Leslie人口模型及例题详解-Word整理

合集下载

Leslie矩阵模型预测人口

Leslie矩阵模型预测人口

Leslie 矩阵模型预测人口Leslie 矩阵模型的基本概念参数定义[11]我们将中国人口按年龄段分成数段,因此当段数到达一定大小的时候就能包含全部年龄层的人。

再将时间序列也分割成数段(一年为一段即可研究年度人口总数),得到:x k (i )——在时间周期 k 第 i 个年龄段的人数 i =1,2,3,…n注:这里的x k (1)表示的最低年龄段的人数,如0岁~5岁的人数;一定存在整数n 使得 x k (n )表示的是年龄最高的人的人数,如“100岁以上的人”的数量。

其他关于人口的参数:1)b k (i)——在时间周期 k 第 i 年龄组的女性的生育率,即女性生的孩子的人数与女性数的比例,我们也称其为年龄别生育率2)d k (i)——在时间周期k 第i 年龄组的死亡率,即死亡人数除以这一年龄组总人数,我们也称其为年龄别死亡率Leslie 矩阵1.转移过程在一个时间周期内x k−1(i )里的人数转移到x k (i +1)里,考虑死亡的人数我们得到如下式子:11(1)()(1()),1,2,k k k x i x i d i i n --+=-=(4-1)下面来讨论i =0的情况,即新生儿人数,在这里我们做了一个假设,女性人口大致占总人口的一半(通过以往的人口普查可以得到证实),因此在时间周期k 的第个i 年龄段的女性人数为1()2k x i ,则可以通过女性的年龄别生育率预测第一个递推关系如下:1111()()()2nk k k i x i b i x i --==∑ (4-2)2. 人口发展模型111111111111(0)(1)(1)()22221(0)00001(1)00001(1)0k k k k k k k k k b b b n b n d x x d d n --------⎛⎫- ⎪⎪- ⎪=⨯⎪- ⎪ ⎪⎪--⎝⎭(4-3)其中(0)(1)()k k k k x x x x n ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ 1111(0)(1)()k k k k x x x x n ----⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(4-4)为了化简,我们记:11111111111(0)(1)(1)()22221(0)00001(1)00001(1)0k k k k k k k b b b n b n d L d d n -------⎛⎫- ⎪⎪- ⎪=⎪- ⎪ ⎪⎪--⎝⎭(4-5)则有简写:1k k x L x -=(4-6)则有递推公式:10k k k x L x L x -==(4-7)通过这种方法,我们把人口预测问题的重点落到了一个n 维矩阵运算上。

毕设之人口增长模型讲解(可编辑修改word版)

毕设之人口增长模型讲解(可编辑修改word版)

毕业设计——第一章绪论1.研究背景2.国内外研究现状3.人口概念介绍人口增长模型及其应用孙建锋第二章人口增长模型的概述1.马尔萨斯模型(人口指数增长模型)2.Logistic 模型(人口阻滞增长模型)3.年龄移算法模型4.L eslie 人口增长模型5.灰色 GM(1,1)预测模型6.人口发展方程7.各模型的优缺点对比第三章基本人口预测1.出生人数的预测2.死亡人数的预测3.分年龄分性别人口数预测4.人口总数预测第四章人口实例预测1.数据准备2.模型应用与求解3.结果分析4.结论及相关建议第一章绪论1.1研究背景人口问题是联系社会经济发展最基本、最复杂问题,受到世界各国诸多领域的关注.就人口规模的发展而言存在极大地差异,如,某些发展中国家人口生育率过高;而某些发达国家的生育率过低,甚至为负増长,这些现象会引发一系列社会经济问题,如,失业、老龄化,进而影响社会稳定.人口问题事关国计民生,是影响经济社会发展全局的重大问题。

以人为本的科学发展观必然要求我们在一切发展序列中首先关注人口发展,中国人口发展在中国经济社会发展框架中具有绝对优先的工具价值和目的意义。

人口发展对一个国家经济、社会协调和可持续发展具有重要影响。

发现人口问题、制定相应政策、采取合适措施对人口发展进行调节,是政府保证经济社会协调和可持续发展的重要内容。

众所周知,人口众多是我国基本的国情,人口问题一直以来就是中国经济发展的绊脚石,中国是人口第一大国,固然有地大物博,资源丰富的美誉,但按人口数量平均下来,也就成了人均占有量不足的基本国情。

中国在世纪之交的2000 年进行了全国第五次人口普查,国家许多重大社会、政治,经济问题的研究都要依据人口的数量。

为此,进行人口预测是有效地控制人口发展与资源关系不可缺少的手段之一,同时也是人口决策的重要依据.对人口进行预测,做到人口有计划地发展不仅能有效地处理好人类与资源的关系,而且对于经济发展的预测,各个生态专项规划及制定建设决策都有重要的借鉴意义,也是我国经济稳定、高效、协调发展的保证。

Leslie模型

Leslie模型

Leslie 人口模型现在我们来建立一个简单的离散的人口增长模型,借用差分方程模型,仅考虑女性人口的发展变化。

如果仅把所有的女性分成为未成年的和成年的两组,则人口的年龄结构无法刻划,因此必须建立一个更精确的模型。

20世纪40年代提出的Leslie 人口模型,就是一个预测人口按年龄组变化的离散模型。

模型假设(1) 将时间离散化,假设男女人口的性别比为1:1,因此本模型仅考虑女性人口的发展变 化。

假设女性最大年龄为S 岁,将其等间隔划分成m 个年龄段,不妨假设S 为m 的整数倍,每隔m S /年观察一次,不考虑同一时间间隔内人口数量的变化;(2) 记)(t n i 为第i 个年龄组t 次观察的女性总人数,记)](,),(),([)(21t n t n t n t n m =第i 年龄组女性生育率为i b (注:所谓女性生育率指生女率),女性死亡率为i d ,记1,i i s d =-假设,i i b d 不随时间变化;(3) 不考虑生存空间等自然资源的制约,不考虑意外灾难等因素对人口变化的影响;(4) 生育率仅与年龄段有关,存活率也仅与年龄段有关。

建立模型与求解根据以上假设,可得到方程 )1(+t n =∑=mi ii t n b 1)( )()1(1t n s t n i i i =++ 1=i ,2.…,m -1 写成矩阵形式为)()1(t Ln t n =+其中,L =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--000000000121121m m m s s s b b b b (1) 记)]0(,),0(),0([)0(21m n n n n = (2)假设n (0)和矩阵L 已经由统计资料给出,则()(0),0,1,2,t n t Ln t ==t1+t为了讨论女性人口年龄结构的长远变化趋势,我们先给出如下两个条件:(i) s i > 0,i =1,2,…,m -1;(ii) b i 0≥,i =1,2,…,m ,且b i 不全为零。

Leslie矩阵模型预测人口

Leslie矩阵模型预测人口

L e s l i e矩阵模型预测人口4.1Leslie矩阵模型的基本概念4.1.1参数定义[11]我们将中国人口按年龄段分成数段,因此当段数到达一定大小的时候就能包含全部年龄层的人。

再将时间序列也分割成数段(一年为一段即可研究年度人口总数),得到:——在时间周期k第i个年龄段的人数注:这里的;一定存在整数n 使得表示的是年龄最高的人的人数,如“100岁以上的人”的数量。

其他关于人口的参数:1)——在时间周期k第i年龄组的女性的生育率,即女性生的孩子的人数与女性数的比例,我们也称其为年龄别生育率2)——在时间周期k第i年龄组的死亡率,即死亡人数除以这一年龄组总人数,我们也称其为年龄别死亡率4.1.2Leslie矩阵1.转移过程在一个时间周期内里的人数转移到里,考虑死亡的人数我们得到如下式子:11(1)()(1()),1,2,k k kx i x i d i i n--+=-=(4-1)下面来讨论的情况,即新生儿人数,在这里我们做了一个假设,女性人口大致占总人口的一半(通过以往的人口普查可以得到证实),因此在时间周期k的第个i年龄段的女性人数为1()2kx i,则可以通过女性的年龄别生育率预测第一个递推关系如下:1111()()()2nk k kix i b i x i--==∑(4-2) 2.人口发展模型111111111111(0)(1)(1)()22221(0)00001(1)0001(1)0k k k kkk kkkb b b n b ndx xdd n--------⎛⎫-⎪⎪-⎪=⨯⎪-⎪⎪⎪--⎝⎭(4-3) 其中(0)(1)()k k k k x x x x n ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭1111(0)(1)()k k k k x x x x n ----⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(4-4)为了化简,我们记:11111111111(0)(1)(1)()22221(0)00001(1)00001(1)0k k k k k k k b b b n b n d L d d n -------⎛⎫- ⎪⎪- ⎪=⎪- ⎪ ⎪⎪--⎝⎭(4-5)则有简写:1k k x L x -=(4-6)则有递推公式:10k kk x L x L x -==(4-7)通过这种方法,我们把人口预测问题的重点落到了一个n 维矩阵运算上。

Leslie模型(数学建模)

Leslie模型(数学建模)
在1固定的情况下,N只和Pi有关。Pi为i组人的 存活率。在一定时期内,它们基本上是一些常数, 事实上人们只能通过控制b j的值来保证1=1。
2021/10/10
21
定理:若Leslie矩阵A的第一行中至少有两个相
邻的bi>0则
|i|< |1|且N j/ 1j CN其中C为某一常数,由值bi, Pi及N0决定
N(0,j+1)=bi(j)K i(j)N(i,j)
N(i,j+1)=Pi-1N(i-1,j) i=1,…,m
目前我国人口中中年青人的比例很大,加上计
划生育降低出生率,必然造成若干年后社会人
口的严重老龄化,待这一代人越出m组后,又
会使人口迅速青年化而走向另一个极端。
2021/10/10
24
为减少这种年龄结构上的振荡,人们又引入了一 个控制变量h(i,j),使bi(j)=h(i,j)
设µ(r,t)为t时刻年龄为r的人的死亡率,t时刻年龄在[r,r+dr) 单位时间死亡的人数为µ(r,t)p(r,t)dr
2021/10/10
7
分析:
下面考虑从t到t+dt这一过程的人口变化: 年龄处在[r,r+dr)到t+dt时刻活着的人的年龄变为 [r+dt,r+dr+dt)而这一时刻死亡的人数为µ(r,t)p(r,t)drdt 则p(r,t)dr-p(r+dt,t+dt)dr= µ(r,t)p(r,t)drdt
•••
那么I (1)=MK
S(n-1)
I (t)=MtK
2021/10/10
14
考虑到在一段稳定的时间段内:总的女性人口数比上总 的男性人口数为一个近似为1的定值.为了更为确切地分 析女性个体数量的分布对总人口数的影响,我们单独把 女性人口数作为研究对象.

Leslie矩阵模型预测人口

Leslie矩阵模型预测人口

L e s l i e矩阵模型预测人口This model paper was revised by LINDA on December 15, 2012.Leslie矩阵模型预测人口Leslie矩阵模型的基本概念参数定义[11]我们将中国人口按年龄段分成数段,因此当段数到达一定大小的时候就能包含全部年龄层的人。

再将时间序列也分割成数段(一年为一段即可研究年度人口总数),得到:——在时间周期k 第i 个年龄段的人数注:这里的;一定存在整数n 使得表示的是年龄最高的人的人数,如“100岁以上的人”的数量。

其他关于人口的参数:1)——在时间周期k 第i 年龄组的女性的生育率,即女性生的孩子的人数与女性数的比例,我们也称其为年龄别生育率2)——在时间周期k第i年龄组的死亡率,即死亡人数除以这一年龄组总人数,我们也称其为年龄别死亡率Leslie矩阵1.转移过程在一个时间周期内里的人数转移到里,考虑死亡的人数我们得到如下式子:11(1)()(1()),1,2,k k k x i x i d i i n --+=-=(4-1)下面来讨论的情况,即新生儿人数,在这里我们做了一个假设,女性人口大致占总人口的一半(通过以往的人口普查可以得到证实),因此在时间周期k 的第个i 年龄段的女性人数为1()2k x i ,则可以通过女性的年龄别生育率预测第一个递推关系如下:1111()()()2nk k k i x i b i x i --==∑ (4-2)2. 人口发展模型111111111111(0)(1)(1)()22221(0)00001(1)00001(1)0k k k k k k k k k b b b n b n d x x d d n --------⎛⎫- ⎪⎪- ⎪=⨯⎪- ⎪ ⎪⎪--⎝⎭(4-3)其中(0)(1)()k k k k x x x x n ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ 1111(0)(1)()k k k k x x x x n ----⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭(4-4)为了化简,我们记:11111111111(0)(1)(1)()22221(0)00001(1)00001(1)0k k k k k k k b b b n b n d L d d n -------⎛⎫- ⎪⎪- ⎪=⎪- ⎪ ⎪⎪--⎝⎭(4-5)则有简写:1k k x L x -=(4-6)则有递推公式:10k k k x L x L x -==(4-7)通过这种方法,我们把人口预测问题的重点落到了一个n 维矩阵运算上。

Leslie人口模型

Leslie人口模型

Leslie人口模型模型三、Leslie人口模型在短时期内男女性别比通常是不会发生变化的,因此讨论总人口的发展变化趋势与只讨论女性人口数量的变化情况意义是相同的。

在该模型中,我们将人口年龄离散化,大小等间隔地分成h个年龄组,相应地,将时间离散化为时段,每十年为一个时段。

k,0,1,2xk()记时段k第i个年龄组的女性人口总数为, ih,且该年龄组的女性生育率(该年龄组的女性在1个时段内xkbxk(1)(),,,ii1i,1bsd,,1的平均生育数量)为,该年龄组的死亡率为d,则相应的存活率为,iiiisd,,1在稳定的环境下存活率与生育率基本上是不随时间的变化而改变biii sd,,1b的,,因此我们将存活率与生育率看作是常数。

则人口的变化情况满iii足以下条件:第k+1时段,第一个年龄组的女性人口数量是时段k各个年龄段生育的人口数之和,即h (6) xkbxk(1)(),,,ii1i,1时段k+1第i+1个年龄段的女性人口数量是k时段第i个年龄组存活下来的女性人口数量,即xksxkih(1)(),1,2,,,, (7) iii,1记时段k女性人口数量按年龄组的分布向量为T (8) Xkxkxkxk()((),(),,()),129XkLXk(1)(),, 综合上述(6)(7)(8)得:其中由出生率和存活率构成的Leslie矩阵为bbbb,,1289,,s000,,1,, L,000s,,2,,0,,,,000s8,,X(0)当矩阵L和按照年龄组的初始分布向量已知时,可以预测任意时段k的女性人口按年龄组的分布情况:kXkLXk()(0),0,1,2,,, (9) 稳定状况分析:01,1,2,9,,,si根据和的定义,矩阵L中的元素满足: sbiiib,0,且至少有一个 xksxkih(1)(),1,2,,,,iiii,1定理1:L矩阵有唯一的正特根值,且它是单根,对应的特征向量为 ,,11ssssssn*T11212 ,X(1,,,,)n2,,,111k,2,3,,9且L矩阵的其他n-1个特征值满足, ,,,,1kk定理2:若L矩阵第一行有两项顺次的元素都大于0,则,bb,,,,ii,11kXk()且由(8)式确定的满足xk()*bs ,其中c是由,及X(0)决定的常数。

Leslie矩阵模型预测人口

Leslie矩阵模型预测人口

Leslie 矩阵模型预测人口4.1 Leslie 矩阵模型的基本概念4.1.1 参数定义[11]我们将中国人口按年龄段分成数段,因此当段数到达一定大小的时候就能包含全部年龄层的人。

再将时间序列也分割成数段(一年为一段即可研究年度人口总数),得到:x k (i )——在时间周期 k 第 i 个年龄段的人数 i =1,2,3,…n注:这里的x k (1)表示的最低年龄段的人数,如0岁~5岁的人数;一定存在整数n 使得 x k (n )表示的是年龄最高的人的人数,如“100岁以上的人”的数量。

其他关于人口的参数:1)b k (i)——在时间周期 k 第 i 年龄组的女性的生育率,即女性生的孩子的人数与女性数的比例,我们也称其为年龄别生育率2)d k (i)——在时间周期k 第i 年龄组的死亡率,即死亡人数除以这一年龄组总人数,我们也称其为年龄别死亡率4.1.2 Leslie 矩阵1.转移过程在一个时间周期内x k−1(i )里的人数转移到x k (i +1)里,考虑死亡的人数我们得到如下式子:11(1)()(1()),1,2,k k k x i x i d i i n --+=-=(4-1)下面来讨论i =0的情况,即新生儿人数,在这里我们做了一个假设,女性人口大致占总人口的一半(通过以往的人口普查可以得到证实),因此在时间周期k 的第个i 年龄段的女性人数为1()2k x i ,则可以通过女性的年龄别生育率预测第一个递推关系如下:1111()()()2nk k k i x i b i x i --==∑ (4-2)2. 人口发展模型111111111111(0)(1)(1)()22221(0)00001(1)00001(1)0k k k k k k k k k b b b n b n d x x d d n --------⎛⎫- ⎪⎪- ⎪=⨯⎪- ⎪ ⎪⎪--⎝⎭(4-3)其中(0)(1)()k k k k x x x x n ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ 1111(0)(1)()k k k k x x x x n ----⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭(4-4)为了化简,我们记:11111111111(0)(1)(1)()22221(0)00001(1)00001(1)0k k k k k k k b b b n b n d L d d n -------⎛⎫- ⎪⎪- ⎪=⎪- ⎪ ⎪⎪--⎝⎭(4-5)则有简写:1k k x L x -=(4-6)则有递推公式:10k k k x L x L x -==(4-7)通过这种方法,我们把人口预测问题的重点落到了一个n 维矩阵运算上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Leslie 人口模型现在我们来建立一个简单的离散的人口增长模型,借用差分方程模型,仅考虑女性人口的发展变化。

如果仅把所有的女性分成为未成年的和成年的两组,则人口的年龄结构无法刻划,因此必须建立一个更精确的模型。

20世纪40年代提出的Leslie 人口模型,就是一个预测人口按年龄组变化的离散模型。

模型假设(1) 将时间离散化,假设男女人口的性别比为1:1,因此本模型仅考虑女性人口的发展变 化。

假设女性最大年龄为S 岁,将其等间隔划分成m 个年龄段,不妨假设S 为m 的整数倍,每隔m S /年观察一次,不考虑同一时间间隔内人口数量的变化;(2) 记)(t n i 为第i 个年龄组t 次观察的女性总人数,记)](,),(),([)(21t n t n t n t n m =第i 年龄组女性生育率为i b (注:所谓女性生育率指生女率),女性死亡率为i d ,记1,i i s d =-假设,i i b d 不随时间变化;(3) 不考虑生存空间等自然资源的制约,不考虑意外灾难等因素对人口变化的影响;(4) 生育率仅与年龄段有关,存活率也仅与年龄段有关。

建立模型与求解根据以上假设,可得到方程)1(1+t n =∑=mi i i t n b 1)()()1(1t n s t n i i i =++ 1=i ,2.…,m -1 写成矩阵形式为)()1(t Ln t n =+其中,L =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--000000000121121m m m s s s b b b b(1) 记)]0(,),0(),0([)0(21m n n n n = (2)假设n (0)和矩阵L已经由统计资料给出,则t1+t()(0),0,1,2,t n t L n t ==为了讨论女性人口年龄结构的长远变化趋势,我们先给出如下两个条件: (i) s i > 0,i =1,2,…,m -1;(ii) b i 0≥,i =1,2,…,m ,且b i 不全为零。

易见,对于人口模型,这两个条件是很容易满足的。

在条件(i )、(ii )下,下面的结果是成立的: 定理1L 矩阵有唯一的单重的正的特征根0λλ=,且对应的一个特征向量为*n =[1,s 1/0λ,s 1s 2/20λ,…,s 1s 2 …s m -1/1-m λ]T(3) 定理2若1λ是矩阵L 的任意一个特征根,则必有01λλ≤。

定理3若L 第一行中至少有两个顺次的0,1>+i i b b ,则(i )若1λ是矩阵L 的任意一个特征根,则必有01λλ<。

(ii )t t t n 0/)(lim λ+∞>-=*cn , (4)其中c 是与n (0)有关的常数。

定理1至定理3的证明这里省去。

由定理3的结论知道,当t 充分大时,有*)(0n c t n t λ≈ (5) 定理4记121i i i b s s s β-=,q (λ)=1β/λ+2β/λ2+…+m β/m λ,则λ是L 的非零特征根的充分必要条件为q (λ)=1 (6)所以当时间充分大时,女性人口的年龄结构向量趋于稳定状态,即年龄结构趋于稳定形态,而各个年龄组的人口数近似地按λ-1的比例增长。

由(5)式可得到如下结论:(i) 当λ>1时,人口数最终是递增的; (ii) 当λ<1时,人口数最终是递减的; (iii) 当λ=1时,人口数是稳定的。

根据(6)式,如果λ=1,则有b1 + b2s1 + b3s1s2 + … + b m s1s2…s m-1=1记R= b1 + b2s1 + b3s1s2 + … + b m s1s2…s m-1(7)R称为净增长率,它的实际含义是每个妇女一生中所生女孩的平均数。

当R>1时,人口递增;当R<1时,人口递减。

Leslie模型有着广泛应用,这里我们给出一个应用的例子,供大家参考。

公园大象管理南非的一家大型自然公园放养了大约11000头大象,管理部门希望为大象创造一个健康的生存环境,将大象的总数控制在11000头左右。

每年,公园的管理人员都要统计当年大象的总数。

过去20年里,公园每年都要处理一些大象,以便保持大象总数维持在11000头左右,通常都是采用捕杀或者迁移的方法来实现。

统计表明,每年约处理600-800头大象。

近年来,公众强烈反对捕杀大象行为,而且即使是迁移少量的大象也是不允许的。

但是一种新的给大象打避孕针的方法也被研制成功。

一只成年母象打了避孕针后,两年内不再怀孕。

公园有一些关于大象的资料,供建模参考:1几乎不再迁入或迁出大象;2目前性别比接近1:1,采取控制后,也希望维持这个比例;3初生象的性别比也是大约1:1,生双胎的比例为1.35%4母象初次怀孕大约在10-12岁,一直到60岁大约每3.5年怀胎一次,60岁后不再受孕,怀孕期为22个月;5避孕针可能引起大象每个月都发情,但不受孕,因为大象通常每3.5年生育1次,所以按月循坏的方案是不足取的;6避孕针对母象没有副作用,打了避孕针的母象2年内不再受孕;7初生象存活到1岁的比例为70%-80%,此后,直至60岁前,存活率都比较均匀,大约在95%以上,大象一般只活到70岁;8公园里不存在捕杀行为,偷猎可以不考虑;公园管理部门有一份过去两年移出公园大象的粗略统计,不幸的是没有捕杀或公园大象的具体数据;你的任务是,构造一个模型,利用模型研究如何采用避孕措施控制公园大象的总数.同时需要完成以下任务:1 建立并利用模型推算2-60岁大象可能的存活率,以及目前的大象年龄结构;2估计每年需要避孕多少大象,才能保证大象总数控制在11000头左右,说明数据不确定性对你的结论的影响,评价一下年龄结构的变化以及对旅游的影响,(你可能被要求观察30-60年);3假设每年可以移出50-300头大象,避孕大象数可以减少多少,评价如何根据经济效益平衡两种方案;4有一些反对观点认为,假如出现疾病或者失控的偷猎,使大象总数突然大幅度下降,即使停止避孕,也会对大象群的恢复存在不良影响,研究并回答这个问题;5公园公管理部门正在构造模型,特别希望批驳那些以缺乏完整数据为由而嘲笑利用模型指导决策的观点.希望你的模型包括一份技术报告能给公园管理部门提一些建议,提高公园管理部门的信心,除此之外,你的报告,还应该包括一个详细的技术流程(最多3页)回答公共关心的问题。

6假如非洲其它公园对你的模型感兴趣,有意利用你的模型,请为公园大象数在300-25000头规模的公园提供一份避孕计划,顺便考虑一下存活率稍有不同或者可以有迁移的情况.附过去两年的迁出数据年龄 0 1 2 3 4 5 6 7 8 9总量1 103 77 71 70 68 61 58 51 52 51母象1 50 36 41 29 31 30 28 24 22 29总量2 98 74 69 61 60 54 52 59 58 57母象2 57 34 33 29 34 28 27 31 25 25年龄 10 11 12 13 14 15 16 17 18 19总量1 51 50 51 48 47 49 48 47 43 42母象1 27 27 26 27 26 25 28 27 19 25总量2 60 63 64 60 63 59 52 55 49 50母象2 26 36 38 30 33 34 24 30 21 30年龄 20 21 22 23 24 25 26 27 28 29总量1 42 37 39 41 42 43 45 48 49 47母象1 18 16 19 24 17 25 21 26 29 27总量2 53 57 65 53 56 50 53 49 43 40母象2 29 27 40 23 29 24 21 26 24 16年龄 30 31 32 33 3 4 35 36 37 38 39总量1 46 42 44 44 46 49 47 48 46 41母象1 24 22 20 22 24 24 23 25 21 24总量2 38 35 37 33 20 33 30 29 29 26母象2 17 16 18 18 15 18 12 17 16 13年龄 40 41 42 43 4 4 45 46 47 48 49 总量1 41 42 43 38 34 34 33 30 35 26 母象1 24 19 26 20 20 15 16 13 20 11 总量2 10 24 25 22 21 22 11 21 21 19 母象2 6 11 14 10 10 12 8 11 12 9 年龄 50 51 52 53 54 55 56 57 58 59 总量1 21 18 14 5 9 7 6 0 4 4 母象1 10 9 8 4 4 4 3 0 3 2 总量2 15 5 10 9 7 6 5 4 7 0 母象2 6 4 5 4 4 2 3 2 4 0 年龄 60 61 62 63 64 65 66 67 68 69 70 总量1 4 3 2 2 1 3 0 2 1 0 2 母象1 2 1 1 1 0 3 0 0 1 0 2 总量2 2 3 0 2 0 2 0 1 0 0 0 母象2 2 1 0 0 0 1 0 1 0 0 0假设与分析1大象性别比接近1:1,初生象的性别比也是大约1:1,采取控制后,也希望维持这个比例;2过去两年迁出的大象是随机抽样,其结构反映了象群总体的年龄结构;3 避孕是随机的,母象是否避孕是不可识别的,假设各个年龄的母象是等比例避孕的,比例系数为k ,仅通过调节k 来控制公园大象数量;4母象初次怀孕大约在10-12岁,简化假设大象初孕时间为11岁,当前状态下,成年象的成活率为s ,生育母象率为r ,老年象的成活率是线性逐渐递减的,因此其成活率可表示为(70)/10,(6070)i s s i i =-≤≤设初生象活到1岁的存活率为0s 。

5避孕针对母象没有副作用,打了避孕针的母象2年内不再受孕;且无论打避孕针前母象是否怀孕,一旦打了避孕针,母象就被避孕或中止怀孕,平均每年有γ比例的母象处于避孕状态;每年母象的避孕率为η,每年的避孕方案时瞬时完成的。

6假设大象的年龄结构是稳定的。

数据处理与分析(1)2-60岁大象的存活率与年龄结构 母象生育率为r =1/3.5+(1+0.0135)/2=0.1448头/年 12岁的母象生育母象的生育率为r /6。

由题设知道存活率)99.0,95.0( s 。

以下是第一年迁移出0至70岁大象数据x1=[103,77,71,70,68,61,58,51,52,51,51,50,51,48,47,49,48,47,43,42,42,37,39,41,42,43,45,48,49,47,46,42,44,44,46,49,47,48,46,41,41,42,43,38,34,34,33,30,35,26,21,18,14,5,9,7,6,0,4, 4, 4 ,3,2,2,1,3,0,2,1,0,2 ]; 以下是第二年迁移的0-70岁大象数据x2=[98,74 69 61 60 54 52 59 58 57 60 63 64 60 63 59 52 55 49 50 53 57 65 53 56 50 53 49 43 40 38 35 37 33 20 33 30 29 29 26 10 24 25 22 21 22 11 21 21 19 15 5 10 9 7 6 5 4 7 0 2 3 0 2 0 2 0 1 0 0 0];x=x1+x2;x0=x/norm(x,1);以下是第一年迁移的0-59岁母象数据y1=[50 36 41 29 31 30 28 24 22 29 27 27 26 27 26 25 28 27 19 25 18 16 19 24 17 25 21 26 29 27 24 22 20 22 24 24 23 25 21 24 24 19 26 20 20 15 16 13 20 11 10 9 8 4 4 4 3 0 3 2]; 以下是第二年迁移的0-59岁母象数据y2=[57 34 33 29 34 28 27 31 25 25 26 36 38 30 33 34 24 30 21 30 29 27 40 23 29 24 21 26 24 16 17 16 18 18 15 18 12 17 16 13 6 11 14 10 10 12 8 11 12 9 6 4 5 4 4 2 3 2 4 0];考虑到有些数据较小及抽样的随机性,我们取两次抽样的平均值作为分析的基本数据。

相关文档
最新文档