知识讲解_平面向量应用举例_基础

合集下载

平面向量的数量积与平面向量应用举例_图文_图文

平面向量的数量积与平面向量应用举例_图文_图文

三、向量数量积的性质
1.如果e是单位向量,则a·e=e·a. 2.a⊥b⇔ a·b=0 .
|a|2
4.cos θ=
.(θ为a与b的夹角)
5.|a·b| ≤ |a||b|.
四、数量积的运算律
1.交换律:a·b= b·a . 2.分配律:(a+b)·c= a·c+b·c . 3.对λ∈R,λ(a·b)= (λa)·b= a·(λb.) 五、数量积的坐标运算
∴a与c的夹角为90°. (2)∵a与b是不共线的单位向量,∴|a|=|b|=1. 又ka-b与a+b垂直,∴(a+b)·(ka-b)=0, 即ka2+ka·b-a·b-b2=0. ∴k-1+ka·b-a·b=0. 即k-1+kcos θ-cos θ=0(θ为a与b的夹角). ∴(k-1)(1+cos θ)=0.又a与b不共线, ∴cos θ≠-1.∴k=1. [答案] (1)B (2)1
解析:(1) a=(x-1,1),a-b=(x-1,1)-(-x+1,3)= (2x-2,-2),故a⊥(a-b)⇔2(x-1)2-2=0⇔x=0或2 ,故x=2是a⊥(a-b)的一个充分不必要条件.
答案: (1)B (2)D
平面向量的模 [答案] B
[答案] D
[典例总结]
利用数量积求长度问题是数量积的重要应用,要掌 握此类问题的处理方法:
[巩固练习]
2.(1)设向量a=(x-1,1),b=(-x+1,3),则a⊥(a-b)
的一个充分不必要条件是
()
A.x=0或2
B.x=2
C.x=1
D.x=±2
(2)已知向量a=(1,0),b=(0,1),c=a+λb(λ∈R),
向量d如图所示,则
()
A.存在λ>0,使得向量c与向量d垂直 B.存在λ>0,使得向量c与向量d夹角为60° C.存在λ<0,使得向量c与向量d夹角为30° D.存在λ>0,使得向量c与向量d共线

备战高考数学复习知识点讲解课件38---平面向量的概念及线性运算

备战高考数学复习知识点讲解课件38---平面向量的概念及线性运算

常用结论
→ 1 → →
1.若 P 为线段 AB 的中点,O 为平面内任一点,则OP= (OA+OB).
2
2.若 G 为△ABC 的重心,则有
→ → →
→ 1 → →
(1)GA+GB+GC=0;(2)AG= (AB+AC).
3



3.OA=λOB+μOC(λ,μ为实数),若点 A,B,C 共线,则 λ+μ=1.
说法中正确的是(
)
A.2a与a的方向相同,且2a的模是a的模的2倍

2
B.-2a与5a的方向相反,且-2a的模是5a的模的

5
C.-2a与2a是一对相反向量

D.a-b与-(b-a)是一对相反向量
解析: A正确,因为2>0,所以2a与a的方向相同,且|2a|=2|a|.
B正确,因为5>0,所以5a与a的方向相同,且|5a|=5|a|,又-2<0,所以-




BA=b,BE=3EF,则BF=(
12
9
A. a+ b
25
25
16
12
B. a+ b

25
25
)
4
3
C. a+ b
5
5
3
4
D. a+ b
5
5
→ → → → 3→ → 3 → →
→ 3 3 → →
解析: BF=BC+CF=BC+ EA=BC+ (EB+BA)=BC+ -4BF+BA,
2a与a的方向相反,且|-2a|=2|a|,所以5a与-2a的方向相反,且-2a的模

是5a的模的 .

C正确,按照相反向量的定义可以判断.

《平面向量应用举例》高一年级下册PPT课件

《平面向量应用举例》高一年级下册PPT课件

第二章 平面向量
[解析] 以 B 为原点,BC 所在直线为 x 轴,建立如图所示的平面直角坐标
系.
∵AB=AC=5,BC=6, ∴B(0,0),A(3,4),C(6,0), 则A→C=(3,-4). ∵点 M 是边 AC 上靠近点 A 的一个三等分点, ∴A→M=31A→C=(1,-43),
8
∴M(4,3),
第二章 平面向量
(3)证明线段的垂直问题,如证明四边形是矩形、正方形,判断两直线(线 段)是否垂直等,常运用向量垂直的条件:a⊥b⇔a· b=0(或 x1x2+y1y2=0)
_______________________________.
a· b cosθ=|a ||b|
(4)求与夹角相关的问题,往往利用向量的夹角公式________________.
第二章 平面向量
∴B→M=(4,8).
3
假设在 BM 上存在点 P 使得 PC⊥BM, 设B→P=λB→M,且 0<λ<1, 即B→P=λB→M=λ(4,83)=(4λ,83λ), ∴C→P=C→B+B→P=(-6,0)+(4λ,83λ)=(4λ-6,83λ). ∵PC⊥BM,∴C→P· B→M=0,
第二章 平面向量
[解析] A→B=(7-20)i+(0-15)j=-13i-15j, (1)F1所做的功 W1=F1· s=F1· A→B =(i+j)· (-13i-15j)=-28; F2 所做的功 W2=F2· s=F2· A→B =(4i-5j)· (-13i-15j)=23. (2)因为 F=F1+F2=5i-4j, 所以 F 所做的功 W=F· s=F· A→B =(5i-4j)· (-13i-15j)=-5.
1.判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.

第三节 平面向量的数量积及平面向量应用举例-高考状元之路

第三节 平面向量的数量积及平面向量应用举例-高考状元之路

第三节 平面向量的数量积及平面向量应用举例预习设计 基础备考知识梳理1.平面向量的数量积 若两个 向量a 与b ,它们的夹角为θ,则数量 叫做a 与b 的数量积(或内积),记作规定:零向量与任一向量的数量积为两个非零向量a 与b 垂直的充要条件是 ,两个非零向量a 与b 平行的充要条件是2.平面向量数量积的几何意义数量积a ·b 等于a 的长度∣a ∣与b 在a 方向上的投影 的乘积.3.平面向量数量积的重要性质=⋅=⋅e a a e )1((2)非零向量⇔⊥b a b a ,,(3)当a 与b 同向时,=⋅b a当a 与b 反向时,=⋅b a =⋅a a , =||a=θcos )4(||)5(b a ⋅.|||b a4.平面向量数量积满足的运算律=⋅b a )1( (交换律);=⋅=⋅)())(2(b a b a λλ (A 为实数);=+c b a ).)(3(5.平面向量数量积有关性质的坐标表示设向量),,(),,(2211y x b y x a ==则=⋅b a 由此得到:(1)若),,(y x a =则=2||a ,或=||a(2)设),,(),,(2211y x B y x A 则A ,B 两点间的距离=||AB =||(3)设),,(),,(2211y x b y x a ==则⇔⊥b a典题热身1.下列四个命题中真命题的个数为 ( )①若,0=⋅b a 则;b a ⊥②若,c b b a ⋅=⋅且,0=/b 则⋅=c a);().(C b a c b a ⋅⋅=⋅③.)(222b a b a ⋅=⋅④4.A 2.B 0.c 3.D答案:C2.在△ABC 中,,10,2,3===BC AC AB 则=⋅. ( )23.-A 32.-B 32.c 23.D 答案:D3.已知平面向量b a b a +-=-=λ),2,4(),3,1(与a 垂直,则=λ( )1.-A 1.B2.-c 2.D答案:A4.已知),7,4(),3,2(-==b a 则a 在b 上的投影为( )13.A 513.B 565.c 65.D答案:C5.已知,2)(,6||,1||=-⋅==a b a b a 则向量a 与b 的夹角是( )6π⋅A 4π⋅B 3π⋅c 2π⋅D 答案:C课堂设计 方法备考题型一 平面向量的数量积运算和向量的模【例1】已知向量),2sin ,2(cos ),23sin ,23(cos x x b x x a -==且⋅-∈]4,3[ππx (1)求b a ⋅及|;|b a +(2)若|,|)(b a b a x f +-⋅=求)(x f 的最大值和最小值,题型二 利用向量的数量积求其夹角【例2】已知,21)()(,21,1||=+⋅-=⋅=b a b a b a a 求 (l)a 与b 的夹角;(2)a-b 与a+b 的夹角的余弦值.题型三 利用向量的数量积解决平行与垂直问题【例3】设向量,(cos ),cos 4,(sin ),sin ,cos 4(βββαα===c b a ).sin 4β-(1)若a 与b-2c 垂直,求)tan(βα+的值;(2)求||c b +的最大值;(3)若,16tan tan =βα求证:.//b a题型四 平面向量数量积的应用【例4】已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量),,(b a m =),sin ,(sin A B n = ).2,2(--=a b p(1)若,//n m 求证:△ABC 为等腰三角形;(2)若,p m ⊥边长,2=c 角,3π⋅=C 求△ABC 的面积.技法巧点1.向量数量积性质的应用 向量数量积的性质⇔=⋅⋅=⋅=0,||||cos ,||b a b a b a a a a θ,b a ⊥因此,用平面向量数量积可以解决有关长度、角度、垂直的问题.2.证明直线平行、直线、线段相等等问题的基本方法(1)要证,CD AB =可转化证明22CD =或.||||=(2)要证两线段,//CD AB 只要证存在一实数,0=/λ使等式λ=成立即可.(3)要证两线段,CD AB ⊥只需证.0..= 失误防范1.数量积a ·b 中间的符号“.”不能省略,也不能用“×”来替代.0.2=⋅b a 不能推出0=a ,或.0=b 因为0=⋅b a 时,有可能.b a ⊥)0(.3=/⋅=⋅a c a b a 不能推出.c b =4.一般地,,).()(a c b c b a =/⋅即乘法的结合律不成立.因b a ⋅是一个数量,所以c b a )(⋅表示一个与c 共线的向量,同理右边a c b )(⋅表示一个与a 共线的向量,而a 与c 不一定共线,故一般情况下.)()(a C b c b a ⋅=/⋅5.向量夹角的概念要领会,比如正三角形ABC 中,><,应为,120 而不是.60随堂反馈1.(2011.清远调研)在△ABC 中,已知a ,b ,c 成等比数列,且,43cos ,3==+B c a 则⋅等于 ( ) 23.A 23.-B 3.c 3.-D答案:B2.(2011,台州一模)已知向量a ,b 的夹角为,1||,120=a ,5||=b 则|3|b a -等于( )7.A 6.B 5.C 4.D答案:A3.(2011.湖北高考)若向量),1,1(),2,1(-==b a 则b a +2与b a -的夹角等于( )4.π-A 6π⋅B 4π⋅c 43.πD 答案:C4.(2011.全国卷)设向量a ,b 满足=⋅==b a b a ,1||||,21-则=+|2|b a ( ) 2.A 3.B 5.c 7.D答案:B5.(2011.江苏高考)已知21,e e 是夹角为32π的两个单位向量,⋅+=-=2121,2e ke b e e a 若,0=⋅b a 则实数k 的值为 答案:45 高效作业 技能备考一、选择题1.(2010.安徽高考)若向量),21,21(),0,1(==b a 则下列结论中正确的是( ) ||||.b a A = 22.=⋅b a B b a c -.与b 垂直 b a D //. 答案:C2.(2010.重庆高考)若向量a ,b 满足===⋅||,1||,0b a b a ,2则=-|2|b a ( )0.A 22.B 4.C 8.D答案:B3.(2010.四川高考)设点M 是线段BC 的中点,点A 在直线BC 外,如果BC -=+=162那么||等于 ( ) 8.A 4.B 2.C 1.D答案:C4.(2010.辽宁高考)平面上O ,A ,B 三点不共线,若,a =,b =则△OAB 的面积等于( )222)(|.|.b a b a A ⋅- |222)(|.b a b a B ⋅+⋅222)(||||21.b a b a c ⋅-⋅ 222)(21.b a b a D ⋅+⋅ 答案:C5.(2010.杭州质检)向量.2),1,(),2,1(b a c x b a +===,2b a d -=若,//d c 则实数x 的值等于( )21.A 21.-B 61.c 61.-D 答案:A6.(2011.汕头模拟)如图所示,在△ABC 中,=∠==ABC BC AB ,4,30 AD 是边BC 上的高,则. 的值等于( )0.A 4.B 8.c 4.-D答案:B二、填空题7.(2011.天津高考)已知直线梯形ABCD 中,,//BC AD ,90 =∠ADC ,2=AD P BC ,1=是腰DC 上的动点,则|3|+的最小值为答案:58.(2010.浙江高考)若平面向量),0(,b a a b a =/=/满足=||b ,1且a 与b-a 的夹角为,120则||a 的取值范围是答案:)332,0(9.(2011.浙江高考)若平面向量βα、满足,1||,1||≤=βα且以向量βα、为邻边的平行四边形的面积为,21则βα和的夹角θ的取值范围是 答案:]65,6[ππ三、解答题10.(2010.江苏高考)在平面直角坐标系xOy 中,已知点).1,2(),3,2()2,1(----C rB A(1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长;(2)设实数t 满足,0)(=⋅-t 求t 的值.11.(2011.湖南高考)已知向量).2,1(),sin 2cos ,(sin =-=b a θθθ(1)若a∥b,求θtan 的值;(2)若,00|,|||π<<=b a 求θ的值.12.(2011.江苏高考)已知向量]).0,[)(sin ,(cos πααα-∈=OA 向量),5,0(),1,2(-==n m 且).(n OA m -⊥(1)求向量;(2)若,0,102)cos(πβπβ<<=-求).2cos(βα-。

向量的向量积及应用例举专题讲解

向量的向量积及应用例举专题讲解

平面向量的数量积及应用举例考纲解读 1.利用向量数量积的定义或坐标求数量积;2.利用向量数量积的运算求向量夹角及模;3.利用数量积的运算研究垂直关系及图形特征.[基础梳理]1.向量的夹角3.设a ,b 都是非零向量,e 是单位向量,θ为a 与b (或e )的夹角.则 ①e ·a =a ·e =|a |cos θ. ②cos θ=a ·b|a ||b |.③a ·b ≤|a ||b |. 4.数量积的运算律 (1)交换律:a ·b =b ·a .(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ). (3)分配律:a ·(b +c )=a ·b +a ·c 5.平面向量数量积的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),向量a 与b 的夹角为θ,则1.设a =(3,1),b =⎝⎛⎭⎫1,-33,则向量a ,b 的夹角为( ) A .30° B .60° C .120° D .150°答案:B2.已知a =(1,2),b =(3,4),若a +k b 与a -k b 互相垂直,则实数k =( ) A. 5 B .5 C .± 5 D .±55答案:D3.已知a =(1,-3),b =(4,6),c =(2,3),则(b ·c )·a 等于( ) A .(26,-78) B .(-28,-42) C .-52 D .-78 答案:A4.(必修4·习题2.4A 组改编)已知|a |=2,|b |=4且a ⊥(a -b ),则a 与b 的夹角是________. 答案:π35.(2017·高考全国卷Ⅰ改编)已知a 与b 的夹角为60°,|a |=2,|b |=1,则|a +b |=__________.答案:7[考点例题]考点一 平面向量数量积的运算|方法突破[例1] (1)(2017·邢台模拟)在△ABC 中,AB =AC =3,∠BAC =30°,CD 是边AB 上的高,则CD →·CB →=( )A .-94B.94C.274D .-274(2)在菱形ABCD 中,对角线AC =4,E 为CD 的中点,则AE →·AC →=( ) A .8 B .10 C .12D .14(3)如图,AB 是半圆O 的直径,C ,D 是弧AB 的三等分点,M ,N 是线段AB 的三等分点,若OA =6,则MC →·ND →=________.[解析] (1)在△ABC 中,AB =AC =3,∠BAC =30°,CD 是边AB 上的高,则有CD =AC ·sin 30°=32.∴CD →·CB →=|CD →|·|CB →|·cos ∠BCD =|CD →|2=94.故选B.(2) (坐标法)特殊化处理,用正方形代替菱形,边长为22,以A 为原点,建立如图所示坐标系,则A (0,0),C (22,22),E (2,22),所以AC →=(22,22),AE →=(2,22),所以AC →·AE →=22×2+22×22=12,故选C.(3)法一:因为MC →·ND →=(MO →+OC →)·(NO →+OD →)=MO →·NO →+MO →·OD →+OC →·NO →+OC →·OD →=|MO →|·|NO →|cos 180°+|MO →|·|OD →|cos 60°+|OC →|·|NO →|·cos 60°+|OC →|·|OD →|·cos 60°=-4+6+6+18=26.法二:以点O 为坐标原点,AB 所在的直线为x 轴,AB 的垂直平分线为y 轴建立平面直角坐标系(图略),则M (-2,0),N (2,0),C (-3,33),D (3,33),所以MC →=(-1,33),ND →=(1,33),MC →·ND →=-1+27=26.[答案] (1)B (2)C (3)26 [方法提升]解决平面向量数量积问题的常用方法技巧 技巧解读适合题型定义法利用定义式a ·b =|a |·|b |cos θ求解.定义式的特点是具有强烈的几何含义,需要明确两个向量的模及夹角,夹角的求解一般通过具体的图形可确定.适用于平面图形中的向量数量积的有关计算问题坐标法利用坐标式a ·b =x 1x 2+y 1y 2解题.坐标式的特点是具有明显的代数特征,解题时需要引入直角坐标系,明确向量的坐标进行求解,即向量问题“坐标化”. 适用于已知相应向量的坐标求解数量积的有关计算问题转化法求较复杂的向量数量积的运算时,可先利用向量数量积的运算律或相关公式进行化简,然后进行计算.适用于直接求解不易,而转化为其他向量的数量积的有关计算问题[母题变式]1.将本例(2)改为: 在边长为1的正方形ABCD 中,E ,F 分别为BC ,DC 的中点,则AE →·AF →=________.解析:法一:因为AE →=AB →+12AD →,AF →=AD →+12AB →,AD →·AB →=0,所以AE →·AF→=⎝⎛⎭⎫AB →+12AD →·⎝⎛⎭⎫AD →+12AB →=12AB 2→+12AD 2→=1. 法二:以A 为原点,AB 为x 轴建立坐标系(图略), 则E ⎝⎛⎭⎫1,12,F ⎝⎛⎭⎫12,1. ∴AE →·AF →=1×12+12×1=1.答案:12.在本例(1)中条件不变,求CA →·AD →. 解析:在Rt △ADC 中,AD =3 cos 30°=332, 而〈CA →,AD →〉=150°,∴CA →·AD →=|CA →|·|AD →|·cos 150°=3×332×⎝⎛⎭⎫-32=-274.考点二 向量的模、夹角、垂直问题|方法突破命题点1 向量的模的计算[例2] (1)平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |=( ) A.3 B .23 C .4D .12 (2)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB→+PC →|的最大值为( )A .6B .7C .8D .9[解析] (1)由已知|a |=2,所以|a +2b |2=a 2+4a ·b +4b 2=4+4×2×1×cos 60°+4=12,所以|a +2b |=2 3.(2)由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,知线段AC 为圆的直径,设圆心为O ,故P A →+PC →=2PO →=(-4,0),设B (a ,b ),则a 2+b 2=1且a ∈[-1,1],PB →=(a -2,b ),所以P A →+PB →+PC →=(a -6,b ).故|P A →+PB →+PC →|=-12a +37, 所以当a =-1时,此式有最大值49=7. [答案] (1)B (2)B [方法提升]求向量模的常用方法[跟踪训练]1.(2017·洛阳统考)若平面向量a =(-1,2)与b 的夹角是180°,且|b |=35,则b 的坐标为( )A .(3,-6)B .(-3,6)C .(6,-3)D .(-6,3)解析:由题意设b =λa =(-λ,2λ)(λ<0),而|b |=35,则λ2+4λ2=35,所以λ=-3,b =(3,-6),故选A.答案:A2.已知向量a 与b 的夹角为120°,|a |=1,|b |=3,则|5a -b |=________. 解析:由a·b =|a |·|b |cos 〈a ,b 〉=1×3×cos 120°=-32,得|5a -b |=(5a -b )2=25a 2+b 2-10a·b =25+9-10×⎝⎛⎭⎫-32=7. 答案:7命题点2 向量的夹角计算[例3] (1)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4D .π[解析] 设a 与b 的夹角为θ, |a |=223|b |,因为(a -b )⊥(3a +2b ), 所以(a -b )·(3a +2b )=3|a |2-2|b |2-a ·b =83|b |2-2|b |2-223|b |2cos θ=0,解得cos θ=22,因为θ∈[0,π],所以θ=π4. [答案] A(2)(2017·沈阳教学质量监测)已知两个非零向量a ,b 满足a ·(a -b )=0,且2|a |=|b |,则〈a ,b 〉=( )A .30°B .60°C .120°D .150°[解析] 法一:由题知a 2=a ·b ,而cos 〈a ,b 〉=a·b|a |·|b |=|a |22|a |2=12,所以〈a ,b 〉=60°,故选B.(定义法)法二:作OA →=a ,∵a ⊥(a -b ), 作AC →⊥OA →,则CA →=a -b ,∴OC →=b ,又∵|b |=2|a |,即|OC →|=2|OA →|,在Rt △OAC 中,∴∠AOC =60°,即〈a ,b 〉=60°.(数形结合法) [答案] B [方法提升] 求向量夹角的方法方法 解读适合题型 定义法 cos 〈a ,b 〉=a ·b|a ||b |适用于向量的代数运算 数形结合法转化为求三角形的内角适用于向量的几何运算[跟踪训练]3.在典例(1)中,将条件“|a |=223|b |”换成“(2b -3a )⊥b ”,其他不变,则两个向量的夹角θ为__________.解析:由(2b -3a )⊥b 得(2b -3a )·b =0, 所以2b 2-3a ·b =0,① 由(a -b )⊥(3a +2b ),得(a -b )·(3a +2b )=0,即3a 2-a ·b -2b 2=0.② 由①②联立得|a |=223|b |,代入①得 cos θ=22,因为θ∈[0,π],所以θ=π4. 答案:π44.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.解析:由AO →=12(AB →+AC →),可得O 为BC 的中点,故BC 为圆O 的直径,所以AB →与AC →的夹角为90°.答案:90°命题点3 向量的垂直问题[例4] (1)已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( )A.⎝⎛⎭⎫79,73B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 (2)已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λ AB →+AC →,且AP →⊥BC →,则实数λ的值为__________.[解析] (1)设c =(m ,n ),则a +c =(1+m,2+n ),a +b =(3,-1),因为(c +a )∥b ,则有-3(1+m )=2(2+n );又c ⊥(a +b ),则有3m -n =0,解得m =-79,n =-73.所以c =⎝⎛⎭⎫-79,-73.(2)由AP →⊥BC →,知AP →·BC →=0,即AP →·BC →=(λ AB →+AC →)·(AC →-AB →)=(λ-1)AB →·AC →-λ AB →2+AC →2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. [答案] (1)D (2)712[方法提升][跟踪训练]5.(2018·西安质检)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( )A .|b |=1B .a ⊥bC .a·b =1D .(4a +b )⊥BC →解析:由题意,BC →=AC →-AB →=(2a +b )-2a =b, 则|b |=2,故A 错误;|2a |=2|a |=2,所以|a |=1,又AB →·AC →=2a ·(2a +b )=4|a |2+2a·b =2×2cos 60°=2,所以a·b =-1,故B ,C 错误.故应选D.答案:D6.已知a =(-2,1),b =(k ,-3),c =(1,2),若(a -2b )⊥c ,则|b |=( ) A .3 5 B .32 C .2 5D.10解析:由题意得a -2b =(-2-2k,7), ∵(a -2b )⊥c . ∴(a -2b )·c =0,即(-2-2k,7)·(1,2)=0,-2-2k +14=0,解得k =6, 所以|b |=62+(-3)2=35,选A. 答案:A考点三 向量与三角函数、三角形的综合|模型突破角度1 向量与三角函数的综合[例5] 设函数f (x )=a ·b ,其中向量a =(2cos x,1),b =(cos x ,3sin 2x +m ). (1)求函数f (x )的最小正周期和函数f (x )在[0,π]上的单调递增区间; (2)当x ∈⎣⎡⎦⎤0,π6时,-4<f (x )<4恒成立,求实数m 的取值范围. [解析] (1)因为f (x )=a ·b ,a =(2cos x,1),b =(cos x ,3sin 2x +m ),所以f (x )=2cos 2x +3sin 2x +m =cos 2x +3sin 2x +m +1=2sin ⎝⎛⎭⎫2x +π6+m +1. 所以函数f (x )的最小正周期T =2π2=π.因为0≤x ≤π, 所以π6≤2x +π6≤13π6,由π6≤2x +π6≤π2或3π2≤2x +π6≤13π6, 可得0≤x ≤π6或2π3≤x ≤π.所以函数f (x )在[0,π]上的单调递增区间为⎣⎡⎦⎤0,π6和⎣⎡⎦⎤2π3,π. (2)因为0≤x ≤π6,所以π6≤2x +π6≤π2,所以12≤sin ⎝⎛⎭⎫2x +π6≤1,所以m +2≤f (x )≤m +3. 因为-4<f (x )<4恒成立,所以⎩⎪⎨⎪⎧m +3<4,m +2>-4,解得-6<m <1.所以实数m 的取值范围为(-6,1). [模型解法]角度2 向量与三角形的综合[例6] (1)已知O ,N ,P 在△ABC 所在平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0,且P A →·PB →=PB →·PC →=PC →·P A →,则点O ,N ,P 依次是△ABC 的( )A .重心 外心 垂心B .重心 外心 内心C .外心 重心 垂心D .外心 重心 内心(注:三角形的三条高线交于一点,此点为三角形的垂心)(2)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3[解析] (1)由|OA →|=|OB →|=|OC →|知,O 为△ABC 的外心;由NA →+NB →+NC →=0知,N 为△ABC 的重心,因为P A →·PB →=PB →·PC →,所以(P A →-PC →)·PB →=0,所以CA →·PB →=0,所以CA →⊥PB →,即CA ⊥PB ,同理AP ⊥BC ,CP ⊥AB ,所以P 为△ABC 的垂心.(2)由m ⊥n 得m ·n =0,即3cos A -sin A =0, 即2cos ⎝⎛⎭⎫A +π6=0, 因为π6<A +π6<7π6,所以A +π6=π2,即A =π3.又a cos B +b cos A =2R sin A cos B +2R sin B cos A=2R sin(A +B )=2R sin C =c (R 为△ABC 外接圆半径),且a cos B +b cos A =c sin C , c =c sin C ,所以sin C =1,又C ∈(0,π),所以C =π2,所以B =π-π3-π2=π6.[答案] (1)C (2)C [模型解法]向量的运算本身就涉及到三角形,解决其交汇问题的关键点: (1)转化,向量的模与三角形边长的转化, 向量的夹角与三角形内角的转化(2)结合,结合向量的运算法则,化为边角关系,结合三角形的正、余弦定理,求解边,角.(3)检验,结论是否符合向量的概念,是否符合三角形的知识.[高考类题](2017·高考全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43D .-1解析: 如图,以等边三角形ABC 的底边BC 所在直线为x 轴,以BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),则P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ),所以P A →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2x 2+2⎝⎛⎭⎫y -322-32,当x =0,y =32时,P A →·(PB →+PC →)取得最小值,为-32,选择B. 答案:B[真题感悟]1.[考点一](2017·高考全国卷Ⅱ)设非零向量a ,b 满足|a +b |=|a -b |,则( )A .a ⊥bB .|a |=|b |C .a ∥bD .|a |>|b |解析:依题意得(a +b )2-(a -b )2=0,即4a ·b =0,a ⊥b ,选A.答案:A2.[考点一、二](2017·高考全国卷Ⅰ)已知向量a =(-1,2),b =(m,1).若向量a +b 与a 垂直,则m =________.解析:因为a +b =(m -1,3),a +b 与a 垂直,所以(m -1)×(-1)+3×2=0,解得m =7.答案:73.[考点一、二](2017·高考全国卷Ⅲ)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________.解析:因为a ⊥b ,所以a ·b =-2×3+3m =0,解得m =2.答案:24.[考点三](2017·高考北京卷)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为__________.解析:法一:根据题意作出图象,如图所示,A (-2,0),P (x ,y ).由点P 向x 轴作垂线交x 轴于点Q ,则点Q 的坐标为(x,0).AO →·AP →=|AO →||AP →|cos θ,|AO →|=2,|AP →|=(x +2)2+y 2,cos θ=AQ AP =x +2(x +2)2+y 2, 所以AO →·AP →=2(x +2)=2x +4.点P 在圆x 2+y 2=1上,所以x ∈[-1,1].所以AO →·AP →的最大值为2+4=6.法二:因为点P 在圆x 2+y 2=1上,所以可设P (cos α,sin α)(0≤a <2π),所以AO →=(2,0),AP →=(cos α+2,sin α),AO →·AP →=2cos α+4≤2+4=6,当且仅当cos α=1,即α=0,P (1,0)时“=”号成立.答案:65.[考点一、三](2017·高考天津卷)在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2 DC →,AE →=λ AC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为__________.解析:由题意,知|AB →|=3,|AC →|=2,AB →·AC →=3×2×cos 60°=3,AD →=AB →+BD →=AB →+23BC → =AB →+23(AC →-AB →) =13AB →+23AC →, ∴AD →·AE →=⎝⎛⎭⎫13AB →+23AC →·(λ AC →-AB →) =λ-23×3-13×32+2λ3×22 =113λ-5=-4, 解得λ=311. 答案:311。

平面向量的运算

平面向量的运算

平面向量的运算在数学中,平面向量是由大小和方向确定的量,常用于表示物体在平面上的位移或力的作用方向。

平面向量的运算是指对平面向量进行加法、减法、数乘和点乘等操作。

本文将介绍平面向量的基本概念和运算规则。

一、平面向量的表示方法平面向量通常用有向线段表示,由两个点确定,例如AB表示从点A到点B的平面向量。

可以用字母加箭头(如→)表示平面向量,如:AB →其中A为向量的起点,B为终点。

二、平面向量的加法对于两个平面向量AB → 和CD →,它们的和可以通过平行四边形法则得到。

具体步骤如下:1. 将向量CD → 的起点与向量AB → 的终点相重合,得到新的向量AC →;2. 连接向量AB → 的起点和向量CD → 的终点,得到新的向量AD →;3. 新的向量AD → 就是原始向量AB → 和CD → 的和,即AD → = AB → + CD →。

三、平面向量的减法向量的减法可以通过向量加法的逆运算得到。

对于向量AB → 和CD →,它们的差可以表示为AB → - CD →,具体步骤如下:1. 取向量CD → 的终点B为新向量的起点,向量AB → 的起点A为新向量的终点,得到新的向量BA →;2. 新的向量BA → 就是原始向量AB → 和CD → 的差,即BA → = AB → - CD →。

四、平面向量的数乘平面向量的数乘是指将向量的长度乘以一个实数,从而改变向量的大小。

设有向量AB → 和实数k,它们的数乘表示为kAB →,其具体步骤如下:1. 将向量AB → 的长度乘以实数k,得到新向量AC →;2. 新的向量AC → 的方向与原来向量AB → 相同,而长度为原来的k倍,即AC → = kAB →。

五、平面向量的点乘平面向量的点乘(内积)运算可以得到两个向量的乘积,结果为一个实数。

设有向量AB → 和CD →,它们的点乘表示为AB → · CD →,具体计算方法如下:1. 将向量AB → 和CD → 的长度相乘,得到实数AC;2. 计算向量AB → 与向量CD → 之间夹角的余弦值,得到实数cosθ;3. 点乘的结果为AB → · CD → = ACcosθ。

12-第四节 平面向量的应用-课时4 余弦定理、正弦定理应用举例高中数学必修第二册人教版

12-第四节 平面向量的应用-课时4 余弦定理、正弦定理应用举例高中数学必修第二册人教版
∠ = 180∘ − ∠ − (90∘ − 51∘ ) = 180∘ − 37∘ − 39∘ = 104∘ ,∠
= 180∘ − 51∘ − 63∘ = 66∘ ,∠ = 180∘ − ∠ − ∠ = 180∘ −
104∘

66∘
=
10∘ ,由正弦定理得

sin∠
sin
2 +2 − 2
cos =
,即可解出的值是唯一的;对于③,利用正弦定理
2


=
,求出,再利用余弦定理可求出的值是唯一的;对于④,利
sin
sin
用余弦定理求时可能会有两个不同结果,故不一定能唯一确定点A,B间
的距离.故选A.
2.[2024湖北十堰期末]在一个港口,有一艘船以每小时30 n mile的速度向
,,):
①测量角,角,;②测量,,角;
③测量角,角,;④测量,,角.
则一定能确定,间距离的方案是( A )
A.①②③
B.②③④
C.①③④
D.①②③④
【解析】 对于①,利用内角和定理先求出 = π − − ,再利用正弦定


sin

=
,解出的值是唯一的;对于②,直接利用余弦定理
60∘ ,∠ = 30∘ , = 12
6
6 n mile,则 =

,则
sin∠
=
3 n mile, =


45 .在△中,
sin
sin
sin∠
=
12
=
2
3× 2
3
2
= 12 2(n mile),
A正确.在△中, = 2 + 2 − 2 ⋅ cos∠ = 504 − 432

平面向量的数量积及平面向量的应用举例

平面向量的数量积及平面向量的应用举例

3.求向量模的常用方法:利用公式 |a|2=a2,将模的运算转化为向量数量 积的运算.
失误防范
1.零向量:(1)0 与实数 0 的区别,不可 写错:0a=0≠0,a+(-a)=0≠0,a·= 0 0≠0;(2)0 的方向是任意的,并非没有方 向,0 与任何向量平行,我们只定义了非 零向量的垂直关系.
课前热身
1.若向量a,b,c满足a∥b 且a⊥c,则c· (a+2b)=( )
A.4
C.2
B.3
D.0
答案:D
2.已知向量 a,b 满足 a· b=0,|a|=1, |b|=2,则|2a-b|=( A.0 C.4 ) B.2 2 D.8
答案:B
3. (2011· 高考大纲全国卷)已知抛物线 C: y2=4x 的焦点为 F,直线 y=2x-4 与 C 交于 A,B 两点,则 cos∠AFB=( 4 3 A. B. 5 5 3 4 C.- D.- 5 5 )
a· b 2 则 cosθ= = = , |a||b| 2 2 1× 2 π 又 θ∈[0,π],∴θ= . 4 π 即 a 与 b 的夹角为 . 4
1 2
(2)∵(a-b)2=a2-2a· 2 b+b 1 1 1 =1-2× + = , 2 2 2 2 ∴|a-b|= , 2 ∵(a+b)2=a2+2a· 2 b+b 1 1 5 =1+2× + = , 2 2 2
量积等于0说明两向量的夹角为直角,
数量积小于0且两向量不共线时两向量
的夹角是钝角.
考点3 两向量的平行与垂直关系
向量的平行、垂直都是两向量关系中 的特殊情况,判断两向量垂直可以借 助数量积公式.如果已知两向量平行 或垂直可以根据公式列方程(组)求解
例3
已知|a|=4,|b|=8,a与b的夹角
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量应用举例【学习目标】1.会用向量方法解决某些简单的平面几何问题.2.会用向量方法解决简单的力学问题与其他一些实际问题.3.体会用向量方法解决实际问题的过程,知道向量是一种处理几何、物理等问题的工具,提高运算能力和解决实际问题的能力.【要点梳理】要点一:向量在平面几何中的应用向量在平面几何中的应用主要有以下几个方面:(1)证明线段相等、平行,常运用向量加法的三角形法则、平行四边形法则,有时用到向量减法的意义.(2)证明线段平行、三角形相似,判断两直线(或线段)是否平行,常运用向量平行(共线)的条件://λ⇔=a b a b (或x 1y 2-x 2y 1=0).(3)证明线段的垂直问题,如证明四边形是矩形、正方形,判断两直线(线段)是否垂直等,常运用向量垂直的条件:0⊥⇔⋅=a b a b (或x 1x 2+y 1y 2=0).(4)求与夹角相关的问题,往往利用向量的夹角公式cos ||||θ⋅=a ba b .(5)向量的坐标法,对于有些平面几何问题,如长方形、正方形、直角三角形等,建立直角坐标系,把向量用坐标表示,通过代数运算解决几何问题.要点诠释:用向量知识证明平面几何问题是向量应用的一个方面,解决这类题的关键是正确选择基底,表示出相关向量,这样平面图形的许多性质,如长度、夹角等都可以通过向量的线性运算及数量积表示出来,从而把几何问题转化成向量问题,再通过向量的运算法则运算就可以达到解决几何问题的目的了 .要点二:向量在解析几何中的应用在平面直角坐标系中,有序实数对(x ,y )既可以表示一个固定的点,又可以表示一个向量,使向量与解析几何有了密切的联系,特别是有关直线的平行、垂直问题,可以用向量方法解决.常见解析几何问题及应对方法:(1)斜率相等问题:常用向量平行的性质.(2)垂直条件运用:转化为向量垂直,然后构造向量数量积为零的等式,最终转换出关于点的坐标的方程.(3)定比分点问题:转化为三点共线及向量共线的等式条件.(4)夹角问题:利用公式cos ||||θ⋅=a ba b .要点三:向量在物理中的应用(1)利用向量知识来确定物理问题,应注意两方面:一方面是如何把物理问题转化成数学问题,即将物理问题抽象成数学模型;另一方面是如何利用建立起来的数学模型解释相关物理现象.(2)明确用向量研究物理问题的相关知识:①力、速度、位移都是向量;②力、速度、位移的合成与分解就是向量的加减法;③动量mv 是数乘向量;④功即是力F 与所产生位移s 的数量积.(3)用向量方法解决物理问题的步骤:一是把物理问题中的相关量用向量表示;二是转化为向量问题的模型,通过向量运算解决问题;三是把结果还原为物理结论.【典型例题】类型一:向量在平面几何中的应用例1.用向量法证明:直径所对的圆周角是直角.已知:如下图,AB 是⊙O 的直径,点P 是⊙O 上任一点(不与A 、B 重合),求证:∠APB =90°.证明:联结OP ,设向量b OP a OA =→=→,,则a OB -=→且b a OP OA PA -=→-→=→,b a OP OB PB --=→-→=→0||||2222=-=-=→⋅→∴a b a b PB PA→⊥→∴PB PA ,即∠APB =90°.【总结升华】解决垂直问题,一般的思路是将目标线段的垂直转化为向量的数量积为零,而在此过程中,则需运用向量运算,将目标向量用基底表示,通过基底的数量积运算式使问题获解,如本题便是将向量PA ,PB 由基底a ,b 线性表示.当然基底的选取应以方便运算为准,即它们的夹角是明确的,且长度易知.举一反三:【变式1】P 是△ABC 所在平面上一点,若PA PB PB PC PC PA ⋅=⋅=⋅,则P 是△ABC 的( ) A .外心 B .内心 C .重心 D .垂心 【答案】D【变式2】已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为________;DE DC ⋅的最大值为________.【解析】||||cos ,DE CB DE DA DE DA DE DA ⋅=⋅=⋅〈〉=2||||||DA DA DA ⋅==1||||cos ,DE DC DE DC DE DC ⋅=⋅〈〉=||||cos DE DC EDC ⋅∠42EDC ππ⎛⎫≤∠≤⎪⎝⎭=||cos DE EDC ∠=||DF (F 是E 点在DC 上的投影) 1≤当F 与C 点重合时,上式取到等号.例2.如图所示,四边形ADCB 是正方形,P 是对角线DB 上一点,PFCE 是矩形,证明:PA EF ⊥.【思路点拨】如果我们能用坐标表示PA 与EF ,则要证明结论,只要用两向量垂直的充要条件进行验证即可.因此只要建立适当的坐标系,得到点A 、B 、E 、F 的坐标后,就可进行论证.【解析】以点D 为坐标原点,DC 所在直线为x 轴建立如图所示坐标系,设正方形的边长为1,||DP λ=,则)1,0(A ,)22,22(λλP ,)22,1(λE ,)0,22(λF , 于是22(,1)22PA λλ=--,22(1,)22EF λλ=--, ∵2222()(1)(1)()2222PA EF λ⋅=-⋅-+-⋅- 0022)221122(22=⨯-=-+-⋅-=λλλλ ∴PA EF ⊥. 举一反三:【变式1】在平面直角坐标系xOy 中,已知点A (―1,―2),B (2,3),C (―2,―1). (1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足()0AB tOC OC -⋅=,求t 的值. 【答案】(1)42210(2)115-【解析】 (1)由题设知(3,5)AB =,(1,1)AC =-,则(2,6)AB AC +=,(4,4)AB AC -=. 所以||210AB AC +=||42AB AC -= 故所求的两条对角线长分别为4210(2)由题设知(2,1)OC =--,(32,5)AB tOC t t -=++. 由()0AB tOC OC -⋅=,得(3+2t ,5+t)·(―2,―1)=0,PFy xE D CBAO从而5t=―11,所以115t =-.类型二:向量在解析几何中的应用例3.已知圆C :(x-3)2+(y-3)2=4及定点A (1,1),M 为圆C 上任意一点,点N 在线段MA 上,且2MA AN =,求动点N 的轨迹方程.【思路点拨】设出动点的坐标,利用向量条件确定动点坐标之间的关系,利用M 为圆C 上任意一点,即可求得结论. 【答案】x 2+y 2=1【解析】设N (x ,y ),M (x 0,y 0),则由2MA AN =得(1―x 0,1―y 0)=2(x ―1,y ―1),∴00122122x x y y -=-⎧⎨-=-⎩,即003232x x y y =-⎧⎨=-⎩.代入(x ―3)2+(y ―3)2=4,得x 2+y 2=1.【总结升华】本题考查轨迹方程,解题的关键是利用向量条件确定动点坐标之间的关系,属于中档题. 举一反三:【变式1】已知△ABC 的三个顶点A (0,―4),B (4,0),C (―6,2),点D 、E 、F 分别为边BC 、CA 、AB 的中点.(1)求直线DE 、EF 、FD 的方程;(2)求AB 边上的高CH 所在直线的方程. 【答案】(1)x ―y+2=0,x+5y+8=0,x+y=0(2)x+y+4=0 【解析】 (1)由已知得点D (―1,1),E (―3,―1),F (2,―2), 设M (x ,y )是直线DE 上任意一点,则//DM DE .(1,1)DM x y =+-,(2,2)DE =--. ∴(-2)×(x+1)―(―2)(y ―1)=0, 即x ―y+2=0为直线DE 的方程.同理可求,直线EF ,FD 的方程分别为 x+5y+8=0,x+y=0.(2)设点N (x ,y )是CH 所在直线上任意一点,则CN AB ⊥. ∴0CN AB ⋅=.又(6,2)CN x y =+-,(4,4)AB =.∴4(x+6)+4(y ―2)=0,即x+y+4=0为所求直线CH 的方程. 【总结升华】(1)利用向量法来解决解析几何问题,首先要将线段看成向量,再把坐标利用向量法则进行运算.(2)要掌握向量的常用知识:①共线;②垂直;③模;④夹角;⑤向量相等则对应坐标相等.类型三:向量在物理学中“功”的应用例4.一个物体受到同一平面内三个力F 1,F 2,F 3的作用,沿北偏东45°的方向移动了8 m ,其中|F 1|=2N ,方向为北偏东30°;|F 2|=4 N ,方向为北偏东60°;|F 3|=6 N ,方向为北偏西30°,求合力F 所做的功.【答案】246【解析】 以物体的重心O 为原点,正东方向为x 轴的正半轴建立直角坐标系.如图,则1(1,3)F =,2(23,2)F =,3(3,33)F =-, 则123(232,243)F F F F =++=-+. 又位移(42,42)s =,合力F 所做的功为(232)42(243)424263246W F s =⋅=-⨯++⨯=⨯=(J ). ∴合力F 所做的功为246J .【总结升华】用向量的方法解决相关的物理问题,要将相关物理量用几何图形表示出来,再根据它的物理意义建立数学模型,将物理问题转化为数学问题求解,最后将数学问题还原为物理问题. 举一反三:【变式1】已知一物体在共点力12(2,2),(3,1),F F ==的作用下产生位移13(,)22s =,则共点力对物体所做的功为( )A 、4B 、3C 、7D 、2 【答案】C【解析】对于合力()5,3F =,其所做的功为59722W F S =⋅=+=.因此选C. 类型四:向量在力学中的应用例5.如图,用两条同样长的绳子拉一物体,物体受到重力为G .两绳受到的拉力分别为F 1、F 2,夹角为θ.(1)求其中一根绳子受的拉力|F 1|与G 的关系式,用数学观点分析F 1的大小与夹角θ的关系;(2)求F 1的最小值;(3)如果每根绳子的最大承受拉力为|G|,求θ的取值范围.【答案】(1)θ增大时,|F 1|也增大(2)||2G (3)[0°,120°] 【解析】(1)由力的平衡得F 1+F 2+G=0,设F 1,F 2的合力为F ,则F=―G ,由F 1+F 2=F 且|F 1|=|F 2|,|F|=|G|,解直角三角形得111||||2cos 2||2||F G F F θ==,∴1||||2cos2G F θ=,θ∈[0°,180°],由于函数y=cos θ在θ∈[0°,180°]上为减函数,∴θ逐渐增大时,cos2θ逐渐减小,即||2cos2G θ逐渐增大,∴θ增大时,|F 1|也增大.(2)由上述可知,当θ=0°时,|F 1|有最小值为||2G . (3)由题意,1||||||2G F G ≤≤, ∴11122cos 2θ≤≤,即1cos 122θ≤≤.由于y=cos θ在[0°,180°]上为减函数,∴0602θ︒≤≤︒,∴θ∈[0°,120°]为所求.【总结升华】生活中“两人共提一桶水,夹角越大越费力”,“在单杠上做引体向上,两臂的夹角越小就越省力”等物理现象,通过数学推理与分析得到了诠释. 举一反三:【变式1】两个大小相等的共点力12,F F ,当它们间夹角为090时,合力的大小为20N ,则当它们的夹角为0120时,合力的大小为( )A 、40NB 、102NC 、202ND 、10N【思路点拨】力的合成关键是依平行四边形法则,求出力的大小,然后再结合平行四边形法则求出新的合力.【解析】对于两个大小相等的共点力12,F F ,当它们间夹角为090时,合力的大小为20N 时,这二个力的大小都是102N ,对于它们的夹角为0120时,由三角形法则,可知力的合成构成一个等边三角形,因此合力的大小为102N. 正确答案为B.【总结升华】力的合成可用平行四边形法则,也可用三角形法则,各有优点,但实质是相通的,关键是要灵活掌握;对于第一个平行四边形法则的应用易造成的错解是110F N =,这样就会错选答案D. 类型五:向量在速度中的应用例6.在风速为75(62)-km / h 的西风中,飞机以150 km / h 的航速向西北方向飞行,求没有风时飞机的航速和航向.【思路点拨】这是航行中的速度问题,速度的合成与分解相当于向量的加法与减法,处理的方法和原则是三角形法则或平行四边形法则. 【答案】1502,北偏西60°【解析】设风速为ω,飞机向西北方向飞行的速度为v a ,无风时飞机的速度为v b ,则如图,v b =v a -ω,设||||a AB v =,||||BC ω=,||||b AC v =,过A 点作AD ∥BC ,过C 作CD ⊥AD 于D ,过B 作BE ⊥AD 于E ,则∠BAD=45°,||150AB =,||75(62)BC =-.所以||||||752CD BE EA ===,||756DA =. 从而||1502AC =,∠CAD=30°.所以没有风时飞机的航速为1502km / h ,航向为北偏西60°.【总结升华】本题主要考查向量在物理学中的应用.此类问题一般采用向量加法、减法的平行四边形法则和三角形法则来解决,注意画图辅助思考. 举一反三:【变式1】一艘船从A 点出发以23/km h 的速度向垂直于对岸的方向行驶,同时河水流速为2/km h ,求船实际航行的速度的大小与方向.【解析】如图所示,由向量的三角形法则知,对于v =水2/km h ,v =船23/km h ,得4124v =+=船实际/km h ,方向为逆水流与水流成030夹角.【总结升华】对于船的航行问题关键是要注意运用向量的合成法则进行,当然要特别注意“船的实际航速和航向”和“船在静水中的航速和航向。

相关文档
最新文档