有限元网格划分注意事项

合集下载

第07讲-有限元网格划分的基本原则及技巧

第07讲-有限元网格划分的基本原则及技巧

7-6
网格疏密
• • 网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分 布特点。 在计算数据变化梯度较大的部位(如应力集中处、几何形状、材料、厚度变化的 位置),为了较好地反映数据变化规律,需要采用比较密集的网格。而在计算数 据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。这样,整 个结构便表现出疏密不同的网格划分形式。—— 网格数量应增加在结构的关键 部位,在次要部位增加网格是不必要的,也是不经济的。 边界上最好要在8个单元以上,至少不少于4个; 分析结果完成后,需要检查以下各项,误差较大的位置要进行细分: 单元应力的连续性,比较相邻单元应力值的差值; 应力偏差:结点上的单元结点应力和结点平均应力的差值的较大值; 当以上差值与其中的最大应力的比值较大时,该位置的网格需要细分。
精度 计算时间 精确解 1 2 O
7-4


P
网格数量
网格数量(续)
在决定网格数量时应考虑分析数据的类型。 实体单元:
• •
1、在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。如 果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。 2、在响应计算中,计算应力响应所取的网格数应比计算位移响应多。 3、在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较 少的网格,如果计算的模态阶次较高,则应选择较多的网格。
左图中(a)、(b)改 变了结构质量的对称分 布,应避免。 (c)是 比较理想的结果。
(a)
7-8
(b)
(c)
单元的形状及评价
• 形状比(长边与短边距离之比) 一般实体单元的长宽比越大,分析误差也越大。 对于板壳单元,评价应力为主时不宜超过1:3,评价位移为主时不宜超过1:5; 对于块体单元,评价应力为主时不宜超过1:2,评价位移为主时不宜超过1:3; 在应力分布几乎没有变化的区域里使用的单元,适当放大也没问题。 倾角(表示单元偏离直角四边形的程度(Angular Deviation)) 四边形的内倾角最好是在45度~135度之间,不要超过15度~165度。 锥度(限于四边形) 用几何偏离(Geometric Deviation)表示四边形单元的变形程度。

机械设计中有限元分析的几个关键问题

机械设计中有限元分析的几个关键问题

机械设计中有限元分析的几个关键问题在机械设计中,有限元分析是一种常用的分析方法,可以用于预测和评估机械结构的性能。

在进行有限元分析时,存在一些关键问题需要考虑和解决。

本文将介绍机械设计中有限元分析的几个关键问题。

1. 网格划分问题:有限元分析是基于网格(或称为离散)模型进行的,因此网格的划分对分析结果的准确性有很大影响。

合理的网格划分应该满足以下要求:在关键区域(如应力集中区域)的网格密度要足够高,以捕捉局部应力的变化;在结构的稳定区域的网格密度可以适当减小,以提高计算效率。

对于复杂结构和多尺度问题,网格划分更加复杂,需要综合考虑精度和计算效率的权衡。

2. 材料参数问题:有限元分析需要提供材料的力学参数,如弹性模量、泊松比、屈服强度等。

这些参数的准确性对分析结果有很大影响。

实际材料的力学参数通常会受到环境条件、缺陷、制造过程等多种因素的影响,如何选择合适的材料参数是一个关键问题。

在实际应用中,可以借助实验测试、材料数据库以及经验公式等方法来确定合适的材料参数。

3. 边界条件问题:有限元分析需要指定结构的边界条件,如约束条件和加载条件。

边界条件的选择对分析结果也有很大影响。

约束条件应该与实际情况相符,以反映结构的实际受力情况。

加载条件需要根据设计要求和实际工况来指定,以保证分析结果的准确性。

在边界条件的选择过程中,需要综合考虑结构的实际使用情况、安全性要求等因素。

4. 模型简化问题:有限元分析中,构建准确的模型需要考虑很多细节,如零件的精确几何形状、连接方式等。

在实际应用中,有时需要根据实际情况对模型进行简化。

模型简化的目的是为了减少计算复杂度和提高计算效率。

模型简化也可能引入误差,因此需要在精度和计算效率之间进行平衡。

对于复杂结构和多尺度问题,如何进行合理的模型简化是一个具有挑战性的问题。

5. 结果解释问题:有限元分析得到的结果是一系列的位移、应力、应变等数据,如何对这些数据进行解释和分析是另一个关键问题。

Deform网格划分原则及方法

Deform网格划分原则及方法

[原]Deform网格划分原则及方法2009-04-04 23:48引言:划分网格是建立有限元模型的一个重要环节,它要求考虑的问题较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。

为建立正确、合理的有限元模型,这里介绍网格划分时的一些基本原则及方法。

关键词:Deform 网格局部细化一、网格划分的原则1 网格数量网格数量的多少将影响计算结果的精度和计算规模的大小。

一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。

图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随网格数量的变化。

可以看出,网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。

当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。

所以应注意增加网格的经济性。

实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。

图1 位移精度和计算时间随网格数量的变化在决定网格数量时应考虑分析数据的类型。

在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。

如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。

在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。

2 网格疏密网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。

在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。

而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。

这样,整个结构便表现出疏密不同的网格划分形式。

图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。

小圆孔附近存在应力集中,采用了比较密的网格。

板的四周应力梯度较小,网格分得较稀。

有限元分析网格划分的关键技巧

有限元分析网格划分的关键技巧

网格规模和分辨率的选择是有限元分析网格划分中的重要环节。以下是选择 合理的网格规模和分辨率时需要考虑的几个因素:
1、分析精度:网格规模和分辨率越大,分析精度越高,但同时也会增加计 算成本。因此,需要在精度和成本之间找到平衡点。
2、计算资源:网格规模和分辨率越大,需要的计算资源越多,需要考虑计 算机硬件的性能和应用场景的需求。
4、三角形单元:适用于不规则区域和复杂结构的模拟,如表面模型等。
5、四边形单元:适用于规则区域和简单结构的模拟,如立方体、圆柱等。
6、高阶单元:高阶单元具有更高的计算精度,但同时也需要更多的计算资 源。
在选择合适的单元类型和阶次时,需要考虑以下因素:
1、分析精度:根据分析目标和实际需求,选择能够满足精度要求的单元类 型和阶次。
4、施加边界条件和载荷:对计算域的边界和加载条件进行定义,以模拟实 际工况。
5、进行有限元分析和求解:利用有限元分析软件进行计算,得到各节点处 的响应和位移等结果。
6、结果后处理:对分析结果进行可视化处理,如云图、动画等,以便更好 地理解和评估仿真结果。
技巧2:如何选择合适的单元类 型和阶次
5、经验准则:根据类似问题的经验和网格划分准则,可以指导网格规模和 分辨率的选择。例如,对于结构分析,通常建议最大单元尺寸不大于最小特征尺 寸的1/10。
技巧4:如何使用有限元分析软件自动划分网格
随着有限元分析软件的发展,越来越多的软件提供了自动划分网格的功能。 使用这些功能可以大大简化网格划分的过程,提高分析效率。下面介绍两种常见 的自动划分网格方法:
2、计算效率:在保证精度的前提下,尽量选择计算效率较高的单元类型和 阶次。
3、单元特性:了解各种单元类型的适用范围和局限性,以便在分析过程中 更好地满足实际需求。

有限元的网格划分技术

有限元的网格划分技术

有限元的网格划分技术对于有限元分析来说,网格划分是其中最关键的一个步骤,网格划分的好坏直接影响到解算的精度和速度。

网格化有三个步骤:定义单元属性(包括实常数)、在几何模型上定义网格属性、划分网格。

定义网格的属性主要是定义单元的外形、大小。

单元大小基本上在线段上定义,可以用线段数目或长度大小来划分,可以在线段建立后立即声明,或整个实体模型完成后逐一声明。

采纳BottOm-UP方式建立模型时,采纳线段建立后立即声明比较便利且不易出错。

例如声明线段数目和大小后,叁制对象时其属性将会一•起夏制,完成上述操作后便可进行网格化命令。

网格化过程也可以逐步进行,即实体模型对象完成到某个阶段就进行网格话,如所得结果满足,则连续建立其他对象并网格化。

网格的划分可以分为自由网格(free meshing)、映射网格(mapped meshing)和扫略网格(SWeeP meshing)等。

一、自由网格划分自由网格划分是自动化程度最高的网格划分技术之一,它在面上可以自动生成三角形或四边形网格,在体上自动生成四周体网格。

通常状况下,可采用ANSYS的智能尺寸掌握技术(SMARTSIZE命令)来自动掌握网格的大小和疏密分布,也可进行人工设置网格的大小(AESIZE、LESIZE、KESIZE、ESIZE等系列命令)并掌握疏密分布以及选择分网算法等( MOPT 命令)。

对于简单几何模型而言,这种分网方法省时省力,但缺点是单元数量通常会很大,计算效率降低。

同时,由于这种方法对于三维简单模型只能生成四周体单元,为了获得较好的计算精度,建议采纳二次四周体单元(92号单元)。

假如选用的是六面体单元,则此方法自动将六面体单元退化为阶次全都的四周体单元,因此,最好不要选用线性(•阶次)的六面体单元(没有中间节点,比如45号单元),由于该单元退化后为线性的四周体单元,具有过大的刚度,计算精度较差;假如选用二次的六面体单元(比如95 号单元),由于其是退化形式,节点数与其六面体原型单元全都,只是有多个节点在同一位置而己,因此,可以采用TCHG命令将模型中的退化形式的四周体单元变化为非退化的四周体单元(如92号单元),削减每个单元的节点数量,提高求解效率。

机械零件有限元分析-5-第四讲-网格划

机械零件有限元分析-5-第四讲-网格划

THANKS
感谢观看
理现象。
均匀性
网格的分布应尽量均匀,以提 高计算精度和稳定性。
局部细化
对于关键区域或需要更高精度 的地方,应进行局部网格细化

边界条件处理
在边界区域,应根据实际情况 处理网格,以避免出现奇异性
和不合理的解。
03
网格划分的方法和技术
结构化网格划分
01
02
03
结构化网格
按照一定的规则和顺序对 有限元模型进行网格划分, 每个网格单元具有相同或 相似的形状和尺寸。
详细描述
对于形状不规则、结构复杂的机械零件,网格划分变得困难,需要采用特殊的有 限元网格划分方法,如自适应网格、非结构化网格等。
实例三:多物理场耦合的网格划分
总结词
多物理场、耦合、复杂度增加
详细描述
对于涉及多个物理场耦合的机械系统,如热-力耦合、流-固耦合等,网格划分变得更加复杂。需要采用多物理场 耦合的有限元网格划分方法,如分区耦合、全局耦合等。
网格划分的重要性和意义
网格划分是有限元分析的关键 环节,它决定了模型的离散精 度和计算规模。
合适的网格划分能够提高计算 精度,降低模型的自由度,从 而减少计算时间和资源消耗。
不合理的网格划分可能导致计 算精度降低,甚至出现数值不 稳定或计算失败的情况。
02
网格划分的基本概念
网格划分的定义
网格划分是将连续的物理模型离散化 为有限个小的单元,每个单元称为网 格或节点。
自适应移动节点
03
根据计算结果动态移动网格节点,以保持网格质量。
05
实例分析
实例一:简单零件的网格划分
总结词
规则、简单、容易划分
详细描述

有限元网格划分和收敛性

有限元网格划分和收敛性

一、基本有限元网格概念1.单元概述ﻫ几何体划分网格之前需要确定单元类型.单元类型的选择应该根据分析类型、形状特征、计算数据特点、精度要求和计算的硬件条件等因素综合考虑。

为适应特殊的分析对象和边界条件,一些问题需要采用多种单元进行组合建模。

ﻫ 2.单元分类选择单元首先需要明确单元的类型,在结构有限元分析中主要有以下一些单元类型:平面应力单元、平面应变单元、轴对称实体单元、空间实体单元、板单元、壳单元、轴对称壳单元、杆单元、梁单元、弹簧单元、间隙单元、质量单元、摩擦单元、刚体单元和约束单元等。

根据不同的分类方法,上述单元可以分成以下不同的形式。

ﻫ3。

按照维度进行单元分类根据单元的维数特征,单元可以分为一维单元、二维单元和三维单元。

ﻫ一维单元的网格为一条直线或者曲线。

直线表示由两个节点确定的线性单元。

曲线代表由两个以上的节点确定的高次单元,或者由具有确定形状的线性单元。

杆单元、梁单元和轴对称壳单元属于一维单元,如图1~图3所示。

ﻫ二维单元的网格是一个平面或者曲面,它没有厚度方向的尺寸.这类单元包括平面单元、轴对称实体单元、板单元、壳单元和复合材料壳单元等,如图4所示。

二维单元的形状通常具有三角形和四边形两种,在使用自动网格剖分时,这类单元要求的几何形状是表面模型或者实体模型的边界面。

采用薄壳单元通常具有相当好的计算效率。

ﻫﻫ三维单元的网格具有空间三个方向的尺寸,其形状具有四面体、五面体和六面体,这类单元包括空间实体单元和厚壳单元,如图5所示.在自动网格划分时,它要求的是几何模型是实体模型(厚壳单元是曲面也可以)。

ﻫ4.按照插值函数进行单元分类根据单元插值函数多项式的最高阶数多少,单元可以分为线性单元、二次单元、三次单元和更高次的单元。

线性单元具有线性形式的插值函数,其网格通常只具有角节点而无边节点,网格边界为直线或者平面.这类单元的优点是节点数量少,在精度要求不高或者结果数据梯度不太大的情况下,采用线性单元可以得到较小的模型规模.但是由于单元位移函数是线性的,单元内的位移呈线性变化,而应力是常数,因此会造成单元间的应力不连续,单元边界上存在着应力突变,如图6所示。

机械设计中有限元分析的几个关键问题

机械设计中有限元分析的几个关键问题

机械设计中有限元分析的几个关键问题机械设计中的有限元分析是一种常用的分析工具,可以用来评估和优化机械结构的性能和可靠性。

进行有限元分析时需要注意一些关键问题,以确保分析的准确性和可靠性。

下面将介绍几个与有限元分析相关的关键问题。

是网格划分的问题。

有限元分析是基于将待分析的结构离散化为小的有限元单元来进行的,因此网格划分对于分析的准确性和计算效率起着至关重要的作用。

在进行网格划分时,需要注意保持单元之间的一致性和连续性,合理安排单元尺寸,尽量减少网格的畸变和奇异性。

对于复杂结构,还需要注意在关键部位增加足够的单元,以保证准确分析该部位的应力和变形。

是边界条件的设定问题。

在进行有限元分析时,需要明确定义结构的边界条件,即结构与外界的约束关系。

边界条件的设定直接影响分析的结果,因此需要根据实际情况合理设定。

对于静态问题,边界条件通常包括结构的约束和外载荷,需要根据结构的实际约束情况确定。

而对于动态问题,还需要考虑结构的初始条件和动态载荷,以及与结构相连接的其他部件的相互作用。

第三个关键问题是材料力学性质的模型选择。

有限元分析中常用的材料力学模型有线性弹性模型、非线性弹性模型、塑性流动模型等。

在选择材料模型时,需要根据材料的实际性质来确定。

对于大变形、高强度和高温等情况,可能需要采用非线性模型。

而对于金属材料的塑性分析,可能需要采用塑性流动模型。

选择合适的材料模型可以提高分析的准确性和可靠性。

另外一个关键问题是质量检查和网格收敛性分析。

质量检查是指对网格进行质量评估,主要包括网格形状、单元质量、网格畸变等方面的评估。

合理的网格质量对于分析的准确性起着重要的作用,因此在进行有限元分析之前,需要对网格进行质量检查,修复低质量的单元或进行网格优化。

还需要对分析结果进行网格收敛性分析,即通过逐步细化网格,观察分析结果是否收敛。

只有在分析结果收敛时才能认为分析是可靠的。

最后一个关键问题是结果的解释和验证。

有限元分析得到的结果需要进行解释和验证,以确保分析结果的可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元网格划分的基本原则
划分网格是建立有限元模型的一个
重要环节,它要求考虑的题目较多,
需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。

为建立正确、公道的有限元模型,这里介绍划分网格时应考虑的一些基本原则。

1网格数目
网格数目的多少将影响计算结果的精度和计算规模的大小。

一般来讲,网格数目增加,计算精度会有所进步,但同时计算规模也会增加,所以在确定网格数目时应权衡两个因数综合考虑。

图1中的曲线1表示结构中的位移随网格数目收敛的一般曲线,曲线2代表计算时间随网格数目的变化。

可以看出,网格较少时增加网格数目可以使计算精度明显进步,而计算时间不会有大的增加。

当网格数目增加到一定程度后,再继续增加网格时精度进步甚微,而计算时间却有大幅度增加。

所以应留意增加网格的经济性。

实际应用时可以比较两种网格划分的计算结果,假如两次计算结果相差较大,可以继续增加网格,相反则停止计算。

图1位移精度和计算时间随网格数目的变化
在决定网格数目时应考虑分析数据的类型。

在静力分析时,假如仅仅是计算结构的变形,网格数目可以少一些。

假如需要计算应力,则在精度要求相同的情况下应取相对较多的网格。

同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。

在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,假如计算的模态阶次较高,则应选择较多的网格。

在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。

2网格疏密
网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。

在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。

而在计算数据变化梯度较小的部位,
为减小模型规模,则应划分相对稀疏的网格。

这样,整个结构便表现出疏密不同的网格划分形式。

图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。

小圆孔四周存在应力集中,采用了比较密的网格。

板的四周应力梯度较小,网格分得较稀。

其中图b中网格疏密相差更大,它比图a中的网格少48个,但计算出的孔缘最大应力相差1%,而计算时间却减小了36%。

由此可见,采用疏密不同的网格划分,既可以保持相当的计算精度,又可使网格数目减小。

因此,网格数目应增加到结构的关键部位,在次要部位增加网格是不必要的,也是不经济的。

图2带孔方板的四分之一模型
划分疏密不同的网格主要用于应力分析(包括静应力和动应力),而计算固有特性时则趋于采用较均匀的钢格形式。

这是由于固有频率和振型主要取决于结构质量分布和刚度分布,不存在类似应力集中的现象,采用均匀网格可使结构刚度矩阵和质量矩阵的元素不致相差太大,可减小数值计算误差。

同样,在结构温度场计算中也趋于采用均匀网格。

3单元阶次
很多单元都具有线性、二次和三次等形式,其中二次和三次形式的单元称为高阶单元。

选用高阶单元可进步计算精度,由于高阶单元的曲线或曲面边界能够更好地逼近结构的曲线和曲面边界,且高次插值函数可更高精度地逼近复杂场函数,所以当结构外形不规则、应力分布或变形很复杂时可以选用高阶单元。

但高阶单元的节点数较多,在网格数目相同的情况下由高阶单元组成的模型规模要大得多,因此在使用时应权衡考虑计算精度和时间。

图3是一悬臂梁分别用线性和二次三角形单元离散时,其顶端位移随网格数目的收敛情况。

可以看出,但网格数目较少时,两种单元的计算精度相差很大,这时采用低阶单元是分歧适的。

当网格数目较多时,两种单元的精度相差并不很大,这时采用高阶单元并不经济。

例如在离散细节时,由于细节尺寸限制,要求细节四周的网格划分很密,这时采用线性单元更合适。

图3不同阶次单元的收敛情况
增加网格数目和单元阶次都可以进步计算精度。

因此在精度一定的情况下,用高阶单元离散结构时应选择适当的网格数目,太多的网格并不能明显进步计算精度,反而会使计算时间大大增加。

为了兼顾计算精度和计算量,同一结构可以采用不同阶次的单元,即精度要求高的重要部位用高阶单元,精度要求低的次要部位用低阶单元。

不同阶次单元之间或采用特殊的过渡单元连接,或采用多点约束等式连接。

4网格质量
网格质量是指网格几何外形的公道性。

质量好坏将影响计算精度。

质量太差的网格甚至会中止计算。

直观上看,网格各边或各个内角相差不大、网格面不过分扭曲、边节点位于边界等份点四周的网格质量较好。

网格质量可用细长比、锥度比、内角、翘曲量、拉伸值、边节点位置偏差等指标度量。

划分网格时一般要求网格质量能达到某些指标要求。

在重点研究的结构关键部位,应保证划分高质量网格,即使是个别质量很差的网格也会引起很大的局部误差。

而在结构次要部位,网格质量可适当降低。

当模型中存在质量很差的网格(称为畸形网格)时,计算过程将无法进行。

图4是三种常见的畸形网格,其中a单元的节点交叉编号,b单元的内角大于180°,c单元的两对节点重合,网格面积为零。

图4几种常见的畸形网格
5网格分界面和分界点
结构中的一些特殊界面和特殊点应分为网格边界或节点以便定义材料特性、物理特性、载荷和位移约束条件。

即应使网格形式满足边界条件特点,而不应让边界条件来适应网格。

常见的特殊界面和特殊点有材料分界面、几何尺寸突变面、分布载荷分界线(点)、集中载荷作用点和位移约束作用点等。

图5是具有上
述几种界面的结构及其网格划分形式。

图5特殊界面和特殊点网格划分
6位移协调性
位移协调是指单元上的力和力矩能够通过节点传递相邻单元。

为保证位移协调,一个单元的节点必须同时也是相邻单元的节点,而不应是内点或边界点。

相邻单元的共有节点具有相同的自由度性质。

否则,单元之间须用多点约束等式或约束单元进行约束处理。

图6是两种位移不协调的网格划分,图a中的节点1仅属于一个单元,变形后会产生材料裂缝或重叠。

图b中的平面单元和梁单元节点的自由度性质不同,粱单元的力矩无法传递到平面单元。

图6位移不协调的网格划分
7网格布局
当结构外形对称时,其网格也应划分对称网格,以使模型表现出相应的对称特性(如集中质矩阵对称)。

不对称布局会引起一定误差,如在图7中,悬臂粱截面相对y轴对称,在对称载荷作用下,自由端两对称节点1、2的挠度值本应相等。

但若分图b所示的不对称网格,计算出的y1=0.0346,y2=0.0350。

若改用图c 所示的网格,则y1和y2完全相同。

图7网格布局对计算结果的影响
8节点和单元编号
节点和单元的编号影响结构总刚矩阵的带宽和波前数,因而影响计算时间和存储容量的大小,因此公道的编号有利于进步计算速度。

但对复杂模型和自动分网而言,人为确定公道的编号很困难,目前很多有限元分析软件自带有优化器,网格划分后可进行带宽和波前优化,从而减轻人的劳动强度。

相关文档
最新文档