书

沥青路面计算书

沥青路面计算书一、计算基础资料1、项目所在区域拟建项目为城市主干路,采用双向4车道,路基宽度17米。

位于青海省西宁市东部,自然区划为VII2,属北温带高原半干旱大陆季风气候。

其特点为降雨量少而集中,蒸发量大,日温差大,无霜期 65—140天,冬季寒冷漫长,夏季凉爽,冬长夏短,春夏相连,海拔高,气温低,冻土期长,无霜期短,紫外线强,年降水量 350—550毫米,多年平均降水量450毫米,降水量分布极不均匀,每年以 6、7、8、9四个月雨水较多。

7、8、9三个月,占全年降水量的59%,11月至来年3月共五个月的降水量仅为全年降水量的3%,年最大降水量541.2毫米,年最小降水量为196.4毫米。

年最大蒸发量为2095毫米,最小蒸发量为1535.9毫米。

年平均气温 4.7度,极端最高气温 29.9度,极端最低气温-21.9度,11月至2月的平均气温11.9度,最大冻土层110cm,年平均风速1.4m/s。

2、拟定路面结构方案设计年限为15年,交通量采用工可报告中预测交通量成果。

拟定路面结构方案如下:AC-13细粒式改性沥青混凝土4cmAC-20中粒式沥青混凝土5cmAC-25粗粒式沥青混凝土7cm水泥稳定碎石20cm石灰土稳定砂砾20cm二、计算内容1、轴载换算及设计弯沉值和容许拉应力计算2)设计年限为15年,双向四车道,边道系数采用0.45一个车道上大客车及中型以上的各种货车日平均交通量Nh= 480 ,属轻交通等级当以设计弯沉值和沥青层层底拉应力为指标时:路面营运第一年双向日平均当量轴次: 3302设计年限内一个车道上的累计当量轴次: 2.189018E+07属重交通等级当以半刚性材料结构层层底拉应力为设计指标时:路面营运第一年双向日平均当量轴次: 4686设计年限内一个车道上的累计当量轴次: 3.106523E+07属特重交通等级路面设计交通等级为特重交通等级公路等级一级公路公路等级系数 1 面层类型系数 1 路面结构类型系数 1 路面设计弯沉值: 20.4 (0.01mm)2、新建路面结构厚度计算新建路面的层数: 5标准轴载: BZZ-100路面设计弯沉值: 20.4 (0.01mm)路面设计层层位: 4设计层最小厚度: 200 (mm)按设计弯沉值计算设计层厚度:LD= 20.4 (0.01mm)H( 4 )= 200 mm LS= 20.1 (0.01mm)由于设计层厚度H( 4 )=Hmin时LS<=LD,故弯沉计算已满足要求.H( 4 )= 200 mm(仅考虑弯沉)按容许拉应力计算设计层厚度:H( 4 )= 200 mm(第1 层底面拉应力计算满足要求)H( 4 )= 200 mm(第2 层底面拉应力计算满足要求)H( 4 )= 200 mm(第3 层底面拉应力计算满足要求)H( 4 )= 200 mm(第4 层底面拉应力计算满足要求)H( 4 )= 200 mm(第5 层底面拉应力计算满足要求) 路面设计层厚度:H( 4 )= 200 mm(仅考虑弯沉)H( 4 )= 200 mm(同时考虑弯沉和拉应力)验算路面防冻厚度:路面最小防冻厚度500 mm验算结果表明,路面总厚度满足防冻要求通过对设计层厚度取整以及设计人员对路面厚度进一步的修改, 最后得到路面结构设计结果如下:AC-13细粒式改性沥青混凝土4cmAC-20中粒式沥青混凝土5cmAC-25粗粒式沥青混凝土7cm水泥稳定碎石20cm石灰土稳定砂砾20cm计算新建路面各结构层及路基顶面交工验收弯沉值:第1 层路面顶面交工验收弯沉值LS= 20.1 (0.01mm)第2 层路面顶面交工验收弯沉值LS= 20.3 (0.01mm)第3 层路面顶面交工验收弯沉值LS= 20.7 (0.01mm)第4 层路面顶面交工验收弯沉值LS= 30.3 (0.01mm)第5 层路面顶面交工验收弯沉值LS= 90.6 (0.01mm)路基顶面交工验收弯沉值LS= 232.9 (0.01mm)计算新建路面各结构层底面最大拉应力:(未考虑综合影响系数) 第1 层底面最大拉应力σ( 1 )=-.239 (MPa)第2 层底面最大拉应力σ( 2 )=-.073 (MPa)第3 层底面最大拉应力σ( 3 )=-.036 (MPa) 第4 层底面最大拉应力σ( 4 )= .15 (MPa) 第5 层底面最大拉应力σ( 5 )= .091 (MPa)。

沥青路面结构计算书

沥青路面结构计算书

新建路面设计1. 项目概况与交通荷载参数该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日,交通量年增长率为8.2%,方向系数取55.0%,车道系数取70.0%。

根据交通历史数据,按表 A.2.6-1确定该设计公路为TTC4类,根据表A.2.6-2得到车辆类型分布系数如表1所示。

表1.车辆类型分布系数根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示表2.非满载车与满载车所占比例(%)根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。

根据附表 A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。

表3.非满载车与满载车当量设计轴载换算系数根据公式(A.4.2 )计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551,对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。

本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。

2. 初拟路面结构方案初拟路面结构如表4所示。

表4.初拟路面结构路基标准状态下回弹模量取50MPa回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数K n取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa3. 路面结构验算3.1沥青混合料层永久变形验算根据表G.1.2,基准等效温度T E为20.1 T,由式(G.2.1 )计算得到沥青混合料层永久变形等效温度为21.5 °C。

可靠度系数为1.04。

根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi )如表5所示。

利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)根据式(B.3.2-3 )和式(B.3.2-4 ),计算得到d仁-8.23,d2=0.77。

2017版沥青路面结构计算书

2017版沥青路面结构计算书

新建路面设计1. 项目概况与交通荷载参数该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取70.0%。

根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表A.2.6-2得到车辆类型分布系数如表1所示。

表1. 车辆类型分布系数根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。

表2. 非满载车与满载车所占比例(%)根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。

根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。

表3. 非满载车与满载车当量设计轴载换算系数根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。

本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。

2. 初拟路面结构方案初拟路面结构如表4所示。

表4. 初拟路面结构路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。

3. 路面结构验算3.1 沥青混合料层永久变形验算根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。

可靠度系数为1.04。

根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。

利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。

沥青路面结构设计与计算书

沥青路面结构设计与计算书

沥青路面结构设计与计算书1 工程简介本路段属于安图至汪清段二级公路.K0+000~K3+500,全线设计时速为60km/h的二级公路,路面采用60km/h的二级公路标准。

路基宽度为10m,行车道宽度为2×3. 5m,路肩宽度为2×0.75m硬路肩、2×0.75土路肩。

路面设计为沥青混凝土路面,设计年限为12年。

路面设计以双轮组单轴载100KN为标准轴载,以BZZ-100表示;根据沿线工程地质特征及结合当地筑路材料确定路面结构为:路面的面层采用4cm厚细粒式沥青混凝土和6cm厚中粒式沥青混凝土,基层采用20cm厚水泥稳定碎石,底基层采用石灰粉煤灰土。

2 土基回弹模量的确定本设计路段自然区划位于Ⅱ3区,当地土质为粘质土,由《公路沥青路面设计规范(JTG D50-2004)》表F.2查得,土基回弹模量在干燥状态取39Mpa,在中湿状态取34.5Mpa.3 设计资料(1)交通量年增长率:5% 设计年限:12年12。

4 设计任务4.1 沥青路面结构组合设计4.2 沥青路面结构层厚度计算,并进行结构层层底拉应力验算 4.3 绘制沥青路面结构图 5 沥青路面结构组合设计5.1 路面设计以双轮组单轴载100KN 为标准轴载,以BZZ -100表示。

标准轴载计算参数如表10-1所示。

5.1.1.1 轴载换算轴载换算采用如下的计算公式:35.4121∑=⎪⎭⎫⎝⎛=ki i i P P n C C N ,()11 1.211c m =+⨯-=,计算结果如下表所示。

3注:轴载小于25KN 的轴载作用不计5.1.1.2 累计当量轴次根据设计规范,二级公路沥青路面设计年限取12年,车道系数η=0.7,γ=5.0% 累计当量轴次: ()[][]329841405.07.005.8113651)05.01(3651112=⨯⨯⨯-+=⋅⨯-+=ηγγN N te次5.1.2 验算半刚性基层层底拉应力的累计当量轴次5.1.2.1 轴载验算4验算半刚性基层层底拉应力的轴载换算公式为:8'''121ki i i P N C C n P =⎛⎫= ⎪⎝⎭∑5注:轴载小于50KN 的轴载作用不计5.1.2.2 累计当量轴次参数取值同上,设计年限为12年,车道系数取0.7,则累计当量轴次为:()[][]次254516705.07.0836.6253651)05.01(3651112=⨯⨯⨯-+=⋅'⨯-+='ηγγN N te5.2 路面结构层设计与材料选取由上面计算得到设计年限内一个行车道上的累计当量轴次。

2017版沥青路面结构计算书

2017版沥青路面结构计算书

新建路面设计1. 项目概况与交通荷载参数该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取70.0%。

根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表A.2.6-2得到车辆类型分布系数如表1所示。

表1. 车辆类型分布系数根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。

表2. 非满载车与满载车所占比例(%)根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。

根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。

表3. 非满载车与满载车当量设计轴载换算系数根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。

本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。

2. 初拟路面结构方案初拟路面结构如表4所示。

表4. 初拟路面结构路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。

3. 路面结构验算3.1 沥青混合料层永久变形验算根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。

可靠度系数为1.04。

根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。

利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。

某二级公路改建工程路面结构计算

某二级公路改建工程路面结构计算

某二级公路改建工程路面结构计算一、设计弯沉值和容许拉应力计算设计年限 12 车道系数 0.65 交通量平均年增长率 5.29 %一个车道上大客车及中型以上的各种货车日平均交通量Nh= 3185 ,属特重交通等级当以设计弯沉值和沥青层层底拉应力为指标时 :路面营运第一年双向日平均当量轴次 : 4602设计年限内一个车道上的累计当量轴次 : 1.767329E+07属重交通等级当以半刚性材料结构层层底拉应力为设计指标时 :路面营运第一年双向日平均当量轴次 : 5763设计年限内一个车道上的累计当量轴次 : 2.213193E+07属重交通等级路面设计交通等级为特重交通等级公路等级二级公路公路等级系数 1.1 面层类型系数 1 路面结构类型系数 1.6路面设计弯沉值 : 35.9 (0.01mm)层位结构层材料名称劈裂强度(MPa) 容许拉应力(MPa)1 细粒式沥青混凝土 1.4 .412 中粒式沥青混凝土 1 .33 水泥稳定碎石 .8 .44 水泥稳定碎石 .6 .35 水泥稳定碎石 .25 .136 未篩分碎石二、新建路面结构厚度计算新建路面的层数 : 6标准轴载 : BZZ-100路面设计弯沉值 : 35.9 (0.01mm)路面设计层层位 : 4设计层最小厚度 : 150 (mm)层位结构层材料名称厚度 20℃平均抗压标准差 15℃平均抗压标准差容许应力 (mm) 模量(MPa) (MPa) 模量(MPa) (MPa) (MPa)1 细粒式沥青混凝土 40 1200 0 1800 0 .412 中粒式沥青混凝土 50 1200 0 1800 0 .33 水泥稳定碎石 180 900 0 1200 0 .44 水泥稳定碎石 ? 1500 0 1500 0 .35 水泥稳定碎石 200 550 0 550 0 .136 未篩分碎石 150 150 0 150 07 新建路基 35按设计弯沉值计算设计层厚度 :LD= 35.9 (0.01mm)H( 4 )= 180 mm LS= 26.8 (0.01mm)由于设计层厚度 H( 4 )=Hmin时 LS<=LD,故弯沉计算已满足要求 .H( 4 )= 180 mm(仅考虑弯沉)按容许拉应力计算设计层厚度 :H( 4 )= 180 mm(第 1 层底面拉应力计算满足要求)H( 4 )= 180 mm(第 2 层底面拉应力计算满足要求)H( 4 )= 180 mm(第 3 层底面拉应力计算满足要求)H( 4 )= 180 mm(第 4 层底面拉应力计算满足要求)H( 4 )= 180 mm(第 5 层底面拉应力计算满足要求)路面设计层厚度 :H( 4 )= 180 mm(仅考虑弯沉)H( 4 )= 180 mm(同时考虑弯沉和拉应力)通过对设计层厚度取整以及设计人员对路面厚度进一步的修改,最后得到路面结构设计结果如下:----------------------------------------细粒式沥青混凝土 40 mm----------------------------------------中粒式沥青混凝土 50 mm----------------------------------------水泥稳定碎石 180 mm----------------------------------------水泥稳定碎石 180 mm----------------------------------------水泥稳定碎石 200 mm----------------------------------------未篩分碎石 150 mm----------------------------------------新建路基三、新建路面交工验收弯沉值和层底拉应力计算层位结构层材料名称厚度 20℃平均抗压标准差 15℃平均抗压标准差综合影响系数 (mm) 模量(MPa) (MPa) 模量(MPa) (MPa)1 细粒式沥青混凝土 40 1200 0 1800 0 12 中粒式沥青混凝土 50 1200 0 1800 0 13 水泥稳定碎石 180 900 0 1200 0 14 水泥稳定碎石 180 1500 0 1500 0 15 水泥稳定碎石 200 550 0 550 0 16 未篩分碎石 150 150 0 150 0 17 新建路基 35 1 计算新建路面各结构层及路基顶面交工验收弯沉值 :第 1 层路面顶面交工验收弯沉值 LS= 24 (0.01mm)第 2 层路面顶面交工验收弯沉值 LS= 26.2 (0.01mm)第 3 层路面顶面交工验收弯沉值 LS= 29.4 (0.01mm)第 4 层路面顶面交工验收弯沉值 LS= 41.2 (0.01mm)第 5 层路面顶面交工验收弯沉值 LS= 102.9 (0.01mm)第 6 层路面顶面交工验收弯沉值 LS= 223.5 (0.01mm)路基顶面交工验收弯沉值 LS= 266.2 (0.01mm)( 根据“公路沥青路面设计规范”公式计算)计算新建路面各结构层底面最大拉应力 :(未考虑综合影响系数)第 1 层底面最大拉应力σ( 1 )=-.196 (MPa)第 2 层底面最大拉应力σ( 2 )=-.044 (MPa)第 3 层底面最大拉应力σ( 3 )=-.009 (MPa)第 4 层底面最大拉应力σ( 4 )= .112 (MPa)第 5 层底面最大拉应力σ( 5 )= .058 (MPa)四、改建路面加铺补强层厚度计算加铺路面的层数 : 6标准轴载 : BZZ-100路面设计弯沉值 : 35.9 (0.01mm)路面设计层层位 : 4设计层最小厚度 : 150 (mm)层位结构层材料名称厚度 20℃平均抗压标准差 15℃平均抗压标准差容许应力 (mm) 模量(MPa) (MPa) 模量(MPa) (MPa) (MPa)1 细粒式沥青混凝土 40 1200 0 1800 0 .412 中粒式沥青混凝土 50 1200 0 1800 0 .33 水泥稳定碎石 180 900 0 1200 0 .44 水泥稳定碎石 ? 1500 0 1500 0 .35 水泥稳定碎石 200 550 0 550 0 .136 未篩分碎石 150 150 0 150 07 改建前原路面 65按设计弯沉值计算设计层厚度 :(弯沉值按新建路面 F 公式计算)LD= 35.9 (0.01mm)H( 4 )= 180 mm LS= 21.5 (0.01mm)由于设计层厚度 H( 4 )=Hmin时 LS<=LD,故弯沉计算已满足要求 .H( 4 )= 180 mm(仅考虑弯沉)按容许拉应力计算设计层厚度 :H( 4 )= 180 mm(第 1 层底面拉应力计算满足要求)H( 4 )= 180 mm(第 2 层底面拉应力计算满足要求)H( 4 )= 180 mm(第 3 层底面拉应力计算满足要求)H( 4 )= 180 mm(第 4 层底面拉应力计算满足要求)H( 4 )= 180 mm(第 5 层底面拉应力计算满足要求)路面设计层厚度 :H( 4 )= 180 mm(仅考虑弯沉)H( 4 )= 180 mm(同时考虑弯沉和拉应力)通过对设计层厚度取整以及设计人员对路面厚度进一步的修改,最后得到路面结构设计结果如下:----------------------------------------细粒式沥青混凝土 40 mm----------------------------------------中粒式沥青混凝土 50 mm----------------------------------------水泥稳定碎石 180 mm----------------------------------------水泥稳定碎石 180 mm----------------------------------------水泥稳定碎石 200 mm----------------------------------------未篩分碎石 150 mm----------------------------------------改建前原路面五、改建路面交工验收弯沉值和层底拉应力计算层位结构层材料名称厚度 20℃平均抗压标准差 15℃平均抗压标准差综合影响系数 (mm) 模量(MPa) (MPa) 模量(MPa) (MPa)1 细粒式沥青混凝土 40 1200 0 1800 0 12 中粒式沥青混凝土 50 1200 0 1800 0 13 水泥稳定碎石 180 900 0 1200 0 14 水泥稳定碎石 180 1500 0 1500 0 15 水泥稳定碎石 200 550 0 550 0 16 未篩分碎石 150 150 0 150 0 17 改建前原路面 65计算改建路面各加铺层顶面交工验收弯沉值 :(按新建路面 F 公式计算) 第 1 层路面顶面交工验收弯沉值 LS= 19.4 (0.01mm)第 2 层路面顶面交工验收弯沉值 LS= 20.9 (0.01mm)第 3 层路面顶面交工验收弯沉值 LS= 23.2 (0.01mm)第 4 层路面顶面交工验收弯沉值 LS= 32 (0.01mm)第 5 层路面顶面交工验收弯沉值 LS= 77.1 (0.01mm)第 6 层路面顶面交工验收弯沉值 LS= 180.9 (0.01mm)计算改建路面各加铺层底面最大拉应力 :(未考虑综合影响系数) 第 1 层底面最大拉应力σ( 1 )=-.179 (MPa)第 2 层底面最大拉应力σ( 2 )=-.032 (MPa)第 3 层底面最大拉应力σ( 3 )=-.008 (MPa)第 4 层底面最大拉应力σ( 4 )= .1 (MPa)第 5 层底面最大拉应力σ( 5 )= .048 (MPa)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

织金县青山至城关公路改扩建
新建路面设计
1. 项目概况与交通荷载参数
该项目位于贵州省,属于二级公路,起点桩号为0,终点桩号为16000,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取70.0%。

根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表A.2.6-2得到车辆类型分布系数如表1所示。

表1. 车辆类型分布系数
根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。

表2. 非满载车与满载车所占比例(%)
根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。

根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。

表3. 非满载车与满载车当量设计轴载换算系数
根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。

本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。

2. 初拟路面结构方案
初拟路面结构如表4所示。

表4. 初拟路面结构
路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。

3. 路面结构验算
3.1 沥青混合料层永久变形验算
根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。

可靠度系数为1.04。

根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。

利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。

根据式(B.3.2-3)和式(B.3.2-4),计算得到d1=-8.23,d2=0.77。

把d1和d2的计算结果带入式(B.3.2-2),可得到各分层的永久变形修正系数(kRi),并进而利用式(B.3.2-1)计算各分层永久变形量(Rai)。

各计算结果汇总于表5中。

各层永久变形累加得到沥青混合料层总永久变形量Ra=19.2(mm),根据表3.0.6-1,沥青层容许永久变形为20.0(mm),拟定的路面结构满足要求。

表5. 沥青层永久变形计算结果
3.2 无机结合料层疲劳开裂验算
根据弹性层状体系理论,计算得到无机结合料层层底拉应力为0.480MPa。

根据气象资料,工程所在地区冻结指数F为50.0℃•日,按照表B.1.1,季节性冻土地区调整系数ka取1.00。

根据式(B.2.1-2),现场综合修正系数为-0.747 根据工程所在地区,查表G.1.2得到基准路面结构温度调整系数为1.31,根据初拟路面结构和路面结构层材料参数,按式(G.1.3-1)计算得到温度调整系数kT2为1.15。

由表B.2.1-1,对于无机结合料稳定粒料,疲劳开裂模型参数a=13.24,b=12.52。

弯拉强度为2.0MPa。

根据以上参数,按式(B.2.1-1)计算得到无机结合料层底疲劳寿命为678,769,556。

3.3 贯入强度验算
公路所在地区月平均气温大于0℃的月份数为11个月,由此得到对应于贯入强度验算的设计车道累计设计轴载作用次数Ne5为7,433,755。

所在地区月平均气温大于0℃的各月份气温平均值为20.0℃。

根据公路等级,参照表3.0.6-1,得到沥青混合料层容许永久变形量为20.0mm。

路面结构系数根据式(5.5.8-2)计算为0.91,沥青混合料层的综合贯入强度由式(5.5.8-3)确定为0.55MPa,根据式(5.5.8-1),得到沥青混合料层的贯入强度要求值为0.49,所以,拟定的路面结构和材料满足贯入强度要求。

4. 路基顶面和路表验收弯沉值
根据附录B.7节,确定路基顶面和路表验收弯沉值时,采用落锤式弯沉仪,荷载盘半径为150mm,荷载为50kN。

路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,则平衡湿度状态下的回弹模量为50MPa,采用公式(B.7.1)计算得到路基顶面验收弯沉值为373.5(0.01mm)。

采用拟定的路面结构以及各层结构模量值,路基顶面回弹模量采用平衡湿度状态下的回弹模型乘以模量调整系数kl(kl=0.5),为25MPa,根据弹性层状体系理论计算得到路表验收弯沉值la为35.2(0.01mm)。

5. 结果汇总
各项验算结果汇总如下表所示:
表6. 分析结果汇总
由上表可知,所选路面结构和材料能满足各项验算内容的要求。

相关文档
最新文档