计算材料学概述 之 蒙特卡洛方法114页PPT
合集下载
第六讲 蒙特卡洛方法ppt课件

蒙特卡罗方法的特点
优点 能够比较逼真地描述具有随机 性质的事物的特点及物理实验 过程。 受几何条件限制小。 收敛速度与问题的维数无关。 具有同时计算多个方案与多个 未知量的能力。 误差容易确定。 程序结构简单,易于实现。 缺点 收敛速度慢。 误差具有概率性。 在粒子输运问题中, 计算结果与系统大小 有关。
2 2 t / 2 P X E ( X ) e dt 1 N 0 N 2
f(X)是X的分布密度函数。则
0 ( x E ( X )) f ( x ) dx
2 2
平均值
当N充分大时,有如下的近似式
X N
MC方法随机理论的基础
MC方法的随机理论基础
g(u)均匀分布
N 1 x 2 t/ 2 P X E ( X ) x e dt N lim x N 2
MC方法随机理论的基础
• 大数法则
MC方法随机理论的基础
中心极限定理
该定理指出,如果随机变量序列 X1 ,X2,…, XN独立 同分布,且具有有限非零的方差σ2 ,即
MC方法概述
• 为了得到具有一定精确度的近似解,所需随机试 验的次数是很多的,通过人工方法作大量的试验 相当困难,甚至是不可能的。因此,蒙特卡罗方 法的基本思想虽然早已被人们提出,却很少被使 用。本世纪四十年代以来,由于电子计算机的出 现,使得人们可以通过电子计算机来模拟随机试 验过程,把巨大数目的随机试验交由计算机完成, 使得蒙特卡罗方法得以广泛地应用,在现代化的 科学技术中发挥应有的作用。
• 目前,已经广泛的应用于社会科学,材料, 物理,系统工程,科学管理,生物遗传等 领域。可以说,有随机工程事件的领域, 就可以应用Monte Carlo模拟。
计算材料学概述 之 蒙特卡洛方法PPT课件

9
实验者 年代 投掷次数 相交次数 圆周率估计值 沃尔夫 1850 5000 2531 3.1596 史密斯 1855 3204 1219 3.1554 德摩根 1880 600 383 3.137 福克斯 1884 1030 489 3.1595 拉泽里尼 1901 3408 1808 3.1415929 赖纳 1925 2520 859 3.1795 布丰投针实验是第一个用几何形式表达概率问题的 例子,他首次使用随机实验处理确定性数学问题, 为概率论和蒙特卡罗方法的发展起到一定的推动作 用。
14
REAL R,R1,R2,PI ISEED=RTC() N0=0 N=300000 DO I=1,N
R1=RAN(ISEED) R2=RAN(ISEED) R=SQRT(R1*R1+R2*R2) IF(R<1.0)N0=N0+1 END DO PI=4.0*N0/N WRITE(*,*)PI END
• Monte Carlo是摩纳哥(monaco)的首都,该城以赌博闻名
Nicholas Metropolis (1915-1999)
Monte-Carlo, Monaco
7
Monte Carlo方法简史
简单地介绍一下Monte Carlo方法的发展历史 1、Buffon投针实验:
18世纪,法国数学家Comte de Buffon利用投针实验估计的值
3
蒙特卡洛法是什么?
蒙特卡洛(Monte Carlo)方法,是在简单的理论 准则基础上,采用反复随即抽样的方法,解决复杂 系统的问题。其实质是一种概率和统计的问题。
蒙特·卡罗方法(Monte Carlo method),也 称统计模拟方法,是二十世纪四十年代中期由于科 学技术的发展和电子计算机的发明,而被提出的一 种以概率统计理论为指导的一类非常重要的数值计 算方法。是指使用随机数(或更常见的伪随机数) 来解决很多计算问题的方法。
实验者 年代 投掷次数 相交次数 圆周率估计值 沃尔夫 1850 5000 2531 3.1596 史密斯 1855 3204 1219 3.1554 德摩根 1880 600 383 3.137 福克斯 1884 1030 489 3.1595 拉泽里尼 1901 3408 1808 3.1415929 赖纳 1925 2520 859 3.1795 布丰投针实验是第一个用几何形式表达概率问题的 例子,他首次使用随机实验处理确定性数学问题, 为概率论和蒙特卡罗方法的发展起到一定的推动作 用。
14
REAL R,R1,R2,PI ISEED=RTC() N0=0 N=300000 DO I=1,N
R1=RAN(ISEED) R2=RAN(ISEED) R=SQRT(R1*R1+R2*R2) IF(R<1.0)N0=N0+1 END DO PI=4.0*N0/N WRITE(*,*)PI END
• Monte Carlo是摩纳哥(monaco)的首都,该城以赌博闻名
Nicholas Metropolis (1915-1999)
Monte-Carlo, Monaco
7
Monte Carlo方法简史
简单地介绍一下Monte Carlo方法的发展历史 1、Buffon投针实验:
18世纪,法国数学家Comte de Buffon利用投针实验估计的值
3
蒙特卡洛法是什么?
蒙特卡洛(Monte Carlo)方法,是在简单的理论 准则基础上,采用反复随即抽样的方法,解决复杂 系统的问题。其实质是一种概率和统计的问题。
蒙特·卡罗方法(Monte Carlo method),也 称统计模拟方法,是二十世纪四十年代中期由于科 学技术的发展和电子计算机的发明,而被提出的一 种以概率统计理论为指导的一类非常重要的数值计 算方法。是指使用随机数(或更常见的伪随机数) 来解决很多计算问题的方法。
计算材料学概述之蒙特卡洛方法详解课件

组合优化方法
针对组合优化问题,通过随机搜索和迭代优 化求解。
分子动力学模拟中的蒙特卡洛方法
01
分子动力学模拟是一种基于物理 模型的模拟方法,通过蒙特卡洛 方法可以模拟分子间的相互作用 和运动轨迹。
02
蒙特卡洛方法在分子动力学模拟 中主要用于求解势能面和分子运 动轨迹,通过随机抽样和迭代优 化实现分子运动状态的模拟。
重要性
随着科技的发展,计算材料学已成为 材料科学研究中不可或缺的工具,有 助于加速新材料的发现和优化现有材 料的性能。
计算材料学的主要研究方法
分子动力学模拟
01
基于原子或分子的动力学行为,模拟材料的微观结构和动态性
质。
蒙特卡洛方法
02
通过随机抽样和概率统计方法研究材料的宏观性质和相变行为
。
密度泛函理论
蒙特卡洛方法可以与分子动力学模拟结合,实现更精确的原子尺 度模拟。
元胞自动机
蒙特卡洛方法可以与元胞自动机结合,模拟复杂系统的演化过程。
有限元分析
蒙特卡洛方法可以与有限元分析结合,实现更高效的数值计算。
蒙特卡洛方法在材料设计中的应用前景
新材料发现
蒙特卡洛方法可用于预测新材料性能,加速新材料发现和开发进 程。
总结词
通过蒙特卡洛方法模拟复合材料的界面行为,包括界面润湿性、粘附力和传质过程等。
详细描述
利用蒙特卡洛方法模拟复合材料的界面行为,分析不同组分间的相互作用和界面结构, 预测材料的界面润湿性、粘附力和传质过程等性能,为复合材料的制备和应用提供理论
依据和技术支持。
蒙特卡洛方法的发
05
展趋势与展望
蒙特卡洛方法的未来发展方向
计算统计量
根据模型和抽样结 果,计算所需的统 计量或系统参数。
MonteCarlo蒙特卡洛法简介.ppt

实现从已知概率分布抽样
构造了概率模型以后, 按照这个概率分 布抽取随机变量 (或随机向量),这一 般可以直接由软件包调用,或抽取均匀 分布的随机数构造。这样,就成为实现 蒙特卡罗方法模拟实验的基本手段,这 也是蒙特卡罗方法被称为随机抽样的原 因。
建立各种估计量
一般说来,构造了概率模型并能从中抽 样后,即实现模拟实验后,我们就要确 定一个随机变量,作为所要求的问题的 解,我们称它为无偏估计。建立各种估 计量,相当于对模拟实验的结果进行考 察和登记,从中得到问题的解。
例子
考虑平面上的一个边长为1的正方形及其 内部的一个形状不规则的“图形”,如 何求出这个“图形”的面积呢?Monte Carlo方法是这样一种“随机化”的方法: 向该正方形“随机地”投掷N个点落于 “图形”内,则该“图形”的面积近似 为M/N。
比喻
可用民意测验来作一个不严格的比喻。 民意测验的人不是征询每一个登记选民 的意见,而是通过对选民进行小规模的 抽样调查来确定可能的民意。其基本思 想是一样的。
基本思想和原理
基本思想:当所要求解的问题是某种事件出现 的概率,或者是某个随机变量的期望值时,它 们可以通过某种“试验”的方法,得到这种事 件出现的频率,或者这个随机变数的平均值, 并用它们作为问题的解。
原理:抓住事物运动的几何数量和几何特征, 利用数学方法来加以模拟,即进行一种数字模 拟实验。
2
2
T
T
Monte Carlo 模拟连续过程的欧式 期权定价-
.-0.4326 0.2877 -1.6656 -1.1465 0.1253 1.1909
精确性
由于Monte Carlo 方法的随机性,精确性 建立在大量的重复模拟上,最后去平均 值。
《蒙特卡罗方法》PPT课件

5
1.引言
Monte Carlo方法简史 简单地介绍一下Monte Carlo方法的发展历史
1、Buffon投针实验: 1768年,法国数学家Comte de Buffon利用投针实验估计的值
完整版ppt
L
d
p
2L d
6
1.引言
7 完整版ppt
1.引言
8 完整版ppt
1.引言
9 完整版ppt
23 完整版ppt
1.引言
注意以下两点: • Monte Carlo方法与数值解法的不同: ✓ Monte Carlo方法利用随机抽样的方法来求解物理问题;
✓数值解法:从一个物理系统的数学模型出发,通过求解一 系列的微分方程来的导出系统的未知状态;
• Monte Carlo方法并非只能用来解决包含随机的过程的问题:
28 完整版ppt
2.MC基本思想
二十世纪四十年代中期,由于科学技术的发展和 电子计算机的发明,蒙特卡罗方法作为一种独立的方 法被提出来,并首先在核武器的试验与研制中得到了 应用。但其基本思想并非新颖,人们在生产实践和科 学试验中就已发现,并加以利用。
➢ 两个例子 例1. 蒲丰氏问题 例2. 射击问题(打靶游戏)
4. 编程进行计算机模拟
5. 获得统计量
j
17 完整版ppt
1.引言
MC的模拟方法-1 确定统计方案
1 确定统计模型 1) 现象 模型
随机现象Y=Y(Xi), Xi={X1, X2, X3,…}
2) 确定随机变量Xi的分布特征fi(x) 平均分布,指数分布,正态分布,Γ分布…
2 确定统计量
j
i lnim1nkn1ik(xi,...)
1.引言
蒙特卡罗方法简介.ppt

Ω={(x,y):aaxb,0yM},并设(X,Y)是在Ω上均匀分
布的二维随机向量,其联合密度函数为
p
x, y
M
1 b a 1axb,0 yM
b
则易见, f xd是x Ω中曲线f(x)下方面积。
a
假设我们向Ω中投点,若点落在y=f(x)下方称为中的,
则点中的概率为
p
M
1
b
a
b
a
f
例2.1 设X的密度函数为
n
n
p x i pi x 其中,i 0, i 1
i 1
i 1
由合成法,X的随机数可如下抽取: i1
i
1)取u~U(0,1);
2)取0
0,确定i,使
j
j0
u j j0
3) 由pi(x)抽取x.
2.3 筛选抽样 当p(x)难以直接抽样时,如果可以将p(x) 表示成
jj
c
2 jl
l 1
至此,我们可以给出k维正态分布的抽样步骤:
1)迭代计算 cij ,i 1,..., k, j 1,..., i;
2)由N(0,1)分布独立抽取k个随机数 z z1,L , zk ;
3)计算 x Cz
2.5 随机模拟计算 2.5.1 随机投点法
b
考虑积分 f xdx ,设a,b有限,0f(x)M,令
b
n
a
n i 1
f
X
i
1 n
b
a
b a
f
2
x
dx
2
Var
ˆ1
2.5.3 降低方差的技术
Monte Carlo 方法中一类重要的研究课题是考虑一 些降低估计方差的技术。常用的方法有:重要抽样 法,分层抽样法,关联抽样法等。
布的二维随机向量,其联合密度函数为
p
x, y
M
1 b a 1axb,0 yM
b
则易见, f xd是x Ω中曲线f(x)下方面积。
a
假设我们向Ω中投点,若点落在y=f(x)下方称为中的,
则点中的概率为
p
M
1
b
a
b
a
f
例2.1 设X的密度函数为
n
n
p x i pi x 其中,i 0, i 1
i 1
i 1
由合成法,X的随机数可如下抽取: i1
i
1)取u~U(0,1);
2)取0
0,确定i,使
j
j0
u j j0
3) 由pi(x)抽取x.
2.3 筛选抽样 当p(x)难以直接抽样时,如果可以将p(x) 表示成
jj
c
2 jl
l 1
至此,我们可以给出k维正态分布的抽样步骤:
1)迭代计算 cij ,i 1,..., k, j 1,..., i;
2)由N(0,1)分布独立抽取k个随机数 z z1,L , zk ;
3)计算 x Cz
2.5 随机模拟计算 2.5.1 随机投点法
b
考虑积分 f xdx ,设a,b有限,0f(x)M,令
b
n
a
n i 1
f
X
i
1 n
b
a
b a
f
2
x
dx
2
Var
ˆ1
2.5.3 降低方差的技术
Monte Carlo 方法中一类重要的研究课题是考虑一 些降低估计方差的技术。常用的方法有:重要抽样 法,分层抽样法,关联抽样法等。
《蒙特卡罗方法》课件

蒙特卡罗方法的优缺点
REPORTING
优点
高效性
蒙特卡罗方法在处理大规模、复杂问 题时,相对于解析方法,具有更高的 计算效率。
适用性强
该方法适用于各种类型的问题,无论 是数学、物理还是工程领域。
灵活性高
蒙特卡罗方法允许使用各种随机抽样 技术,可以根据问题的特性灵活调整 。
易于实现
蒙特卡罗方法的算法相对简单,容易 编程实现。
估计精度
统计估计的精度与样本数量和估计方法的选 择有关。
误差分析
误差来源
蒙特卡罗方法的误差主要来源于概率模型的近似和随机抽样的不 确定性。
误差控制
通过增加样本数量、改进概率模型等方法来减小误差。
误差评估
通过方差、置信区间等统计方法对误差进行评估和检验。
PART 03
蒙特卡罗方法的实现步骤
REPORTING
《蒙特卡罗方法》 PPT课件
REPORTING
• 蒙特卡罗方法简介 • 蒙特卡罗方法的原理 • 蒙特卡罗方法的实现步骤 • 蒙特卡罗方法的应用实例 • 蒙特卡罗方法的优缺点 • 蒙特卡罗方法的未来发展与展望
目录
PART 01
蒙特卡罗方法简介
REPORTING
定义与特点
定义
蒙特卡罗方法是一种基于概率统计的 数值计算方法,通过随机抽样和统计 模拟来求解数学、物理、工程等领域 的问题。
代。
PART 04
蒙特卡罗方法的应用实例
REPORTING
金融衍生品定价
总结词
蒙特卡罗方法在金融衍生品定价中应用广泛 ,通过模拟标的资产价格变化,计算衍生品 价格和风险。
详细描述
蒙特卡罗方法通过随机抽样和概率统计,模 拟标的资产(如股票、外汇或商品等)的价 格变化,从而计算出衍生品(如期权、期货 或掉期等)的预期收益或风险。这种方法能 够处理复杂的衍生品定价问题,并给出较为 精确的估计。
REPORTING
优点
高效性
蒙特卡罗方法在处理大规模、复杂问 题时,相对于解析方法,具有更高的 计算效率。
适用性强
该方法适用于各种类型的问题,无论 是数学、物理还是工程领域。
灵活性高
蒙特卡罗方法允许使用各种随机抽样 技术,可以根据问题的特性灵活调整 。
易于实现
蒙特卡罗方法的算法相对简单,容易 编程实现。
估计精度
统计估计的精度与样本数量和估计方法的选 择有关。
误差分析
误差来源
蒙特卡罗方法的误差主要来源于概率模型的近似和随机抽样的不 确定性。
误差控制
通过增加样本数量、改进概率模型等方法来减小误差。
误差评估
通过方差、置信区间等统计方法对误差进行评估和检验。
PART 03
蒙特卡罗方法的实现步骤
REPORTING
《蒙特卡罗方法》 PPT课件
REPORTING
• 蒙特卡罗方法简介 • 蒙特卡罗方法的原理 • 蒙特卡罗方法的实现步骤 • 蒙特卡罗方法的应用实例 • 蒙特卡罗方法的优缺点 • 蒙特卡罗方法的未来发展与展望
目录
PART 01
蒙特卡罗方法简介
REPORTING
定义与特点
定义
蒙特卡罗方法是一种基于概率统计的 数值计算方法,通过随机抽样和统计 模拟来求解数学、物理、工程等领域 的问题。
代。
PART 04
蒙特卡罗方法的应用实例
REPORTING
金融衍生品定价
总结词
蒙特卡罗方法在金融衍生品定价中应用广泛 ,通过模拟标的资产价格变化,计算衍生品 价格和风险。
详细描述
蒙特卡罗方法通过随机抽样和概率统计,模 拟标的资产(如股票、外汇或商品等)的价 格变化,从而计算出衍生品(如期权、期货 或掉期等)的预期收益或风险。这种方法能 够处理复杂的衍生品定价问题,并给出较为 精确的估计。
蒙特卡罗方法PPT课件

第14页/共83页
5.2 随机数和伪随机数
• 5.2.2 伪随机数
• 伪随机数是用数学方法产生的随机数,在给定初值下,由以下的递推公式
• 确定
(n=1,2,…)n。1 T (n )
(5.9)
• 由此产生的随机数n1并不相互独立,可通过适当地选取递推公式来近似满足
独立性要求;另一方面,在电子计算机表示中在(0,1)之间的随机数是有
第25页/共83页
5.3.2 重要抽样
• 把任意陡的被积函数变换成非常平滑的函数且调整积分区间的想法是至要 抽样法的基本思想。换句话.由简单抽样法扩展为重要抽样法,其一个最 主要的改进应当是使用了权重被积函数。这就是说,所使用的伪随机数是 从非均勾分布中选取的。这种操作方法允许我们把精力集中于在空间区域 对函数值的计算与评价,使其对积给出恰当的贡献。引入权重函数g(x), 则对积分J得估算可以写成:
第4页/共83页
• 针相对于平行线的位置可以用一个随机向量表示 A [0, d )
[0, )
• 随机向量平均分布在区间[0,d)×[0,).
• 其概率密度函数为1/d.
•
针
与
平
行
线p
相
交
0
的0lsin概 d1率d为Ad
2l
d
(5.1)
第5页/共83页
5.1 基本思想和一般过程
• 5.1.2 马尔科夫(Markov)过程
•
初 或
始 转
概
率
p
(
x
0
)=
1
。
因
此
将
这
些
条
件
概率称之
为单步 (5.3)
跃
5.2 随机数和伪随机数
• 5.2.2 伪随机数
• 伪随机数是用数学方法产生的随机数,在给定初值下,由以下的递推公式
• 确定
(n=1,2,…)n。1 T (n )
(5.9)
• 由此产生的随机数n1并不相互独立,可通过适当地选取递推公式来近似满足
独立性要求;另一方面,在电子计算机表示中在(0,1)之间的随机数是有
第25页/共83页
5.3.2 重要抽样
• 把任意陡的被积函数变换成非常平滑的函数且调整积分区间的想法是至要 抽样法的基本思想。换句话.由简单抽样法扩展为重要抽样法,其一个最 主要的改进应当是使用了权重被积函数。这就是说,所使用的伪随机数是 从非均勾分布中选取的。这种操作方法允许我们把精力集中于在空间区域 对函数值的计算与评价,使其对积给出恰当的贡献。引入权重函数g(x), 则对积分J得估算可以写成:
第4页/共83页
• 针相对于平行线的位置可以用一个随机向量表示 A [0, d )
[0, )
• 随机向量平均分布在区间[0,d)×[0,).
• 其概率密度函数为1/d.
•
针
与
平
行
线p
相
交
0
的0lsin概 d1率d为Ad
2l
d
(5.1)
第5页/共83页
5.1 基本思想和一般过程
• 5.1.2 马尔科夫(Markov)过程
•
初 或
始 转
概
率
p
(
x
0
)=
1
。
因
此
将
这
些
条
件
概率称之
为单步 (5.3)
跃
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
END
计算材料学概述 之 蒙特卡洛方法
•
46、寓形宇内复几时,曷不委心任去 留。
•
Байду номын сангаас
47、采菊东篱下,悠然见南山。
•
48、啸傲东轩下,聊复得此生。
•
49、勤学如春起之苗,不见其增,日 有所长 。
•
50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃