Leslie人口模型及例题详解
Leslie矩阵模型预测人口

Leslie 矩阵模型预测人口Leslie 矩阵模型的基本概念参数定义[11]我们将中国人口按年龄段分成数段,因此当段数到达一定大小的时候就能包含全部年龄层的人。
再将时间序列也分割成数段(一年为一段即可研究年度人口总数),得到:x k (i )——在时间周期 k 第 i 个年龄段的人数 i =1,2,3,…n注:这里的x k (1)表示的最低年龄段的人数,如0岁~5岁的人数;一定存在整数n 使得 x k (n )表示的是年龄最高的人的人数,如“100岁以上的人”的数量。
其他关于人口的参数:1)b k (i)——在时间周期 k 第 i 年龄组的女性的生育率,即女性生的孩子的人数与女性数的比例,我们也称其为年龄别生育率2)d k (i)——在时间周期k 第i 年龄组的死亡率,即死亡人数除以这一年龄组总人数,我们也称其为年龄别死亡率Leslie 矩阵1.转移过程在一个时间周期内x k−1(i )里的人数转移到x k (i +1)里,考虑死亡的人数我们得到如下式子:11(1)()(1()),1,2,k k k x i x i d i i n --+=-=(4-1)下面来讨论i =0的情况,即新生儿人数,在这里我们做了一个假设,女性人口大致占总人口的一半(通过以往的人口普查可以得到证实),因此在时间周期k 的第个i 年龄段的女性人数为1()2k x i ,则可以通过女性的年龄别生育率预测第一个递推关系如下:1111()()()2nk k k i x i b i x i --==∑ (4-2)2. 人口发展模型111111111111(0)(1)(1)()22221(0)00001(1)00001(1)0k k k k k k k k k b b b n b n d x x d d n --------⎛⎫- ⎪⎪- ⎪=⨯⎪- ⎪ ⎪⎪--⎝⎭(4-3)其中(0)(1)()k k k k x x x x n ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ 1111(0)(1)()k k k k x x x x n ----⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(4-4)为了化简,我们记:11111111111(0)(1)(1)()22221(0)00001(1)00001(1)0k k k k k k k b b b n b n d L d d n -------⎛⎫- ⎪⎪- ⎪=⎪- ⎪ ⎪⎪--⎝⎭(4-5)则有简写:1k k x L x -=(4-6)则有递推公式:10k k k x L x L x -==(4-7)通过这种方法,我们把人口预测问题的重点落到了一个n 维矩阵运算上。
Leslie模型

建立模型:
F(0) F(1) F(2) • • • F(n) S(0)
构造n+1阶方阵 M=
S(1) S(2) •••
S(n-1)
那么I (1)=MK I (t)=MtK
考虑到在一段稳定的时间段内:总的女性人口数比上总 的男性人口数为一个近似为1的定值.为了更为确切地分 析女性个体数量的分布对总人口数的影响,我们单独把 女性人口数作为研究对象.
关于建立人口增长模型,我们考虑了两条 主要思路: 一.以微分方程为主要手段: 二.以高等代数为主要手段:
提出问题:
我们首先考虑Malthus 模型: x(t)为人口总数,r为自然增长率; 于是可以得出:
x(t)=x0er(t-t0)
改进的模型
设地球能容纳的总人数为k,随着人口的增 长,出生率必然会下降,于是r与x存在 着一定的关系。基于上述假设,我们选 择一种简单的函数。 r(x)=r0(1-x/k) r0为特定的常数
(5)依赖性指数 设l1,…,l2与l`1,…,l`2分别为男性 与女性中具有劳动能力的年龄组,则j时段具有劳 动能力的人口数
L(j)= [1-Pi(j)]N(i,j)+ K i(j)N(i,j)。而N(j)-L(j) 为j时段由社会抚养的失去劳动能力的老人或尚未 具有劳动能力的未成年人的数量。定义社会的依 赖性指数(j)=[N(j)-L(j)]/L(j),即平均每一劳动者抚 养的无劳动能力的人数。
p/ r + p/ t=- µ (r,t)p(r,t)
p(r,0)=p0(r) p(0,t)=f(t)
在社会比较安定的情况下,死亡 率大致与时间无关. μ (r,t)=μ (r) p(r,t)= p0(r-t)e f(t-r)e
人口预测模型(经典)

中 国 人 口 预 测 模 型摘要本文对人口预测的数学模型进行了研究。
首先,建立一次线性回归模型,灰色序列预测模型和逻辑斯蒂模型。
考虑到三种模型均具有各自的局限性,又用加权法建立了熵权组合模型,并给出了使预测误差最小的三个预测模型的加权系数,用该模型对人口数量进行预测,得到的结果如下:其次,建立Leslie 人口模型,充分反映了生育率、死亡率、年龄结构、男女比例等影响人口增长的因素,并利用以1年为分组长度方式和以5年为负指数函数,并给出了反映城乡人口迁移的人口转移向量。
最后我们BP 神经网络模型检验以上模型的正确性关键字:一次线性回归 灰色序列预测 逻辑斯蒂模型 Leslie 人口模型BP 神经网络一、问题重述1. 背景人口增长预测是随着社会经济发展而提出来的。
由于人类社会生产力水平低,生产发展缓慢,人口变动和增长也不明显,生产自给自足或进行简单的以货易货,因而对未来人口发展变化的研究并不重要,根本不用进行人口增长预测。
而当今社会,经济发展迅速,生产力达到空前水平,这时的生产不仅为了满足个人需求,还要面向社会的需求,所以必须了解供求关系的未来趋势。
而人口增长预测是对未来进行预测的各环节中的一个重要方面。
准确地预测未来人口的发展趋势,制定合理的人口规划和人口布局方案具有重大的理论意义和实用意义。
2. 问题人口增长预测有短期、中期、长期预测之分,而各个国家和地区要根据实际情况进行短期、中期、长期的人口预测。
例如,中国人口预期寿命约为70岁左右,因此,长期人口预测最好预测到70年以后,中期40—50年,短期可以是5年、10年或20年。
根据2007年初发布的《国家人口发展战略研究报告》(附录一)及《中国人口年鉴》收集的数据(附录二),再结合中国的国情特点,如老龄化进程加速,人口性别比升高,乡村人口城镇化等因素,建立合理的关于中国人口增长的数学模型,并利用此模型对中国人口增长的中短期和长期趋势做出预测,同时指出此模型的合理性和局限性。
Leslie人口模型

Leslie人口模型模型三、Leslie人口模型在短时期内男女性别比通常是不会发生变化的,因此讨论总人口的发展变化趋势与只讨论女性人口数量的变化情况意义是相同的。
在该模型中,我们将人口年龄离散化,大小等间隔地分成h个年龄组,相应地,将时间离散化为时段,每十年为一个时段。
k,0,1,2xk()记时段k第i个年龄组的女性人口总数为, ih,且该年龄组的女性生育率(该年龄组的女性在1个时段内xkbxk(1)(),,,ii1i,1bsd,,1的平均生育数量)为,该年龄组的死亡率为d,则相应的存活率为,iiiisd,,1在稳定的环境下存活率与生育率基本上是不随时间的变化而改变biii sd,,1b的,,因此我们将存活率与生育率看作是常数。
则人口的变化情况满iii足以下条件:第k+1时段,第一个年龄组的女性人口数量是时段k各个年龄段生育的人口数之和,即h (6) xkbxk(1)(),,,ii1i,1时段k+1第i+1个年龄段的女性人口数量是k时段第i个年龄组存活下来的女性人口数量,即xksxkih(1)(),1,2,,,, (7) iii,1记时段k女性人口数量按年龄组的分布向量为T (8) Xkxkxkxk()((),(),,()),129XkLXk(1)(),, 综合上述(6)(7)(8)得:其中由出生率和存活率构成的Leslie矩阵为bbbb,,1289,,s000,,1,, L,000s,,2,,0,,,,000s8,,X(0)当矩阵L和按照年龄组的初始分布向量已知时,可以预测任意时段k的女性人口按年龄组的分布情况:kXkLXk()(0),0,1,2,,, (9) 稳定状况分析:01,1,2,9,,,si根据和的定义,矩阵L中的元素满足: sbiiib,0,且至少有一个 xksxkih(1)(),1,2,,,,iiii,1定理1:L矩阵有唯一的正特根值,且它是单根,对应的特征向量为 ,,11ssssssn*T11212 ,X(1,,,,)n2,,,111k,2,3,,9且L矩阵的其他n-1个特征值满足, ,,,,1kk定理2:若L矩阵第一行有两项顺次的元素都大于0,则,bb,,,,ii,11kXk()且由(8)式确定的满足xk()*bs ,其中c是由,及X(0)决定的常数。
Leslie矩阵模型预测人口

L e s l i e矩阵模型预测人口4.1Leslie矩阵模型的基本概念4.1.1参数定义[11]我们将中国人口按年龄段分成数段,因此当段数到达一定大小的时候就能包含全部年龄层的人。
再将时间序列也分割成数段(一年为一段即可研究年度人口总数),得到:——在时间周期k第i个年龄段的人数注:这里的;一定存在整数n 使得表示的是年龄最高的人的人数,如“100岁以上的人”的数量。
其他关于人口的参数:1)——在时间周期k第i年龄组的女性的生育率,即女性生的孩子的人数与女性数的比例,我们也称其为年龄别生育率2)——在时间周期k第i年龄组的死亡率,即死亡人数除以这一年龄组总人数,我们也称其为年龄别死亡率4.1.2Leslie矩阵1.转移过程在一个时间周期内里的人数转移到里,考虑死亡的人数我们得到如下式子:11(1)()(1()),1,2,k k kx i x i d i i n--+=-=(4-1)下面来讨论的情况,即新生儿人数,在这里我们做了一个假设,女性人口大致占总人口的一半(通过以往的人口普查可以得到证实),因此在时间周期k的第个i年龄段的女性人数为1()2kx i,则可以通过女性的年龄别生育率预测第一个递推关系如下:1111()()()2nk k kix i b i x i--==∑(4-2) 2.人口发展模型111111111111(0)(1)(1)()22221(0)00001(1)0001(1)0k k k kkk kkkb b b n b ndx xdd n--------⎛⎫-⎪⎪-⎪=⨯⎪-⎪⎪⎪--⎝⎭(4-3) 其中(0)(1)()k k k k x x x x n ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭1111(0)(1)()k k k k x x x x n ----⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(4-4)为了化简,我们记:11111111111(0)(1)(1)()22221(0)00001(1)00001(1)0k k k k k k k b b b n b n d L d d n -------⎛⎫- ⎪⎪- ⎪=⎪- ⎪ ⎪⎪--⎝⎭(4-5)则有简写:1k k x L x -=(4-6)则有递推公式:10k kk x L x L x -==(4-7)通过这种方法,我们把人口预测问题的重点落到了一个n 维矩阵运算上。
Leslie模型(数学建模)

控制论模型常采取一些评价函数来评判控制 模型的效果,对于人口模型,可类似连续型模型, 引入以下一些人口指数:
(1)人口总量 不妨以N(j)记j时段的人口总量, N(j)= N(i,j).
(2)平均年龄 y(j)=(1/ N(j)) i N(i,j).
(3)平均寿命 Q(j)= exp [- (1-Pi(j))],其中(1Pi(j))为j时段i组人的死亡率。
.
n0
A属于1的特征向量N= .
. nk
解线性方程组 AN= 1N
1k/(P0P1…P k-1) N= 1k-1(P1…P k-1)
1/P k-1 1
.
当且仅当1=1时,N j N,人口总量将趋于稳定 且各年龄人数在总人口数中所占的比例也将趋于 一个定值。
在1固定的情况下,N只和Pi有关。Pi为i组人的 存活率。在一定时期内,它们基本上是一些常数, 事实上人们只能通过控制b j的值来保证1=1。
.
两个重要模型: Keyfitz Leslie
.
一些定义:
n为人类的年龄上限 F(x)=x岁的妇女所生的婴儿数/x岁的总人口数 S(x)=x岁人的存活率 P(x)=初始时x岁的总人口数 Nt(x)=距离初始t年时x岁的总人口数
P(0)
P(1)
K=
Nt(0)
Nt(1)
I(t)=
… …
… …
.
定理:若Leslie矩阵A的第一行中至少有两个相
邻的bi>0则 |i|< |1|且N j/ 1j CN其中C为某一常数,由值bi, Pi及N0决定
本定理的条件通常能够得到满足,故在j充分大 时有N j=C 1j N,即各年龄组的人口比例总会趋 于稳定,且N j+1= 1N j。若1 >1,种群增大, 1 <1时,种群减小。
Leslie人口模型

Leslie人口模型模型三、Leslie人口模型在短时期内男女性别比通常是不会发生变化的,因此讨论总人口的发展变化趋势与只讨论女性人口数量的变化情况意义是相同的。
在该模型中,我们将人口年龄离散化,大小等间隔地分成h个年龄组,相应地,将时间离散化为时段,每十年为一个时段。
k,0,1,2xk()记时段k第i个年龄组的女性人口总数为, ih,且该年龄组的女性生育率(该年龄组的女性在1个时段内xkbxk(1)(),,,ii1i,1bsd,,1的平均生育数量)为,该年龄组的死亡率为d,则相应的存活率为,iiiisd,,1在稳定的环境下存活率与生育率基本上是不随时间的变化而改变biii sd,,1b的,,因此我们将存活率与生育率看作是常数。
则人口的变化情况满iii足以下条件:第k+1时段,第一个年龄组的女性人口数量是时段k各个年龄段生育的人口数之和,即h (6) xkbxk(1)(),,,ii1i,1时段k+1第i+1个年龄段的女性人口数量是k时段第i个年龄组存活下来的女性人口数量,即xksxkih(1)(),1,2,,,, (7) iii,1记时段k女性人口数量按年龄组的分布向量为T (8) Xkxkxkxk()((),(),,()),129XkLXk(1)(),, 综合上述(6)(7)(8)得:其中由出生率和存活率构成的Leslie矩阵为bbbb,,1289,,s000,,1,, L,000s,,2,,0,,,,000s8,,X(0)当矩阵L和按照年龄组的初始分布向量已知时,可以预测任意时段k的女性人口按年龄组的分布情况:kXkLXk()(0),0,1,2,,, (9) 稳定状况分析:01,1,2,9,,,si根据和的定义,矩阵L中的元素满足: sbiiib,0,且至少有一个 xksxkih(1)(),1,2,,,,iiii,1定理1:L矩阵有唯一的正特根值,且它是单根,对应的特征向量为 ,,11ssssssn*T11212 ,X(1,,,,)n2,,,111k,2,3,,9且L矩阵的其他n-1个特征值满足, ,,,,1kk定理2:若L矩阵第一行有两项顺次的元素都大于0,则,bb,,,,ii,11kXk()且由(8)式确定的满足xk()*bs ,其中c是由,及X(0)决定的常数。
Leslie人口模型及例题详解

L e s l i e人口模型及例题详解The saying "the more diligent, the more luckier you are" really should be my charm in2006.Leslie 人口模型现在我们来建立一个简单的离散的人口增长模型,借用差分方程模型,仅考虑女性人口的发展变化;如果仅把所有的女性分成为未成年的和成年的两组,则人口的年龄结构无法刻划,因此必须建立一个更精确的模型;20世纪40年代提出的Leslie 人口模型,就是一个预测人口按年龄组变化的离散模型;模型假设(1) 将时间离散化,假设男女人口的性别比为1:1,因此本模型仅考虑女性人口的发展变 化;假设女性最大年龄为S 岁,将其等间隔划分成m 个年龄段,不妨假设S 为m 的整数倍,每隔m S /年观察一次,不考虑同一时间间隔内人口数量的变化;2 记)(t n i 为第i 个年龄组t 次观察的女性总人数,记第i 年龄组女性生育率为i b 注:所谓女性生育率指生女率,女性死亡率为i d ,记1,i i s d =-假设,i i b d 不随时间变化;3 不考虑生存空间等自然资源的制约,不考虑意外灾难等因素对人口变化的影响;4 生育率仅与年龄段有关,存活率也仅与年龄段有关;建立模型与求解根据以上假设,可得到方程 )1(1+t n =∑=mi i i t n b 1)()()1(1t n s t n i i i =++ 1=i ,2.…,m -1 写成矩阵形式为其中,L =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--000000000121121m m m s s s b b b b 1 记)]0(,),0(),0([)0(21m n n n n = 2假设n 0和矩阵L 已经由统计资料给出,则为了讨论女性人口年龄结构的长远变化趋势,我们先给出如下两个条件:i s i > 0,i =1,2,…,m -1;ii b i 0≥,i =1,2,…,m ,且b i 不全为零;易见,对于人口模型,这两个条件是很容易满足的;在条件i 、ii 下,下面的结果是成立的: 定理1t1+tL 矩阵有唯一的单重的正的特征根0λλ=,且对应的一个特征向量为*n =1,s 1/0λ,s 1s 2/20λ,…,s 1s 2 …s m -1/10-m λT3 定理2若1λ是矩阵L 的任意一个特征根,则必有01λλ≤;定理3若L 第一行中至少有两个顺次的0,1>+i i b b ,则i 若1λ是矩阵L 的任意一个特征根,则必有01λλ<;ii t t t n 0/)(lim λ+∞>-=*cn , 4 其中c 是与n 0有关的常数;定理1至定理3的证明这里省去;由定理3的结论知道,当t 充分大时,有*)(0n c t n t λ≈ 5 定理4记121i i i b s s s β-=,q λ=1β/λ+2β/λ2+…+m β/m λ,则λ是L 的非零特征根的充分必要条件为q λ=1 6所以当时间充分大时,女性人口的年龄结构向量趋于稳定状态,即年龄结构趋于稳定形态,而各个年龄组的人口数近似地按λ-1的比例增长;由5式可得到如下结论:i 当λ>1时,人口数最终是递增的;ii 当λ<1时,人口数最终是递减的;iii 当λ=1时,人口数是稳定的;根据6式,如果λ=1,则有b 1 + b 2s 1 + b 3s 1s 2 + … + b m s 1 s 2…s m-1=1记R = b 1 + b 2s 1 + b 3s 1s 2 + … + b m s 1 s 2…s m-1 7R 称为净增长率,它的实际含义是每个妇女一生中所生女孩的平均数;当R >1时,人口递增;当R <1时,人口递减;Leslie 模型有着广泛应用,这里我们给出一个应用的例子,供大家参考;公园大象管理南非的一家大型自然公园放养了大约11000头大象,管理部门希望为大象创造一个健康的生存环境,将大象的总数控制在11000头左右;每年,公园的管理人员都要统计当年大象的总数;过去20年里,公园每年都要处理一些大象,以便保持大象总数维持在11000头左右,通常都是采用捕杀或者迁移的方法来实现;统计表明,每年约处理600-800头大象;近年来,公众强烈反对捕杀大象行为,而且即使是迁移少量的大象也是不允许的;但是一种新的给大象打避孕针的方法也被研制成功;一只成年母象打了避孕针后,两年内不再怀孕;公园有一些关于大象的资料,供建模参考:1几乎不再迁入或迁出大象;2目前性别比接近1:1,采取控制后,也希望维持这个比例;3初生象的性别比也是大约1:1,生双胎的比例为%4母象初次怀孕大约在10-12岁,一直到60岁大约每年怀胎一次,60岁后不再受孕,怀孕期为22个月;5避孕针可能引起大象每个月都发情,但不受孕,因为大象通常每年生育1次,所以按月循坏的方案是不足取的;6避孕针对母象没有副作用,打了避孕针的母象2年内不再受孕;7初生象存活到1岁的比例为70%-80%,此后,直至60岁前,存活率都比较均匀,大约在95%以上,大象一般只活到70岁;8公园里不存在捕杀行为,偷猎可以不考虑;公园管理部门有一份过去两年移出公园大象的粗略统计,不幸的是没有捕杀或公园大象的具体数据;你的任务是,构造一个模型,利用模型研究如何采用避孕措施控制公园大象的总数.同时需要完成以下任务:1 建立并利用模型推算2-60岁大象可能的存活率,以及目前的大象年龄结构;2估计每年需要避孕多少大象,才能保证大象总数控制在11000头左右,说明数据不确定性对你的结论的影响,评价一下年龄结构的变化以及对旅游的影响,你可能被要求观察30-60年;3假设每年可以移出50-300头大象,避孕大象数可以减少多少,评价如何根据经济效益平衡两种方案;4有一些反对观点认为,假如出现疾病或者失控的偷猎,使大象总数突然大幅度下降,即使停止避孕,也会对大象群的恢复存在不良影响,研究并回答这个问题;5公园公管理部门正在构造模型,特别希望批驳那些以缺乏完整数据为由而嘲笑利用模型指导决策的观点.希望你的模型包括一份技术报告能给公园管理部门提一些建议,提高公园管理部门的信心,除此之外,你的报告,还应该包括一个详细的技术流程最多3页回答公共关心的问题;6假如非洲其它公园对你的模型感兴趣,有意利用你的模型,请为公园大象数在300-25000头规模的公园提供一份避孕计划,顺便考虑一下存活率稍有不同或者可以有迁移的情况.附过去两年的迁出数据年龄 0 1 2 3 4 5 6 7 8 9总量1 103 77 71 70 68 61 58 51 52 51母象1 50 36 41 29 31 30 28 24 22 29总量2 98 74 69 61 60 54 52 59 58 57母象2 57 34 33 29 34 28 27 31 25 25年龄 10 11 12 13 14 15 16 17 18 19总量1 51 50 51 48 47 49 48 47 43 42母象1 27 27 26 27 26 25 28 27 19 25总量2 60 63 64 60 63 59 52 55 49 50母象2 26 36 38 30 33 34 24 30 21 30年龄 20 21 22 23 24 25 26 27 28 29总量1 42 37 39 41 42 43 45 48 49 47母象1 18 16 19 24 17 25 21 26 29 27总量2 53 57 65 53 56 50 53 49 43 40母象2 29 27 40 23 29 24 21 26 24 16年龄 30 31 32 33 3 4 35 36 37 38 39总量1 46 42 44 44 46 49 47 48 46 41母象1 24 22 20 22 24 24 23 25 21 24总量2 38 35 37 33 20 33 30 29 29 26母象2 17 16 18 18 15 18 12 17 16 13年龄 40 41 42 43 4 4 45 46 47 48 49总量1 41 42 43 38 34 34 33 30 35 26母象1 24 19 26 20 20 15 16 13 20 11总量2 10 24 25 22 21 22 11 21 21 19母象2 6 11 14 10 10 12 8 11 12 9年龄 50 51 52 53 54 55 56 57 58 59总量1 21 18 14 5 9 7 6 0 4 4母象1 10 9 8 4 4 4 3 0 3 2总量2 15 5 10 9 7 6 5 4 7 0母象2 6 4 5 4 4 2 3 2 4 0年龄 60 61 62 63 64 65 66 67 68 69 70总量1 4 3 2 2 1 3 0 2 1 0 2母象1 2 1 1 1 0 3 0 0 1 0 2总量2 2 3 0 2 0 2 0 1 0 0 0母象2 2 1 0 0 0 1 0 1 0 0 0假设与分析1大象性别比接近1:1,初生象的性别比也是大约1:1,采取控制后,也希望维持这个比例;2过去两年迁出的大象是随机抽样,其结构反映了象群总体的年龄结构;3 避孕是随机的,母象是否避孕是不可识别的,假设各个年龄的母象是等比例避孕的,比例系数为k,仅通过调节k 来控制公园大象数量;4母象初次怀孕大约在10-12岁,简化假设大象初孕时间为11岁,当前状态下,成年象的成活率为s,生育母象率为r ,老年象的成活率是线性逐渐递减的,因此其成活率可表示为设初生象活到1岁的存活率为0s ;5避孕针对母象没有副作用,打了避孕针的母象2年内不再受孕;且无论打避孕针前母象是否怀孕,一旦打了避孕针,母象就被避孕或中止怀孕,平均每年有γ比例的母象处于避孕状态;每年母象的避孕率为η,每年的避孕方案时瞬时完成的;6 假设大象的年龄结构是稳定的;数据处理与分析12-60岁大象的存活率与年龄结构母象生育率为r =1/+1+/2=头/年12岁的母象生育母象的生育率为r /6;由题设知道存活率)99.0,95.0(∈s ;以下是第一年迁移出0至70岁大象数据x1=103,77,71,70,68,61,58,51,52,51,51,50,51,48,47,49,48,47,43,42,42,37,39,41,42,43,45,48,49,47,46,42,44,44,46,49,47,48,46,41,41,42,43,38,34,34,33,30,35,26,21,18,14,5,9,7,6,0,4, 4, 4 ,3,2,2,1,3,0,2,1,0,2 ;以下是第二年迁移的0-70岁大象数据x2=98,74 69 61 60 54 52 59 58 57 60 63 64 60 63 59 52 55 49 50 53 57 65 53 56 50 53 49 43 40 38 35 37 33 20 33 30 29 29 26 10 24 25 22 21 22 11 21 21 19 15 5 10 9 7 6 5 4 7 0 2 3 0 2 0 2 0 1 0 0 0;x=x1+x2;x0=x/normx,1;以下是第一年迁移的0-59岁母象数据y1=50 36 41 29 31 30 28 24 22 29 27 27 26 27 26 25 28 27 19 25 18 16 19 24 17 25 21 26 29 27 24 22 20 22 24 24 23 25 21 24 24 19 26 20 20 15 16 13 20 11 10 9 8 4 4 4 3 0 3 2;以下是第二年迁移的0-59岁母象数据y2=57 34 33 29 34 28 27 31 25 25 26 36 38 30 33 34 24 30 21 30 29 27 40 23 29 24 21 26 24 16 17 16 18 18 15 18 12 17 16 13 6 11 14 10 10 12 8 11 12 9 6 4 5 4 4 2 3 2 4 0;考虑到有些数据较小及抽样的随机性,我们取两次抽样的平均值作为分析的基本数据;t1=x12:11;t2=x22:11;tt=t1+t2;tt1=tt1:9;tt2=tt2:10;tn=tt2./tt1;meantnans =t1=x112:21;t2=x212:21; tt=t1+t2; tt1=tt1:9;tt2=tt2:10;tn=tt2./tt1; meantnans =t1=x112:31;t2=x212:31; tt=t1+t2; tt1=tt1:19;tt2=tt2:20;tn=tt2./tt1; meantnans =t1=x112:41;t2=x212:41; tt=t1+t2; tt1=tt1:29;tt2=tt2:30;tn=tt2./tt1; meantnans =t1=x112:51;t2=x212:51; tt=t1+t2; tt1=tt1:39;tt2=tt2:40;tn=tt2./tt1; meantnans =t1=x112:60;t2=x212:60; tt=t1+t2;tt1=tt1:48;tt2=tt2:49;tn=tt2./tt1; meantnans =n1=zeros1,71;n11=1;n12=;for i=3:61n1i=n1i-1;endn1;for i=62:71n1i=n1611-i-61/10;endn1;N1=n112:50;xx=x12:50;xx=100xx/normxx,1;N1=100N1/normN1,1;t=1:39;plott,N1,t,xx;axis10,40,0,5;title'图1'通过以上分析大致可以得到,1-60岁大象的存活率约为;0-70岁年龄结构向量见图2; y0=100x0/normx0,1;a=0:70;bara,y0,'stacked';title'图2'下面我们取0120.75,0.98s s s ===;m1=zeros1,71;m11=1;m12=;for i=3:61m1i=m1i-1;endm1;for i=62:71m1i=m1611-i-61/10;endm1;m1=100m1/normm1,1;bara,m1,'stacked';title'图3 稳定的年龄结构'plota,m1,'r-',a,y0,'b-.';title'图4 年龄结构当前状态与稳定状态比较'polyfity0,m1,1ans =从所给的数据来看,象群的年龄结构还没有达到相对稳定的状态;根据以上数据,大体可以得到l=zeros71,71; l1,13=6;l2,1=;for i=14:61l1,i=;endl;for j=3:61lj,j-1=;end; l;for k=62:71lk,k-1=eigl;矩阵的唯一正特征值为;对于不同的存活率,得到的唯一正特征值为:下面我们估计每年处于避孕状态母象的比率γ;此时,女性生育率为0.1448(1)γ-;记由6式得解得1-1/^111/6+ans =即每年应该有%的母象处于避孕状态;为了保证有%的母象处于避孕状态,下面分析每年应该打避孕针母象的比例η;在假设3和假设5的前提下,如果每年打避孕针母象比例为η;母象可以分成3类:即当年被打避孕针而上一年没有被打避孕针或上一年被打避孕针而本年没有被打避孕针,比例为2(1)ηη-;连续两年被打避孕针2η;连续两年没有被打避孕针;只有最后一类母象具有生育能力;因此,只需要η满足方程1-sqrtans =ans =5500ans =+003解得 0.387η=,即每年大约需要给2127头母象打避孕针;在方案实施过程中,实际上根本不需要打这么多针,因为许多小象还是可以识别的;可以采取随机抽样的打针方式,对于抽到的小象只计数不打针,直至计满2127头母象,就算完成当年任务;采取打避孕针的方案对象群的年龄结构是由一些影响的,下面给出了打与不打避孕针情况下稳定的象群年龄结构与各你阿爸年龄段象群数的比较;m1=zeros1,71;m11=1;m12=;for i=3:61m1i=m1i-1;end; m1;for i=62:71m1i=m1611-i-61/10;end; m1;n1=zeros1,71;n11=1;n12=;for i=3:61n1i=n1i-1;end; n1;for i=62:71n1i=n1611-i-61/10;end;n1;subplot1,2,1a=0:70;plota,m1,'r-',a,n1,'b--';title'图5年龄结构比较';axis0,70,0,1;M1=5500m1/normm1,1;N1=5500n1/normn1,1;a=0:70;subplot1,2,2plota,M1,'r-',a,N1,'b--'title'图5各年龄段大象数比较图'axis-0,70,0,300通过以上两个图的比较,可以发现采取避孕措施,将使幼象、小象数减少,中老年象数增加;由于采取避孕措施,使得初生小象数减少,因此会不可避免地引起象群年龄结构的改变,下面分析,15年、30年、60年后的象群年龄结构;L=zeros71,71;L1,13=6;L2,1=;for i=14:61L1,i=;end; L;for j=3:61Lj,j-1=; end; L;for k=62:71Lk,k-1= end; L;eigL;n15=L^15x0';n30=L^15n15;n60=L^30n30;n15=100n15/normn15,1;n30=100n30/normn30,1;n60=100n60/normn60,1;M15=5500n15/normn15,1;M30=5500n30/normn30,1;M60=5500n60/normn60,1;bara,55y0title'图6a 避孕前种群量分布';axis0,70,0,250bara,M15title'图6b 避孕15年后种群量分布';axis0,70,0,250bara,M30title'图6c避孕30年后种群量分布';axis0,70,0,250M60=5500n60/normn60,1;bara,M60title'图6d 避孕前种群量分布';axis0,70,0,250n70=L^70x0';n70=100n70/norm n70,1;k1=100m1/normm1,1;图7给出了避孕前后年龄结构稳定状态的比较plot a,k 1,'r-',a,n70,'b-.';title'图7 避孕前后稳定的年龄结构';axis0,70,0,5数据不确定性对结果的影响分别取0120.7,0.8,0.95,0.99s s s ===1-1/^111/6+ans =1-sqrtans =1-1/^111/6+ans =1-sqrtans =每年需避孕的母象比例为%—% ;对于每年可以迁移50-300头大象及0120.75,0.98s s s ===,下面分析避孕方案的变化及最经济的方案;设增长率为p ,对于 0120.75,0.98s s s ===令当 1.01p =,每年的避孕率为%,每年迁出110头; 当 1.02p =,每年的避孕率为%,每年迁出220头; 当 1.025p =,每年的避孕率为%,迁出275头;1-1/^111/6+ans =1-sqrtans =p=;1-p ^12./^111/6+./p-./p.^49/./pans =1-sqrtans =p=;1-p.^12./^111/6+./p-./p^49/pans =1-sqrtans =p=;1-p.^12./^111/6+./p-./p^49/pans =1-sqrtans =进一步分析可以知道,对于 0120.75,0.98s s s ===,如果增长率为(1 1.0322,11000(p-1))p p ≤≤即每年移,令每年需要避孕的母象为5500'γ,每年需要迁移的大象数为11000(1)p -;从相关的文献中我们大致可以得到,设平均每迁移一头大象的成本约避孕一头大象费用的λ倍,由此得到增长率为p 时的总费用函数为记易见,1,0.3868, 1.01,0.346, 1.02,0.396p y p y p y ======clear ;p=1::;q =1-p.^12./^111/6+./p-./p.^49././pq =Columns 1 through 5Columns 6 through 10Columns 11 through 15Columns 16 through 17a =1-sqrt1-qa =Columns 1 through 5Columns 6 through 10Columns 11 through 15Columns 16 through 17y=a+15p-1y =Columns 1 through 5Columns 6 through 10Columns 11 through 15Columns 16 through 17。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Leslie 人口模型现在我们来建立一个简单的离散的人口增长模型,借用差分方程模型,仅考虑女性人口的发展变化。
如果仅把所有的女性分成为未成年的和成年的两组,则人口的年龄结构无法刻划,因此必须建立一个更精确的模型。
20世纪40年代提出的Leslie 人口模型,就是一个预测人口按年龄组变化的离散模型。
模型假设(1) 将时间离散化,假设男女人口的性别比为1:1,因此本模型仅考虑女性人口的发展变 化。
假设女性最大年龄为S 岁,将其等间隔划分成m 个年龄段,不妨假设S 为m 的整数倍,每隔m S /年观察一次,不考虑同一时间间隔内人口数量的变化;(2) 记)(t n i 为第i 个年龄组t 次观察的女性总人数,记)](,),(),([)(21t n t n t n t n m =第i 年龄组女性生育率为i b (注:所谓女性生育率指生女率),女性死亡率为i d ,记1,i i s d =-假设,i i b d 不随时间变化;(3) 不考虑生存空间等自然资源的制约,不考虑意外灾难等因素对人口变化的影响;(4) 生育率仅与年龄段有关,存活率也仅与年龄段有关。
建立模型与求解根据以上假设,可得到方程 )1(1+t n =∑=mi i i t n b 1)()()1(1t n s t n i i i =++ 1=i ,2.…,m -1 写成矩阵形式为)()1(t Ln t n =+其中,L =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--000000000121121m m m s s s b b b b(1) 记)]0(,),0(),0([)0(21m n n n n = (2)假设n (0)和矩阵L 已经由统计资料给出,则t1+t()(0),0,1,2,t n t L n t ==为了讨论女性人口年龄结构的长远变化趋势,我们先给出如下两个条件:(i) s i > 0,i =1,2,…,m -1;(ii) b i 0≥,i =1,2,…,m ,且b i 不全为零。
易见,对于人口模型,这两个条件是很容易满足的。
在条件(i )、(ii )下,下面的结果是成立的:定理1L 矩阵有唯一的单重的正的特征根0λλ=,且对应的一个特征向量为*n =[1,s 1/0λ,s 1s 2/20λ,…,s 1s 2 …s m -1/10-m λ]T(3) 定理2若1λ是矩阵L 的任意一个特征根,则必有01λλ≤。
定理3若L 第一行中至少有两个顺次的0,1>+i i b b ,则(i )若1λ是矩阵L 的任意一个特征根,则必有01λλ<。
(ii )t t t n 0/)(lim λ+∞>-=*cn , (4) 其中c 是与n (0)有关的常数。
定理1至定理3的证明这里省去。
由定理3的结论知道,当t 充分大时,有*)(0n c t n t λ≈ (5) 定理4记121i i i b s s s β-=,q (λ)=1β/λ+2β/λ2+…+m β/m λ,则λ是L 的非零特征根的充分必要条件为 q (λ)=1 (6)所以当时间充分大时,女性人口的年龄结构向量趋于稳定状态,即年龄结构趋于稳定形态,而各个年龄组的人口数近似地按λ-1的比例增长。
由(5)式可得到如下结论:(i) 当λ>1时,人口数最终是递增的;(ii) 当λ<1时,人口数最终是递减的;(iii) 当λ=1时,人口数是稳定的。
根据(6)式,如果λ=1,则有b 1 + b 2s 1 + b 3s 1s 2 + … + b m s 1 s 2…s m-1=1记R= b1 + b2s1 + b3s1s2 + … + b m s1s2…s m-1(7)R称为净增长率,它的实际含义是每个妇女一生中所生女孩的平均数。
当R>1时,人口递增;当R<1时,人口递减。
Leslie模型有着广泛应用,这里我们给出一个应用的例子,供大家参考。
公园大象管理南非的一家大型自然公园放养了大约11000头大象,管理部门希望为大象创造一个健康的生存环境,将大象的总数控制在11000头左右。
每年,公园的管理人员都要统计当年大象的总数。
过去20年里,公园每年都要处理一些大象,以便保持大象总数维持在11000头左右,通常都是采用捕杀或者迁移的方法来实现。
统计表明,每年约处理600-800头大象。
近年来,公众强烈反对捕杀大象行为,而且即使是迁移少量的大象也是不允许的。
但是一种新的给大象打避孕针的方法也被研制成功。
一只成年母象打了避孕针后,两年内不再怀孕。
公园有一些关于大象的资料,供建模参考:1几乎不再迁入或迁出大象;2目前性别比接近1:1,采取控制后,也希望维持这个比例;3初生象的性别比也是大约1:1,生双胎的比例为1.35%4母象初次怀孕大约在10-12岁,一直到60岁大约每3.5年怀胎一次,60岁后不再受孕,怀孕期为22个月;5避孕针可能引起大象每个月都发情,但不受孕,因为大象通常每3.5年生育1次,所以按月循坏的方案是不足取的;6避孕针对母象没有副作用,打了避孕针的母象2年内不再受孕;7初生象存活到1岁的比例为70%-80%,此后,直至60岁前,存活率都比较均匀,大约在95%以上,大象一般只活到70岁;8公园里不存在捕杀行为,偷猎可以不考虑;公园管理部门有一份过去两年移出公园大象的粗略统计,不幸的是没有捕杀或公园大象的具体数据;你的任务是,构造一个模型,利用模型研究如何采用避孕措施控制公园大象的总数.同时需要完成以下任务:1 建立并利用模型推算2-60岁大象可能的存活率,以及目前的大象年龄结构;2估计每年需要避孕多少大象,才能保证大象总数控制在11000头左右,说明数据不确定性对你的结论的影响,评价一下年龄结构的变化以及对旅游的影响,(你可能被要求观察30-60年);3假设每年可以移出50-300头大象,避孕大象数可以减少多少,评价如何根据经济效益平衡两种方案;4有一些反对观点认为,假如出现疾病或者失控的偷猎,使大象总数突然大幅度下降,即使停止避孕,也会对大象群的恢复存在不良影响,研究并回答这个问题;5公园公管理部门正在构造模型,特别希望批驳那些以缺乏完整数据为由而嘲笑利用模型指导决策的观点.希望你的模型包括一份技术报告能给公园管理部门提一些建议,提高公园管理部门的信心,除此之外,你的报告,还应该包括一个详细的技术流程(最多3页)回答公共关心的问题。
6假如非洲其它公园对你的模型感兴趣,有意利用你的模型,请为公园大象数在300-25000头规模的公园提供一份避孕计划,顺便考虑一下存活率稍有不同或者可以有迁移的情况.附过去两年的迁出数据年龄 0 1 2 3 4 5 6 7 8 9总量1 103 77 71 70 68 61 58 51 52 51母象1 50 36 41 29 31 30 28 24 22 29总量2 98 74 69 61 60 54 52 59 58 57母象2 57 34 33 29 34 28 27 31 25 25年龄 10 11 12 13 14 15 16 17 18 19总量1 51 50 51 48 47 49 48 47 43 42母象1 27 27 26 27 26 25 28 27 19 25总量2 60 63 64 60 63 59 52 5549 50母象2 26 36 38 30 33 34 24 3021 30年龄 20 21 22 23 24 25 26 27 28 29总量1 42 37 39 41 42 43 45 48 49 47母象1 18 16 19 24 17 25 21 26 29 27总量2 53 57 65 53 56 50 53 49 43 40母象2 29 27 40 23 29 24 21 26 24 16年龄 30 31 32 33 3 4 35 36 3738 39总量1 46 42 44 44 46 49 47 48 46 41母象1 24 22 20 22 24 24 23 25 21 24总量2 38 35 37 33 20 33 30 29 29 26母象2 17 16 18 18 15 18 12 17 16 13年龄 40 41 42 43 4 4 45 46 4748 49总量1 41 42 43 38 34 34 33 30 35 26母象1 24 19 26 20 20 15 16 13 20 11总量2 10 24 25 22 21 22 11 21 21 19母象2 6 11 14 10 10 12 8 11 12 9年龄 50 51 52 53 54 55 56 57 5859总量1 21 18 14 5 9 7 6 0 4 4母象1 10 9 8 4 4 4 3 0 3 2总量2 15 5 10 9 7 6 5 4 7 0母象2 6 4 5 4 4 2 3 2 4 0年龄 60 61 62 63 64 65 66 6768 69 70总量1 4 3 2 2 1 3 0 2 1 0 2母象1 2 1 1 1 0 3 0 0 1 0 2总量2 2 3 0 2 0 2 0 1 0 0 0母象2 2 1 0 0 0 1 0 1 0 0 0假设与分析1大象性别比接近1:1,初生象的性别比也是大约1:1,采取控制后,也希望维持这个比例;2过去两年迁出的大象是随机抽样,其结构反映了象群总体的年龄结构;3 避孕是随机的,母象是否避孕是不可识别的,假设各个年龄的母象是等比例避孕的,比例系数为k ,仅通过调节k 来控制公园大象数量;4母象初次怀孕大约在10-12岁,简化假设大象初孕时间为11岁,当前状态下,成年象的成活率为s ,生育母象率为r ,老年象的成活率是线性逐渐递减的,因此其成活率可表示为(70)/10,(6070)i s s i i =-≤≤设初生象活到1岁的存活率为0s 。
5避孕针对母象没有副作用,打了避孕针的母象2年内不再受孕;且无论打避孕针前母象是否怀孕,一旦打了避孕针,母象就被避孕或中止怀孕,平均每年有γ比例的母象处于避孕状态;每年母象的避孕率为η,每年的避孕方案时瞬时完成的。
6 假设大象的年龄结构是稳定的。
数据处理与分析(1)2-60岁大象的存活率与年龄结构母象生育率为r =1/3.5+(1+0.0135)/2=0.1448头/年12岁的母象生育母象的生育率为r /6。
由题设知道存活率)99.0,95.0(∈s 。
以下是第一年迁移出0至70岁大象数据x1=[103,77,71,70,68,61,58,51,52,51,51,50,51,48,47,49,48,47,43,42,42,37,39,41,42,43,45,48,49,47,46,42,44,44,46,49,47,48,46,41,41,42,43,38,34,34,33,30,35,26,21,18,14,5,9,7,6,0,4, 4, 4 ,3,2,2,1,3,0,2,1,0,2 ];以下是第二年迁移的0-70岁大象数据x2=[98,74 69 61 60 54 52 59 58 57 60 63 64 60 63 59 52 55 49 50 53 57 65 53 56 50 53 49 43 40 38 35 37 33 20 33 30 29 29 26 10 24 25 22 21 22 11 21 21 19 15 5 10 9 7 6 5 4 7 0 2 3 0 2 0 2 0 1 0 0 0];x=x1+x2;x0=x/norm(x,1);以下是第一年迁移的0-59岁母象数据y1=[50 36 41 29 31 30 28 24 22 29 27 27 26 27 26 25 28 27 19 25 18 16 19 24 17 25 21 26 29 27 24 22 20 22 24 24 23 25 21 24 24 19 26 20 20 15 16 13 20 11 10 9 8 4 4 4 3 0 3 2];以下是第二年迁移的0-59岁母象数据y2=[57 34 33 29 34 28 27 31 25 25 26 36 38 30 33 34 24 30 21 30 29 27 40 23 29 24 21 26 24 16 17 16 18 18 15 18 12 17 16 13 6 11 14 10 10 12 8 11 12 9 6 4 5 4 4 2 3 2 4 0];考虑到有些数据较小及抽样的随机性,我们取两次抽样的平均值作为分析的基本数据。