中国科学院资源环境科学数据中心
基于生态安全格局的高原城市生态修复关键区域识别——以昆明市为例

第 40 卷 ,第 3 期 2023 年6 月15 日国土资源科技管理Vol. 40,No.3Jun. 15,2023 Scientific and Technological Management of Land and Resourcesdoi:10.3969/j.issn.1009-4210.2023.03.002基于生态安全格局的高原城市生态修复关键区域识别——以昆明市为例刘凤莲,刘 艳(云南财经大学 国土资源与持续发展研究所,云南 昆明 650221)摘 要:构建区域生态安全格局,识别生态修复关键区域,是在生态文明建设背景下,实施区域生态修复、维护区域生态安全、提高区域生态环境质量的重要举措。
本文以典型的高原城市——昆明市为研究区,利用形态学空间格局分析和景观连通性识别生态源地,通过成本路径工具提取生态廊道,运用电路理论确定生态“夹点”、生态障碍点等生态修复关键区域。
研究表明:(1)昆明市生态源地面积总计6721.78km2,占全市总面积的31.99%,主要土地利用类型为林地和水域。
(2)共提取出91条生态廊道,其中重要廊道19条,重要生态廊道集中分布在昆明市的北部。
(3)共识别生态“夹点”75处,面积66.06km2;生态障碍点4处,面积49.24km2;生态断裂点41处。
研究可为昆明市国土空间生态修复关键区域识别和区域生态保护修护工作的开展提供参考。
关键词:生态安全格局;生态修复分区;形态学空间格局分析;电路理论;昆明市中图分类号:X171.4 文献标志码:A 文章编号:1009-4210-(2023)03-017-14 Identification of Key Areas for Ecological Restoration in Plateau Cities Based on the Ecological Security Pattern: A Case Study of KunmingLIU Feng-lian,LIU Yan(Institute of Land & Resources and Sustainable Development,Yunnan University of Finance andEconomics,Kunming 650221,Yunnan,China)Abstract: Constructing a regional ecological security pattern and identifying key areas for ecological restoration were important measures to pursue regional ecological restoration,maintain regional ecological security,and improve the regional ecological environment quality under the context of ecological civilization construction. This paper, taking Kunming,a typical plateau city,as the study area,applied morphological spatial pattern analysis and landscape connectivity to identify ecological source areas,extracted the ecological corridors with the cost path as a tool,and identified the key areas for ecological restoration based on the circuit theory,such as ecological pinch points and ecological barrier points. The 收稿日期:2023-03-16;改回日期:2023-03-30基金项目:云南省教育厅科学研究基金项目(2021J0592);云南财经大学引进人才项目(2022D13)作者简介:刘凤莲(1981—),女,博士,硕士生导师,从事土地利用与区域可持续发展研究。
SWAT模型中天气发生器与数据库构建及其验证

(AU); dn 为该年的天数, 从 1 到 365, 二月总被假定为 28 天。 " 由 Perrin de Brichambaut[33]提出的公式计算。
# ! "$ -1
"=sin
0.4sin
2$ 365
( dn - 82)
( 3)
TSR 由公式( 4) [29]给出。
-1
TSR= cos
! - tan%tan! " !
SWAT 模 型 的 最 新 版 本 为 SWAT2005, 该 版 本 已 在 SWAT 官方网站上公布, 其主要特征是对以先前版本一些错误的纠正, 值得一提的是增加了日以下步长的降水量生成器并允许用户定 义天气预测期[27]。前者对于为 SWAT 模型的短期预报打下了基 础。后者允许用户在模拟降水时, 预测期之前降水采用多年平均 值而预测期降水采用预测期平均值来模拟, 这种改进对评价流 域内预测天气的影响非常有用, 如预知近期暴雨的影响可以提 早对水库进行合理的调控。
系数≥0.91, 确定性系数≥0.93, 取得了非常好的模拟效果。结果表明在缺乏详细的气象和土壤数据情况下, 可以构建
SWAT 模型进行水文模拟研究。
关键词: SWAT 模型; 天气发生器; 土壤属性库
中图分类号: P338+.9
文献标识码: A
文章编号: 1000- 0852(2007)05- 0025- 06
3 SWAT 模型数据库构建
3.1 天气发生器 降 雨 量 、平 均 气 温 和 太 阳 辐 射 量 等 参 数 对 水 文 过 程 、作 物 生
长 和 养 分 降 解 、转 化 等 都 具 有 重 要 影 响 。 连 续 的 日 降 雨 量 、日 气 温等气候资料对模型的模拟效果影响显著。然而由于监测站点 数量少和监测数据缺失等原因以及为了模拟气候变化对水文过 程和水体水质的影响, 有必要构建一种用于模拟给定气候条件 下的随机天气模型, 即天气发生器。SWAT 模型内建 WXGEN 天 气发生器[28], 其作用主要有两个[29], 一是用于生成气候数据, 二是 填补缺失的数据。对于美国用户来说, SWAT 模型已内建美国本 土的天气发生器, 而其他国家用户必需另行构建。其主要输入数 据有日降水量、日 最 高 和 最 低 气 温 、日 太 阳 辐 射 量 、日 露 点 温 度 和日平均风速等, 经过统计分析计算得出多年月平均气候特征。 对于日降水量、日 最 高 和 最 低 气 温 、日 平 均 风 速 这 四 个 数 据 , 我 国的气象观测站点一般都有监测项目, 以下主要论述如何估算 日太阳辐射量和露点温度。 3.1.1 辐射日值估算
211261549_基于FY3B-MWRI_数据的东北积雪深度反演

文章编号:2095-6835(2023)10-0080-04基于FY3B-MWRI数据的东北积雪深度反演段芸,王星东(河南工业大学信息科学与工程学院,河南郑州450001)摘要:积雪是地球系统冰冻圈5层的主要成分,它有高反射率、高相变潜温和低热传导方式的特点,可以通过影响地表能量平衡来影响气候。
在对积雪深度的反演研究中,许多研究学者都在对算法及模型进行完善,且有较好的反演效果。
由于地区下垫面类型的不同,仅使用单一算法模型进行探测总会与实测数据产生误差。
选择东北3省为研究区,以FY3B-MWRI为数据源,根据研究区域土地利用类型的特征,针对不同下垫面(森林、草地、农田、裸地)使用不同的算法模型,进一步得出更为准确的反演结果。
经验证,本研究方法的雪深反演结果与实测数据的RMSE(均方根误差)为5.99cm,表明该算法对东北3省积雪深度反演取得了较高的精度。
关键词:中国东北部地区;积雪深度反演;被动微波遥感;FY3B-MWRI中图分类号:P343文献标志码:A DOI:10.15913/ki.kjycx.2023.10.023积雪有高反射率、高相变潜热和低导热性等特征[1],通过影响地表能量的平衡来影响气候系统,也是地球系统5层冰层的重要组成部分[2]。
东北3省地处中国的最北面,研究表明东北大部分地区为世界3个最稳定的积雪区[3]。
微波可以穿透一定厚度的积雪,学者们可使用微波遥感技术对积雪深度进行监测[4]。
积雪深度反演算法在国内外早已发展并在不断完善。
CHANG等[5]基于均质积雪的辐射传输方程得到SMMR的雪深反演算法;FOSTER等[6]对Chang算法加以修改,认为植被覆盖率会影响雪深探测,提出了NASA96算法;蒋玲梅等[7]将不同下垫面类型的影响因素加入雪深反演算法中,完善了用于雪深反演的风云业务化算法,根据经验证明取得了较好的反演精度。
FY-3B卫星上的微波成像系统,拥有5个双极性的亮温信道,可以提供全天候的土壤水分、积雪深度及大气湿度等多个方面的信息。
海河流域生长季植被覆盖度时空变化及驱动力分析

第30卷第4期2023年8月水土保持研究R e s e a r c ho f S o i l a n d W a t e rC o n s e r v a t i o nV o l .30,N o .4A u g.,2023收稿日期:2022-06-07 修回日期:2022-07-06资助项目:流域水循环模拟与调控国家重点实验室自由探索课题(S K L 2022T S 01);国家重点研发计划(2021Y F C 3200200);国家自然科学基金(52025093,51979284) 第一作者:钤会冉(1997 ),女,河南清丰县人,硕士,研究方向为水文水资源研究㊂E -m a i l :qi a n h u i r a n 123@163.c o m 通信作者:翟家齐(1984 ),男,河南信阳人,博士,正高级工程师,主要从事平原区水循环模拟㊁农业节水潜力评估㊁区域干旱评估研究㊂E -m a i l :j i a qi z h a i @163.c o m h t t p :ʊs t b c y j .p a p e r o n c e .o r gD O I :10.13869/j.c n k i .r s w c .2023.04.037.钤会冉,翟家齐,马梦阳,等.海河流域生长季植被覆盖度时空变化及驱动力分析[J ].水土保持研究,2023,30(4):309-317.Q I A N H u i r a n ,Z H A I J i a q i ,MA M e n g y a n g ,e t a l .T e m p o r a l a n d S p a t i a l V a r i a t i o n o fV e g e t a t i o nC o v e r a g e a n d I t sD r i v i n g F o r c e sD u r i n gt h eG r o w -i n g Se a s o n i nH a i h eR i v e rB a s i n [J ].R e s e a r c hof S o i l a n d W a t e rC o n s e r v a t i o n ,2023,30(4):309-317.海河流域生长季植被覆盖度时空变化及驱动力分析钤会冉1,2,翟家齐2,马梦阳2,赵勇2,凌敏华1,王庆明2(1.郑州大学水利科学与工程学院,郑州450001;2.中国水利水电科学研究院流域水循环模拟与调控国家重点实验室,北京100038)摘 要:[目的]了解海河流域生长季植被覆盖度(F V C )的时空变化及其驱动力,以期为海河流域的生态保护㊁建设与可持续发展提供参考㊂[方法]基于MO D I SN D V I 遥感数据和同时期的18种影响因子,采用趋势分析法和M -K 显著性检验分析了2001 2019年海河流域生长季植被覆盖度的时空变化特征;并利用地理探测器探讨了其空间分异特征与驱动力㊂[结果]2001 2019年海河流域生长季植被覆盖度总体呈显著上升趋势,线性倾向率为0.063/10a ,2011年之后增速减缓㊂空间分布差异明显,植被覆盖度总体较高,仅环渤海湾地带和一些城市区域植被覆盖率较低㊂改善区域的面积远大于退化面积,其中改善部分以极显著改善为主,占流域总面积的60.42%㊂海河流域生长季植被覆盖度的空间分布差异主要由林地比例和林草混合地比例所决定,解释力均在30%以上㊂对海河流域生长季植被覆盖度交互作用解释力最强的是林草混合地比例和农田比例㊂[结论]海河流域植被覆盖度总体显著上升,空间分布差异主要驱动力为林地比例和林草混合地比例㊂关键词:植被覆盖度(F V C );生长季;地理探测器;海河流域中图分类号:Q 948 文献标识码:A 文章编号:1005-3409(2023)04-0309-09T e m p o r a l a n dS p a t i a lV a r i a t i o no fV e g e t a t i o nC o v e r a g e a n d I t sD r i v i n gF o r c e sD u r i n g t h eG r o w i n g Se a s o n i nH a i h eR i v e rB a s i n Q I A N H u i r a n 1,2,Z H A I J i a q i 2,MA M e n g y a n g 2,Z H A O Y o n g 2,L I N G M i n h u a 1,WA N G Q i n g m i n g2(1.S c h o o l o f W a t e rC o n s e r v a n c y E n g i n e e r i n g ,Z h e n g z h o uU n i v e r s i t y ,Z h e n g z h o u 450001,C h i n a ;2.S t a t eK e y L a b o r a t o r y o f S i m u l a t i o na n dR e g u l a t i o no f Wa t e r C y c l e i nR i v e rB a s i n ,C h i n aI n s t i t u t e o f W a t e rR e s o u r c e s a n d H y d r o p o w e rR e s e a r c h ,B e i j i n g 100038,C h i n a )A b s t r a c t :[O b j e c t i v e ]I no r d e rt o p r o v i d er e f e r e n c ef o re c o l o gi c a l p r o t e c t i o n ,c o n s t r u c t i o na n ds u s t a i n a b l e d e v e l o p m e n t o fH a i h eR i v e rB a s i n ,t h e t e m p o r a l a n d s p a t i a l c h a n g e s o f v e g e t a t i o n c o v e r a ge (F V C )i n g r o w -i n g s e a s o na n d i t s d r i v i n gf o r c e sw e r e i n v e s t ig a t e d .[M e th o d s ]B a s e do n MO D I SN D V I r e m o t e s e n si n g da t a a n d 18i n f l u e n c i n g f a c t o r s o f t h e s a m e p e r i o d ,t r e n d a n a l y s i s a n d M -Ks i g n i f i c a n c e t e s tw e r eu s e d t oa n a l yz e t h e s p a t i o t e m p o r a l v a r i a t i o n c h a r a c t e r i s t i c s o f v e g e t a t i o n c o v e r a g e d u r i n g t h e g r o w i n g s e a s o no fH a i h eR i v e r B a s i n f r o m2001t o 2019.T h e s p a t i a l d i f f e r e n t i a t i o n c h a r a c t e r i s t i c s a n dd r i v i n g f o r c e s a r e d i s c u s s e db y me a n s ofg e o g r a phi c d e t e c t o r .[R e s u l t s ]D u r i n g t h e g r o w i n g s e a s o no fH a i h eR i v e rB a s i nf r o m2001t o2019,t h e v e g e t a t i o n c o v e r a g e s h o w e d a s i g n i f i c a n t u p w a r d t r e n d ,w i t ha l i n e a r t e n d e n c y ra t e o f 0.063/d e c a d e ,a n d t h e g r o w t h r a t e s l o w e dd o w na f t e r 2011.T h ev e g e t a t i o nc o v e r a g ew a s r e l a t i v e l y h i g h i n t h eB o h a i B a y ar e aa n d s o m eu r b a na r e a s .T h ea r e ao f i m p r o v e m e n ta r e aw a s m u c hl a r g e r t h a nt h a to fd e gr a d a t i o na r e a ,a n dt h e Copyright ©博看网. All Rights Reserved.i m p r o v e m e n t p a r tw a s d o m i n a t e db y e x t r e m e l y s i g n i f i c a n t i m p r o v e m e n t,a c c o u n t i n g f o r60.42%o f t h e t o t a l b a s i na r e a.T h e s p a t i a l v a r i a t i o no f v e g e t a t i o n c o v e r a g e i n H a i h eR i v e rB a s i nd u r i n g t h e g r o w i n g s e a s o nw a s m a i n l y d e t e r m i n e db y t h e p r o p o r t i o no f f o r e s t l a n da n dt h e p r o p o r t i o no fm i x e df o r e s t-g r a s s l a n d,a n dt h e e x p l a n a t o r yp o w e rw a sm o r e t h a n30%.T h e s t r o n g e s t e x p l a n a t i o n f o r t h e i n t e r a c t i o no f v e g e t a t i o nc o v e r a g e i nH a i h eR i v e rB a s i nd u r i n g t h e g r o w i n g s e a s o nw a s t h e r a t i oo fm i x e d f o r e s t a n d g r a s s l a n d a n d t h e r a t i oo f f a r m l a n d.[C o n c l u s i o n]O v e r a l lv e g e t a t i o nc o v e r a g e i n c r e a s e ds i g n i f i c a n t l y i n H a i h eR i v e rB a s i n,a n dt h e m a i nd r i v i n g f o r c ew a s t h e p r o p o r t i o no f f o r e s t l a n d a n d t h e p r o p o r t i o no fm i x e d f o r e s t a n d g r a s s l a n d. K e y w o r d s:f r a c t i o n a l v e g e t a t i o n c o v e r a g e(F V C);g r o w i n g s e a s o n;g e o g r a p h i c a l d e t e c t o r;H a i h eR i v e rB a s i n植被作为陆地生态系统中一个重要的组成部分,在陆地生态系统物质循环㊁能量流动㊁信息传递等方面起到了重要的枢纽作用[1],既能促进地球生态系统平衡㊁水循环㊁气候变化[2-3],还可以用来监测生态环境变化[4]㊂植被覆盖度(f r a c t i o n a l v e g e t a t i o n c o v e r a g e,F V C)指植被(包括叶㊁茎㊁枝)在地面的垂直投影面积占观测区总面积的百分比[5],其变化能够直接或间接改变陆地地表下垫面属性,进而对气候调节㊁水土保持以及生态系统的稳定性等产生影响[6]㊂因此,开展流域尺度植被覆盖变化研究以及揭示其驱动力机制,有利于深刻认识陆地生态系统内部的相互作用,对进一步掌握生态系统恢复成效具有极大意义[7]㊂目前,国内外学者深入研究了不同区域尺度的植被覆盖时空变化规律,主要集中于海河流域㊁黄土高原地区等植被变化显著的区域[8],多年来一直是生态环境等领域研究的热点㊂对于植被覆盖度时空变化驱动力的研究主要运用多元线性回归分析㊁相关性分析等传统数学统计方法㊂为弥补仅把气温㊁降水等气候因子作为驱动因素来进行归因分析的片面性,国内外学者先后提出了残差趋势法[9]㊁回归模型法[10]㊁基于生物物理过程的模型方法[11]和地理探测器法[12]等,来定量分解气温㊁降水等自然因素和人类活动强度等人为因素对植被变化的相对贡献㊂其中,地理探测器法以统计学原理的空间方差分析为基础,对变量无限性假设,不仅能够检验气候㊁地形㊁人类活动㊁土壤等多种因子是否是形成植被覆盖时空格局的原因,还可以量化不同因子之间的交互作用对植被覆盖空间分布及其变化的影响程度,并且对数据要求低㊁运算速度较快且精确度高,能够极大程度提高归因分析的全面性,被广泛应用于植被N D V I驱动因子的探测中[13-19]㊂海河流域不仅是重要的工农业生产基地,还是我国的政治文化中心,其战略地位十分重要㊂近年来由于气候变化以及人类活动加强等原因,导致其自然灾害频发,生态系统十分脆弱[20]㊂自20世纪80年代以来,持续大规模封山育林育草㊁退耕还林还草㊁坡改梯㊁於地坝等水土保护措施,使得海河流域的植被覆盖度大幅度提升㊂目前,已有学者对该流域植被变化进行了相关研究[21-25],并且,王永财[26]和陈福军[27]等分别利用1998 2011年的S P O T/N D V I数据和2000 2016年MO D I S/N D V I数据对海河流域植被变化及其与气候因子的相关性进行了研究,对海河流域植被变化特征及其与气候的关系有了一定的认识,但对于人类活动㊁地形和土壤性质对植被覆盖的空间分布差异的影响等综合问题缺乏进一步解析㊂因此,本文利用2001 2019年MO D I S/N D V I数据和同时期18种因子,分析海河流域生长季(4 10月)植被覆盖度的时空变化特征,并利用地理探测器探讨其空间分异特征与驱动力,以期为海河流域的生态保护㊁建设与可持续发展提供参考㊂1资料和方法1.1研究区概况海河流域位于112ʎ 120ʎE,35ʎ 43ʎN,西以山西高原与黄河区接界,北以蒙古高原与内陆河接界,南界黄河,东临渤海㊂流域总面积3.182ˑ105k m2,占全国总面积的3.3%,属于半湿润半干旱的温带东亚季风气候区㊂地势总体上为西北高东南低,流域年平均气温1.5~ 14ħ,年平均相对湿度50%~70%;年平均降水量539 m m,属半湿润半干旱地带;流域由海河㊁滦河㊁徒骇马颊河三大水系㊁七大河系和十条骨干河流组成㊂其中,海河水系是主要水系,由北部的蓟运河㊁潮白河㊁北运河㊁永定河和南部的大清河㊁子牙河㊁漳卫河组成;滦河水系包括滦河及冀东沿海诸河;徒骇马颊河水系位于流域最南部,为单独入海的平原河道㊂土壤类型以褐土和棕壤为主㊂土地利用类型见图1㊂1.2数据来源及预处理植被N D V I数据为美国国家航空航天局(N A S A)提供的MO D I S MO D13A3产品,时间分辨率为月,空间分辨率为1k mˑ1k m㊂选取的数据年份范围为2001 2019年,利用A r c G I S10.8对其进行镶嵌㊁格013水土保持研究第30卷Copyright©博看网. All Rights Reserved.式和定义投影等操作,本研究为最大程度消除云㊁雾㊁大气以及非生长季的影响,选取植被生长最为旺盛的生长季(4 10月)作为研究时段㊂利用最大值合成法合成年N D V I 数据;计算植被覆盖度所需要的L A I 数据来自于中分辨率成像光谱仪M O D I S 的500m 分辨率8d合成产品(MO D 15A 2H )㊂研究共选定的18种生长季植被覆盖度空间分布变化潜在影响因子,涵盖气候㊁地形㊁人类活动㊁土壤性质4个方面,数据类型㊁来源及简要说明见表1㊂为使各因子与N D V I 数据具有相同的投影坐标并保持像元大小一致,对其进行裁剪和重采样等预处理㊂按照5k mˑ5k m 格网,利用A r c G I S10.8中的渔网工具生成12818个采样点,并获取采样点对应地理位置的气候㊁人类活动㊁土壤和地形数据㊂为有效地避免人为因素的干扰,利用A r c G I S 中的自然间断法将各因子分为10类㊂图1 海河流域2018年土地利用类型表1 影响因子数据来源及处理因子类型因子符号单位数据来源及处理气候年均降水P R E mm中国气象数据网(h t t p :ʊd a t a .c m a .c n /d a t a /)年均温Tħ年潜在蒸散发P E mm /a G D PG D P 万元/k m 2中国科学院资源环境科学与数据中心(h t t p :ʊw w w.r e s d c .c n /)人口密度P O P人/k m 2林地比例F O %美国国家航空航天局(N A S A )提供的2001 2019年国际地圈-生物圈计划(I G B P )分类㊁空间分辨率为500m 的MO D I S 土地覆盖类型产品(M C D 12Q 1),计算百分比人类活动灌丛比例B U %农田比例F A %草地比例G A %林草混合地比例S A %城镇比例U B%地形D E M D E M m 中国科学院资源环境科学与数据中(h t t p :ʊw w w.r e s d c .c n /)坡度S l o p e (ʎ)基于D E M 数据,采用A r c G I S 10.8S p a t i a lA n a l y s t 工具计算生成坡度栅格数据黏土比例C l a y%联合国粮农组织(F A O )和维也纳国际应用系统研究所(ⅡA S A )所构建的世界和谐土壤数据库(H a r m o n i z e d W o r l dS o i lD a t a b a s e )(HW S D )沙土比例S a n d %土壤性质壤土比例S i l t %有机碳含量O C %碎石含量G r a v e l %1.3 研究方法1.3.1 像元二分模型 采用改进像元二分模型[28]估算海河流域生长季的植被覆盖度㊂假设N D V I 只有植被和土壤两部分组成,N D V I =M ㊃N D V I V -N D V I S(1)M =N D V I -N D V I S N D V I V -N D V I SL A I >3M =N D V I -N D V I SN D V I V -N D V I S2L A I ɤ3ìîíïïïï(2)式中:N D V I V 为纯植被覆盖部分的N D V I 值;N D V I S为纯土壤覆盖部分的N D V I 值;M 为植被覆盖度;L A I 为叶面积指数㊂根据‘土壤侵蚀分级分类标准“(S L 190 2007)对计算得到的生长季植被覆盖度进行分级[29],见表2㊂1.3.2 线性趋势分析 采用一元线性回归分析法,逐像元分析海河流域生长季F V C 的变化趋势,计算公式如下:S l o pe =ðni =1(i -l )(N D V I i -ND V I )ðni =1(i =l )2(3)式中:S l o p e 为生长季F V C 的斜率㊂若值为正,表示海河流域生长季F V C 呈增加趋势;若值为负,则相反;若值为0,则表示没有变化㊂n 为所研究年份的时间跨度,本文n =19;i 为年份;`i 为平均年份;N D V I i 为第i 年的N D V I 值;N D V I 为年均N D V I 值㊂113第4期 钤会冉等:海河流域生长季植被覆盖度时空变化及驱动力分析Copyright ©博看网. All Rights Reserved.表2植被覆盖度等级分类等级裸地(Ⅰ)低覆盖度(Ⅱ)中低覆盖度(Ⅲ)中等覆盖度(Ⅳ)中高覆盖度(Ⅴ)高覆盖度(Ⅵ)植被覆盖度ɤ0.10.1~0.30.3~0.450.45~0.60.6~0.75ȡ0.75采用M a n n a-K e n d a l l检验(M-K检验)判断趋势的显著性,其优点为能够排除少数异常值对数据的干扰[30]㊂因此,本文将M a n n a-K e n d a l l检验与线性趋势分析相结合,根据趋势显著性检验结果将S l o p e趋势分为以下5个等级:极显著退化(S l o p e<0,p<0.01);显著退化(S l o p e<0,0.01ɤpɤ0.05),无显著变化(p>0.05);显著改善(0<S l o p e,0.01ɤpɤ0.05);极显著改善(0<S l o p e,p<0.01)㊂1.3.3地理探测器地理探测器[31]是通过探测事件空间分层异质性来揭示其背后驱动因子的一种统计学方法,空间分层异质性是指区域总方差大于层内方差之和的现象㊂该方法的核心思想为:如果某个自变量X对因变量Y有重要影响,那么自变量X与因变量Y的空间分布就具有一致性㊂地理探测器共有4个模块,分别为:因子探测器㊁交互作用探测器㊁风险探测器和生态探测器㊂本文主要应用地理探测器的因子探测器和交互作用探测器模块㊂利用因子探测器量化气候㊁人类活动㊁地形和土壤等各因子对海河流域生长季F V C的空间分异性的解释程度,其解释力大小用q值衡量,在生成q值的同时会对其进行显著性检验,表达式为:q=1-ðL h=1N hσ2hNσ2=1-S S WS S T(4)其中:S S W=ðl h=1N hσ2h,S S T=Nσ2(5)式中:h为自变量X的分层;N h和N分别为层h内和区域内的单元数;σ2h和σ2分别为第h层的方差和因变量Y的方差;S S W为层内方差之和;S S T为区域总方差㊂q的取值范围为0~1㊂q值越大表明因变量Y的空间分层异质性越强,自变量X对因变量Y的解释力也越强㊂根据q值大小可分析出各因子对海河流域生长季F V C影响的大小,能够直观地判断影响生长季F V C的主导因子㊂利用交互探测器识别不同因子之间的交互作用,即评估两个因子共同对生长季F V C的空间分布作用时,其解释力是增强还是减弱,或这些因子对生长季F V C空间分布的影响是相互独立的㊂评估方法是首先分别计算两种影响因素X1和X2对Y的q值,然后再计算它们交互作用时的q值,对三者之间的q值大小进行比较,主要结果为5种[32]㊂2结果与分析2.1生长季F V C的时空动态变化2.1.1生长季F V C年际变化特征选取每年的生长季F V C平均值代表当年植被覆盖状况,制作生长季F V C年际变化图,见图2㊂2001 2019年海河流域生长季F V C值在0.30~0.48波动,多年生长季F V C值平均值为0.41,最大值出现在2018年为0.46,2001年最小,其值为0.318,总体呈显著上升趋势,线性倾向率为0.063/10a㊂2001 2010年,生长季F V C整体上呈现明显的上升趋势,达到了多年均值水平,线性倾向率为0.087/10a,但在2006年和2010年出现低谷,原因主要是由于该年降水量偏低㊂2011年之后,生长季F V C增速减缓,均超过多年均值水平㊂图2表明,海河流域生长季植被覆盖度ɤ0.1的裸地面积占比由2001年9.85%降低到2019年的3.22%;低覆盖度的面积占比由2001年的30.37%降低到2019年的20.50%;中低植被覆盖度和中等植被覆盖度多年平均面积占比分别为32.87%,27.39%,是研究区生长季植被覆盖度的两种主要类型;中高覆盖度和高覆盖度呈现显著的增加趋势,分别由2001年的1.38%增加到2019年的17.64%和由2001年的0.00%增加到2019年的7.26%㊂总体来说,自海河流域实施持续大规模封山育林育草㊁退耕还林还草㊁坡改梯㊁於地坝等水土保护措施以来,生长季F V C一直呈增长趋势,后期出现增速减缓,主要是因为植被自然演替过程中,自然因素起主导作用㊂2.1.2生长季F V C空间分布及变化特征海河流域生长季植被覆盖度空间分布差异明显(图3A),高覆盖度区域零星分布,主要分布于流域的东北部和彰卫河山区的南部,占流域总面积的1.27%;中高覆盖度区域主要为高产草地㊁密林地用地,面积3.13ˑ104k m2,占流域总面积的9.79%,集中分布于流域东北部㊁太行山一带;中等覆盖度区域主要为中高产草地㊁林地㊁农田用地,主要分布于大清河淀西平原㊁子牙河平原㊁彰卫河平原以及徒骇马颊河区域,面积为9.83ˑ104k m2,占流域总面积的30.66%;中低覆盖度区域由中产草地㊁农田和低郁闭度林地组成,在大清河淀东平原㊁滦河平原和彰卫河山区广泛分布㊁黑龙港及运东平原,子牙河山区㊁大清河山区等均有分布,面积为1.07ˑ105k m2,占流域总面积的33.47%;低覆盖度区域主要分布于永定河山区㊁滦河山区的西北部,面积7.23ˑ104k m2,占流域总面积213水土保持研究第30卷Copyright©博看网. All Rights Reserved.的22.57%;海河流域生长季植被覆盖度小于0.1的裸地区域主要为城市工矿㊁居民用地,面积为7.17ˑ103k m2,占流域总面积的2.24%,主要分布于环渤海湾地区以及一些城市中心区域㊂总体来说生长季F V C大于0.3的区域面积占流域面积的75.19%,植被覆盖度总体较高㊂从图3B C可以看出,2001 2019年各植被覆盖度等级之间相互转化明显,主要为裸地㊁中等㊁中低植被覆盖度等级转为中等至高覆盖度等级㊂其中永定河山区的植被覆盖度得到明显改善,植被覆盖度由2001年的0.14,提升到2019年的0.35,说明山丘区人工生态修复及水土保持工程对提升植被覆盖度作用十分显著㊂综上可知,研究区19年间生长季植被覆盖度总体较高,仅环渤海湾地带和一些城市中心区域生长季植被覆盖度较低㊂图22001-2019年海河流域生长季F V C 年际变化图3海河流域生长季F V C空间分布采用s l o p e趋势分析,对研究区生长季植被覆盖度变化趋势进行分析(图4),s l o p e的值域为-0.447~ 0.347,表明植被变化趋势存在着明显的空间差异,变化速率以0~0.2为主,占流域总面积的81.51%㊂对变化趋势进行M-K显著性检验(图5),海河流域生长季F V C改善区域的面积为2.15ˑ105k m2,占流域的67.28%,远大于退化面积,其中改善部分以极显著改善为主,占流域总面积的60.42%;退化区域占流域的总面积的8.28%,主要位于城市的周围㊂变化不显著的区域主要分布于改善区域和退化区域之间,面积占流域总面积的23.90%㊂综上可知,研究区大部分地区的植被得到了明显改善,但受城市扩张等因素的影响,城市外围区域的植被退化现象较为严重㊂2.2生长季F V C空间分异的驱动力分析2.2.1因子影响力探测分析利用因子探测器计算各因子的q值以量化其对海河流域生长季F V C空间分布的解释程度㊂由结果可见(图6),不同因子对海河流域生长季F V C空间分布的解释能力如下:林地比例(0.3427)>林草混合地比例(0.3346)>年均降水(0.202)>灌丛比例(0.197)>草地比例(0.184)>坡度(0.134)>年潜在蒸散发(0.114)>年均温(0.107)>城镇比例(0.094)>高程(0.089)>G D P(0.074)>壤土比例(0.066)>人口密度313第4期钤会冉等:海河流域生长季植被覆盖度时空变化及驱动力分析Copyright©博看网. All Rights Reserved.(0.064)>沙土比例(0.062)>黏土比例(0.053)>碎石含量(0.051)>有机碳比例(0.040)>农田比例(0.027)㊂各因子对应显著性p值均小于0.01,通过显著性检验㊂综上分析可见:(1)林地比例和林草混合地比例的q值最大,分别达0.3427,0.3346,解释力均在30%以上,因此林地比例和稀疏草地比例是影响海河流域生长季植被覆盖度空间分布的主要影响因子;(2)海河流域的山区和平原区的生长季F V C空间分布的主要影响因子不同㊂林草混合地和林地比例对海河山区生长季植被覆盖度影响最大,解释力均在50%以上,G D P影响最小;农田比例和年潜在蒸散发对海河平原区植被覆盖度的分布影响最大,影响最小的因子是坡度;(3)整体来看,人类活动对海河流域生长季植被覆盖度空间分布的影响是最大的,其次是气候㊁地形,影响最小的是土壤性质㊂图42001-2019年海河流域生长季F V C线性趋势2.2.2因子交互作用探测分析本文进一步对海河流域以及其山区㊁平原区空间分布影响因子进行交互作用探测(表3 5),结果表明,在研究区域,任意两因子的叠加均会增强单因子对海河流域生长季F V C空间分布的解释能力,呈非线性增强或双因子增强作用,不存在独立关系,说明植被生长与生存往往并非受制于单一因素,而是多种因素协同作用的结果㊂由表3可见,交互作用解释力最强的是林草混合地比例和农田比例,它们双因子交互q值达到了0.58,其次是林草混合地比例和人口密度,q值达到了0.50㊂同时,林地比例㊁林草混合地比例和降水量与大多数因子相结合均呈现非线性增强,表明三者对海河流域生长季F V C空间分布影响程度占据主导地位㊂年均降水㊁年均温和年潜在蒸散发与其他因子的交互作用解释力均有显著增加,由其是与林地比例等人类活动因子的交互作用㊂因此,气候因子与人类活动因子共同作用将使生长季F V C空间分布受到更大的影响力度㊂图52001-2019年生长季F V C 线性趋势显著性图6因子探测器结果413水土保持研究第30卷Copyright©博看网. All Rights Reserved.表3 海河流域因子交互作用探测器结果因子P R ET P E G D P P O P F O B U F A G A S A U B D EM S l o p e C l a y S a n d S i l t O C G r a v e lP R E0.22T0.330.10P E 0.400.320.11G D P0.360.230.190.07P O P 0.370.270.210.110.06F O0.500.440.420.430.450.34B U 0.360.260.290.270.280.370.20F A 0.320.280.230.120.130.490.300.03G A 0.300.280.330.320.330.450.330.390.18S A 0.470.460.410.460.500.410.350.580.470.33U B 0.370.250.200.120.140.420.270.150.360.430.09D EM0.350.220.260.200.240.420.250.310.300.440.230.09S l o p e 0.370.270.260.240.280.370.240.380.390.380.230.270.13C l a y0.320.240.200.160.170.360.230.160.260.380.170.200.200.06S a n d 0.300.260.200.170.180.360.230.170.270.360.180.240.210.140.07S i l t 0.300.260.230.170.180.370.250.170.260.380.180.240.220.160.120.07O C 0.280.200.200.130.140.370.230.110.240.380.150.180.200.200.230.210.04G r a v e l 0.280.220.180.150.140.370.240.110.240.380.160.190.200.170.190.150.150.05表4 海河山区因子交互作用探测器结果因子P R E T P EG D PP O PF OB UF AG AS AU BD EMS l o pe C l a yS a n dS i l tO CG r a v e lP R E0.40T0.480.19P E 0.470.390.08G D P0.520.290.140.02P O P 0.530.380.180.050.03F O0.710.630.580.550.550.54B U 0.520.390.370.310.320.600.30F A 0.580.340.190.060.070.580.330.02G A 0.480.380.380.400.470.640.480.590.32S A 0.680.660.610.600.610.700.620.660.650.59U B 0.500.280.140.080.080.560.330.100.450.610.07D EM0.500.340.260.190.240.610.360.230.390.630.230.13S l o p e 0.530.400.330.270.270.610.420.340.530.630.280.390.25C l a y0.490.340.210.150.160.560.380.160.420.620.180.270.320.12S a n d 0.480.340.240.190.210.580.390.220.420.620.210.300.330.240.15S i l t 0.490.360.270.210.230.580.410.230.430.630.220.310.350.270.220.16O C 0.440.280.220.140.180.580.350.170.370.610.170.230.320.300.290.310.11G r a v e l0.480.360.220.150.170.570.370.160.410.620.170.280.330.260.280.280.290.12在海河山区中,降雨㊁林地比例和林草混合地比例与各因子交互均有很强的非线性增强㊂因子间交互作用对海河山区生长季植被覆盖空间分异性解释力大小前六项依次为:降雨ɘ林地比例(0.71)>林草混合地比例ɘ林地比例(0.70)>林草混合地比例ɘ降雨(0.68)>林草混合地比例ɘ农田比例(0.66)>林草混合地比例ɘ年均温(0.655)>林草混合地比例ɘ草地比例(0.65);表明:人类活动对海河流域山区生长季植被覆盖度空间分布具有重要影响,一方面通过退耕还林还草㊁生态保护修复等措施可促进植被覆盖,另一方面通过城镇化建设㊁资源过度开发等行为可破坏植被覆盖[33]㊂在海河平原中,因子间交互作用对生长季植被覆盖空间分异性解释力大小前六项依次为:农田比例ɘ高程(0.653)>农田比例ɘ年潜在蒸散发(0.649)>农田比例ɘ草地比例(0.573)>农田比例ɘ降雨(0.568)>农田比例ɘ坡度(0.560)>农田比例ɘ林地比例(0.558)㊂513第4期 钤会冉等:海河流域生长季植被覆盖度时空变化及驱动力分析Copyright ©博看网. All Rights Reserved.表5 海河平原区因子交互作用探测器结果因子P R ET P E G D P P O P F O B U F A G A S A U B D EM S l o p e C l a y S a n d S i l t O C G r a v e lP R E0.04T0.340.13P E 0.390.420.32G D P0.270.330.440.21P O P 0.390.430.480.400.29F O0.060.150.340.220.330.02B U 0.060.150.340.220.320.020.01F A 0.570.600.650.510.540.560.550.50G A 0.200.290.400.350.380.190.180.570.14S A 0.070.170.350.220.340.030.020.550.190.01U B 0.300.390.510.300.400.260.250.530.380.260.24D EM0.260.310.390.410.460.210.200.650.290.220.460.20S l o p e 0.070.160.350.220.330.030.020.560.200.030.260.210.01C l a y0.160.260.400.270.380.080.080.530.230.090.340.290.090.06S a n d 0.130.260.380.270.370.090.090.530.250.100.340.270.100.140.08S i l t 0.190.280.410.280.370.100.100.530.240.110.350.290.110.200.200.08O C 0.200.260.410.290.400.110.110.540.260.120.350.310.110.240.230.230.09G r a v e l0.160.240.370.270.360.100.100.540.240.100.320.270.100.140.150.180.160.083 讨论和结论3.1 讨论本研究基于地理探测器,对海河流域生长季植被覆盖度空间分布的影响因素进行量化归因分析,结果表明人类活动对海河流域生长季植被覆盖度空间分布的影响是最大的,其次是气候㊁地形,影响最小的是土壤性质㊂海河流域自1980年以来,实施 三北 防护林工程㊁京津风沙源治理工程㊁退耕还林还草工程等一系列生态恢复工程㊁农业化开发和城镇化,使得当地土地利用/覆盖发生剧烈变化,主要表现为海河山区森林面积占比上升,草地和农田面积占比下降,海河平原区农田比例上升,人口密度上升㊂这些人类活动显著影响了植被覆盖度的空间分异规律,并显著增加了植被覆盖度㊂林草混合地比例㊁林地比例和草地比例主要影响了海河山区生长季植被覆盖度空间分布;农田比例㊁人口密度和城镇比例这些人类活动因子主要影响了海河平原区生长季植被覆盖度空间分布㊂年均降水㊁年均温和年潜在蒸散发这些气候因子的动态变化主要决定了生长季植被覆盖度的年际变化;坡度㊁坡向通过影响坡面接受的太阳辐射量和日照时数从而对植被的生长有一定的影响,土壤性质也主要决定了植被覆盖度的空间分异规律㊂各因子交互作用呈双因子增强和非线性增强两种类型,不存在相互独立作用,关于因子间交互作用是如何增强对生长季F V C 空间分异的解释能力还需进行更加深入的讨论㊂3.2 结论(1)年际变化分析显示,2001 2019年海河流域生长季F V C 总体呈显著上升趋势,线性倾向率为0.063/10a ,各等级植被覆盖度转化明显,中高覆盖度和高覆盖度的面积占比呈现显著的增加趋势;(2)空间变化分析显示,生长季F V C 总体较高,仅环渤海湾地带和一些城市区域植被覆盖率较低,海河流域生长季F V C 改善区域的面积为2.15ˑ105k m2,占流域的67.28%,远大于退化面积,其中改善部分以极显著改善为主;(3)因子探测发现,林地比例和稀疏草地比例是影响海河流域生长季F V C 空间分布的主要影响因子;海河流域的山区和平原区的生长季F V C 空间分布的主要影响因子不同;人类活动对海河流域生长季植被覆盖度空间分布的影响是最大的;(4)交互探测发现,2001 2019年,各因子对海河流域生长季植被覆盖变化存在呈双因子增强和非线性增强两种类型的交互作用,不存在相互独立作用或对植被覆盖变化解释力减弱的交互因子㊂参考文献:[1] P e n g W F ,K u a n g T T ,T a oS .Q u a n t i f y i n g in f l u e n c e s o f n a t u r a l f a c t o r s o nv e g e t a t i o nN D V I c h a n g e sb a s e do n g e o g r a ph i c a ld e t e c t o ri n S i c h u a n ,w e s t e r n C h i n a [J ].J o u r n a l o fC l e a n e rP r o d u c t i o n ,2019,233:353-367.[2] G o n g Z ,Z h a oS ,G uJ .C o r r e l a t i o na n a l ys i sb e t w e e n 613 水土保持研究 第30卷Copyright ©博看网. All Rights Reserved.v e g e t a t i o nc o v e r a g ea n dc l i m a t ed r o u g h tc o n d i t i o n si nN o r t hC h i n ad u r i n g2001 2013[J].J o u r n a lo f G e o-g r a p h i c a l S c i e n c e s,2017,27(2):143-160.[3]赵杰,杜自强,武志涛,等.中国温带昼夜增温的季节性变化及其对植被动态的影响[J].地理学报,2018,73(3): 395-404.[4] P a r m e s a nC,Y o h eG.A g l o b a l l y c o h e r e n t f i n g e r p r i n t o fc l i m a t e c h a n g ei m p a c t s a c r o s s n a t u r a l s y s t e m s[J].N a t u r e,2003,421(6918):37-42.[5] G i t e l s o n A A,K a u f m a nYJ,S t a r kR,e t a l.N o v e l a l g o-r i t h m sf o rr e m o t e e s t i m a t i o n o f v e g e t a t i o n f r a c t i o n[J].R e m o t e S e n s i n g o o f E n v i r o n m e n t,2002,80(1):76-87. [6]刘洋,李诚志,刘志辉,等.1982 2013年基于G I MM S-N D V I的新疆植被覆盖时空变化[J].生态学报,2016,36(19):6198-6208.[7]H eB,C h e n Af,J i a n g W G,e ta l.T h er e s p o n s eo fv e g e t a t i o n g r o w t ht os h i f t si nt r e n do ft e m p e r a t u r ei nC h i n a[J].J o u r n a lo f G e o g r a p h i c a lS c i e n c e s,2017,27(7):801-816.[8]陶帅,邝婷婷,彭文甫,等.2000 2015年长江上游N D V I时空变化及驱动力:以宜宾市为例[J].生态学报,2020, 40(14):5029-5043.[9] C h e nT,B a oA,J i a p a e rG,e t a l.D i s e n t a n g l i n g t h e r e l a t i v ei m p a c t so fc l i m a t ec h a n g ea n dh u m a na c t i v i t i e so na r i da n ds e m i a r i d g r a s s l a n d s i nC e n t r a lA s i ad u r i n g19822015[J].S c i e n c eo f t h eT o t a lE n v i r o n m e n t,2019,653(25):1311-1325.[10] L i uY,L i Y,L i S,e t a l.S p a t i a l a n d t e m p o r a l p a t t e r n so f g l o b a lN D V I t r e n d s:c o r r e l a t i o n sw i t hc l i m a t ea n dh u m a nf a c t o r s[J].R e m o t e S e n s i n g,2015,7(10):13233-13250.[11] X uH,W a n g X,Z h a n g X.A l p i n e g r a s s l a n d s r e s p o n s et oc l i m a t i cf a c t o r sa n da n t h r o p o g e n i ca c t i v i t i e so nt h eT i b e t a n P l a t e a u f r o m2000t o2012[J].E c o l o g i c a lE n g i n e e r i n g,2016,92:251-259.[12]陈宽,杨晨晨,白力嘎,等.基于地理探测器的内蒙古自然和人为因素对植被N D V I变化的影响[J].生态学报,2021,41(12):4963-4975.[13]姜萍,胡列群,肖静,等.新疆植被N D V I时空变化及定量归因[J].水土保持研究,2022,29(2):212-220,242.[14]祁鹏卫,张贤.2000 2019年重庆市植被覆盖时空变化特征及其驱动因素分析[J].生态学报,2022,42(13):5427-5436.[15]李晓丽,曹敏,茆杨.基于地理探测器的西南岩溶槽谷区近20年N D V I变化特征及影响因素[J].水土保持学报,2021,35(6):38-44,54.[16]张华,李明,宋金岳,等.基于地理探测器的祁连山国家公园植被N D V I变化驱动因素分析[J].生态学杂志,2021,40(8):2530-2540.[17]彭文甫,张冬梅,罗艳玫,等.自然因子对四川植被N D V I变化的地理探测[J].地理学报,2019,74(9):1758-1776.[18]刘逸滨,刘宝元,成城,等.退耕还林草20年来榆林市植被覆盖度时空变化及影响因素分析[J].水土保持学报,2022,36(2):197-208,218.[19]付含培,王让虎,王晓军.1999 2018年黄河流域N D V I时空变化及驱动力分析[J].水土保持研究,2022,29(2):145-153,162.[20]严登华,袁喆,杨志勇,等.1961年以来海河流域干旱时空变化特征分析[J].水科学进展,2013,24(1):34-41.[21]杨艳丽,孙艳玲,王中良.2000 2013年海河流域植被覆盖的时空变化[J].干旱区资源与环境,2016,30(7):65-70.[22]吴云,曾源,赵炎,等.基于MO D I S数据的海河流域植被覆盖度估算及动态变化分析[J].资源科学,2010,32(7):1417-1424.[23]申丽娜,景悦,孙艳玲,等.基于S P O T数据的海河流域植被覆盖度变化图谱特征[J].天津师范大学学报:自然科学版,2018,38(4):60-67.[24]申丽娜,景悦,孙艳玲,等.海河流域植被覆盖度变化的图谱特征及其地形梯度差异分析[J].天津师范大学学报:自然科学版,2017,37(6):43-49,54. [25]何龙,曾晓明,钱达,等.海河流域近17年植被时空变化及其气候影响因素[J].天津师范大学学报:自然科学版,2020,40(3):54-61,68.[26]王永财,孙艳玲,王中良.1998 2011年海河流域植被覆盖变化及气候因子驱动分析[J].资源科学,2014,36(3):594-602.[27]陈福军,沈彦俊,胡乔利,等.海河流域N D V I对气候变化的响应研究[J].遥感学报,2011,15(2):401-414.[28] S uT,Z h a n g B,H eX,e t a l.R a t i o n a l p l a n n i n g o f l a n du s e c a n m a i n t a i nw a t e r y i e l dw i t h o u t d a m a g i n g e c o l o g i c a ls t a b i l i t y i nu p s t r e a mo f i n l a n d r i v e r:C a s e s t u d y i n t h eH e iR i v e rB a s i no fC h i n a[J].J o u r n a lo fG e o p h y s i c a lR e s e a r c h,2020,125(18):e2020J D032727. [29]中华人民共和国水利部.土壤侵蚀分类分级标准G B/S L190 2007[S].北京:中国水利水电出版社,2008.[30]温晓金,刘焱序,杨新军.恢复力视角下生态型城市植被恢复空间分异及其影响因素:以陕南商洛市为例[J].生态学报,2015,35(13):4377-4389. [31]王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017,72(1):116-134.[32]祁鹏卫,张贤.2000 2019年重庆市植被覆盖时空变化特征及其驱动因素[J].生态学报,2022,42(13):5427-5436.[33]杨灿,魏天兴,李亦然,等.黄土高原典型县域植被覆盖度时空变化及地形分异特征[J].生态学杂志,2021,40(6):1830-1838.713第4期钤会冉等:海河流域生长季植被覆盖度时空变化及驱动力分析Copyright©博看网. All Rights Reserved.。
12. 中国科学院数据资源中心存储服务介绍及基础科学数据共享网数据库镜像要求

Netapp
32
IBM DS4000
IBM DS8000
EMC or HDS
存储虚拟化:在异构环境下建立虚拟化存储管理系统
存储改变不影响应 用
Virtual Disk
Virtual Disk
Virtual Disk
Virtual Disk
一套拷贝服务 适用于所有存 储系统
SAN
Advanced Copy Services
一、数据资源中心环境简介 二、分级存储环境 三、高性能集群存储环境 四、服务器虚拟化 五、存储虚拟化 六、未来展望
3
1. 数据资源中心环境简介
建设概况
面向中国科学院重要数据资产备份、长期保存的需求, 在中国科学院信息化项目的支持下,由中国科学院计算
机网络信息中心承担建成了存储能力 6.42PB 的海量数 据存储与处理设施,成为院信息化基础设施的重要组成
John Webster 存储行业分析家
Illuminata
35
六、未来展望
6.1 未来2年的建设任务 6.2 打造下一代数据中心
36
未来2年的建设目标
北京怀柔
面向科学研究领域
的需求,建成基于
新疆
沈阳
CNGI的分布式存
北京
储平台,形成总容
兰州
量达 22PB 以上 、包括总中心、备
上海
份中心和8个地区
34
存储虚拟化的价值
根据 IDC 统计,部署了服务器虚拟化并结合使用存储 虚拟化的公司平均可获得 387% 的投资回报 (ROI),包 括部署时间在内,不到 10 个月就可以获得回报。
IDC 白皮书 《存储虚拟化的商业价值》
“任何存储虚拟化解决方案的一个最重要的特性就是能够 掩盖复杂性,然后使愈发难以管理的存储变得可管理。”
中国气象站点数据获取的几种方式(值得收藏!)

中国⽓象站点数据获取的⼏种⽅式(值得收藏!)前⾔想要获取如上图中如此密度,到县级别的⽓象站点数据还是不容易,如果你只想点⼀点得直接下载某些站点的数据:/WeatherData/ 1984-2018年12⽉逐⽇逐⽉逐⼗年:⽅便贴⼼1 中科院资源环境科学数据中⼼——中国⽓象要素站点观测逐⽇数据集中国⽓象要素站点观测逐⽇数据集包含了全国2400多个⽓象站点⾃建站以来的⽓压、⽓温、降⽔量、蒸发量、相对湿度、风向风速、⽇照时数和0cm地温要素的⽇值观测数据。
各要素包含的指标数据如下:⽓压包括:平均本站⽓压、⽇最⾼本站⽓压、⽇最低本站⽓压;⽓温包括:平均⽓温、⽇最⾼⽓温、⽇最低⽓温;相对湿度包括:平均相对湿度、最⼩相对湿度;降⽔包括:20-8时降⽔量(夜晚)、8-20时降⽔量(⽩天)、20-20时累计降⽔量;蒸发包括:⼩型蒸发量、⼤型蒸发量;风向风速包括:平均风速、最⼤风速、最⼤风速的风向、极⼤风速、极⼤风速的风向;⽇照时数包括:⽇照时数;0cm地温包括:平均地表⽓温、⽇最⾼地表⽓温、⽇最低地表⽓温。
⽬前数据集已更新到2019年11⽉份。
该数据集⽹站不提供免费下载——有钱⼈的选择2 国家⽓象科学数据中⼼别名中国⽓象数据⽹这⾥数据还挺多能满⾜⼀般需要先最好注册⼀个实名会员我们专注于地⾯⽓象资料:中国地⾯⽓象站逐⼩时观测资料中国国家级地⾯站⼩时值数据,包括⽓温、⽓压、相对湿度、⽔汽压、风、降⽔量等要素⼩时观测值。
中国地⾯⽓象站基本⽓象要素观测资料台站表:SURF_CHN_MUL_HOR_STATION.Xlsx2170个站注意这个是实时数据中国地⾯⽓候资料⽇值数据集(V3.0) 1951-2010'中国地⾯⽓候资料⽇值数据集(V3.0)'包含了中国699个基准、基本⽓象站1951年1⽉以来本站⽓压、⽓温、降⽔量、蒸发量、相对湿度、风向风速、⽇照时数和0cm地温要素的⽇值数据。
数据说明⽂档:SURF_CLI_CHN_MUL_DAY_DOCU_C.Doc元数据说明⽂档:SURF_CLI_CHN_MUL_DAY_META_C.Doc格式说明⽂档:SURF_CLI_CHN_MUL_DAY_FORMAT.Doc台站说明⽂档:SURF_CLI_CHN_MUL_DAY_STATION.Xls中国地⾯⽓候资料⽉值数据集数据集为中国613个基本、基准地⾯⽓象观测站及⾃动站1951--最新⽇值数据集 756个站要素包括:平均本站⽓压、极端最⾼本站⽓压、极端最低本站⽓压、平均⽓温、平均最⾼⽓温、平均最低⽓温、极端最⾼⽓温、极端最低⽓温、平均⽔汽压、平均相对湿度、最⼩相对湿度、降⽔量、平均风速、最⼤风速、最⼤风速的风向、极⼤风速、极⼤风速的风向、最多风向、最多风向出现频率、次多风向、次多风向出现频率、⽇照时数、⽇照百分率。
新疆和田地区水土资源开发利用特征及匹配性分析

Journal of Water Resources Research 水资源研究, 2023, 12(1), 27-35 Published Online February 2023 in Hans. https:///journal/jwrr https:///10.12677/jwrr.2023.121004新疆和田地区水土资源开发利用 特征及匹配性分析徐永波1,侯一峰2,朱成刚3*1新疆塔里木河流域和田管理局,新疆 和田2新疆大学地理与遥感科学学院,新疆 乌鲁木齐 3中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐收稿日期:2022年11月5日;录用日期:2023年2月2日;发布日期:2023年2月24日摘 要水土资源是区域生态系统稳定和安全的重要组成和基础。
本文以和田地区为研究区,采用土地利用转移矩阵和基尼系数方法探究区域水土资源开发利用特征和匹配关系。
结果表明,在过去20年间(2000~2020年),和田地区主要呈耕地和草地面积增加和未利用地面积减少趋势,耕地增长率高达24.02%,且在2000~2010年增加显著,未利用地面积共计减少509.27万亩。
期间主要以草地转变为耕地、林地和建设用地,未利用地不断开发利用转化为耕地和草地为主。
和田地区的耕地和绿洲面积空间具有较大的差异性,各县市人均耕地面积匹配度较好,而人均绿洲面积匹配度较差。
随着社会经济的快速发展,和田地区耕地的不断扩张,需要科学配置水资源,进一步提升水资源利用效率。
关键词和田地区,土地利用,水土资源,匹配系数Characteristics and Matching Analysis of Water and Soil Resources Development and Utilization in Hotan Area, XinjiangYongbo Xu 1, Yifeng Hou 2, Chenggang Zhu 3*1Xinjiang Tarim River Basin Hotan Administration, Hotan Xinjiang2College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi Xinjiang 3State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi Xinjiang作者简介:徐永波,男,高级工程师,主要从事干旱区水资源管理研究,*通讯作者新疆和田地区水土资源开发利用特征及匹配性分析Received: Nov. 5th , 2022; accepted: Feb. 2nd , 2023; published: Feb. 24th , 2023AbstractSoil and water resources are an important component and foundation of regional ecosystem stability and security. This study used the land-use transfer matrix and Gini coefficient method to explore the characteristics and matching relationships of regional soil and water resources development and utiliza-tion in the Hotan area, Xinjiang. The results show that a trend of increasing arable land and grassland area and decreasing unutilized land area in the past 20 years (2000~2020). The growth rate of arable land was as high as 24.02% and increased significantly from 2000 to 2010, and the unutilized land area decreased by 509.27 ten thousand mu in total. The period is mainly dominated by the transformation of grassland into arable land, forest land and construction land, and the continuous development and utili-zation of unused land into arable land and grassland. The spatial variability of arable land and oasis area is large, and the per capita arable land area matches well with each county and city, while the per capita oasis area matches poorly. With the rapid socio-economic development and the continuous expansion of arable land, scientific allocation of water resources is needed to further improve the efficiency of water resources utilization.KeywordsHotan Area, Land-Use, Water and Soil Resources, Matching CoefficientCopyright © 2023 by author(s) and Wuhan University.This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). /licenses/by/4.0/1. 引言土地利用/覆盖变化(LUCC)影响全球区域气候变化[1]、生态环境和生物多样性,在人类与自然环境的关系中发挥重要作用[2],是可持续发展研究的一个重要方面[3],目前已成为全球共同关注的热点问题[4]。
免费资料网站

中文网站1、奇迹文库/简要介绍: 奇迹文库(/Eprint) 论文预印本项目是由一群中国年轻的科学、教育与技术工作者效仿等模式创办的非赢利性质网站,是专门为中国研究者开发定制的电子文库。
考研资料免费下载:/tag/%E5%85%8D%E8%B4%B9%E4%B8%8B%E8%B D%BD%20/2、查价网:/丰富的信息、直观快捷的服务令我们足不出户就可以找到物美价廉的商品,为我们省钱省时省力!依据平等、公正的原则,提供商品的价格比较、商品的准确信息、商品的相关论坛及每日最低行情快递等多项服务,使我们充分享受互联网的内在价值和魅力。
3、(美国)科技网:/服务及管理;网络技术咨询、网络软件开发;虚拟主机和主机托管;网络前沿技术的研究。
4、/华中数学建模网/news.php中国数学资源网/湖北数学建模网数模在线/home/中国数学建模网国际数模网站/美国杜克大学数学建模网美国数学联合会北峰数模网(浙江师范大学数模研究学会)5、中国湖泊数据库/网站简介:中国主要(河流)流域数据库:包括全国主要流域基本信息库、主要河流代码库、主要流域地理要素、流域内主要自然保护区、化学污染、降雨蒸发、旅游景点、重大事件、以及主要流域位置地图等信息;中国主要水库信息库:包括全国主要水库基本位置、水库所在地区、水库建库时间、正常库容、集水面积、海拔、所属水系等信息。
6、中国自然资源数据库/网站简介:中国自然资源数据库是由中国科学院科学数据库及其应用系统项目提供支持,中科院地理科学与地资源研究所所承建的中国资源、环境、人口、社会经济等相关数据的集合。
库内包括水资源、土地资源、气候资源、生物资源、环境灾害、环境治理、人口、劳动力以及社会经济等方面的数据。
数据按存储格式分为属性(数值)数据、空间(矢量和栅格)数据及其他图形图像数据。
目前,数据量已达6TB。
其中,属性数据库含关系表400多个,数据项8000个,约1000万个数据。
矢量数据包括1:400万及1:100万基础图件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.在使用AERSURFACE在线服务系统数据产品的论文、研究报告、产品中,需完整引用AERSURFACE在线服务系统的相关研究成果(数据引用:[1]伯鑫,王刚,田军,杨景朝,高锡章,黄远奕,李时蓓.AERMOD模型地表参数标准化集成系统研究[J].中国环境科学,2015,35(9):2570-2575.),并在致谢中加以声明。如果用户在研究中使用的AERSURFACE在线服务系统数据产品尚未以论文形式发表,AERSURFACE团队成员有权利要求在用户的研究成果上署名。使用AERSURFACE定制数据的研究成果在发表前需获得AERSURFACE团队的同意。
对本协议的解释、修改及更新权均属于AERSURFACE模型团队所有。
用户承诺
我同意以上条款,并保证按此执行。用户签字:年月日
申请者所在单位意见
我单位保证监督该用户按上述要求使用数据,并进行成果标注。
单位负责人(签字):单位(盖章)年月日
1. AERSURFACE团队致力于提供高质量的地表下垫面参数,但不对数据的真实性和准确性负责。使用从本网站获取的地表下垫面参数数据所产生的后果由用户自行承担。
2.请用户妥善保管自己的账号和密码及其他注册资料,如果发现使用者并非账号初始注册人,AERSURFACE团队有权在未经通知的情况下暂停该账号而无需向该账号使用人承担法律责任,由此带来的损失由用户自行承担。
环境保护部环境工程评估中心
(试用版)
用户姓名
所在单位
联系电话
使
用
目
的
1()政府决策2()科学研究3()教学示范4()博士论文
5()硕士论文6()商业应用7()其它(请注明):
项目/ቤተ መጻሕፍቲ ባይዱ题名称
项目/课题来源
应用说明:
相关负责人(签字):
用
户
协
议
在用户使用AERSURFACE在线服务系统提供的数据产品之前,请务必仔细阅读并同意本协议。用户使用直接从本网站获取或从其他途径获取的AERSURFACE在线服务系统数据产品的行为,都将被视作无条件接受本协议所涉及全部内容。若用户对本协议的任何条款有异议,请停止使用AERSURFACE在线服务系统数据产品。