有限元分析网格划分
机械设计中有限元分析的几个关键问题

机械设计中有限元分析的几个关键问题在机械设计中,有限元分析是一种常用的分析方法,可以用于预测和评估机械结构的性能。
在进行有限元分析时,存在一些关键问题需要考虑和解决。
本文将介绍机械设计中有限元分析的几个关键问题。
1. 网格划分问题:有限元分析是基于网格(或称为离散)模型进行的,因此网格的划分对分析结果的准确性有很大影响。
合理的网格划分应该满足以下要求:在关键区域(如应力集中区域)的网格密度要足够高,以捕捉局部应力的变化;在结构的稳定区域的网格密度可以适当减小,以提高计算效率。
对于复杂结构和多尺度问题,网格划分更加复杂,需要综合考虑精度和计算效率的权衡。
2. 材料参数问题:有限元分析需要提供材料的力学参数,如弹性模量、泊松比、屈服强度等。
这些参数的准确性对分析结果有很大影响。
实际材料的力学参数通常会受到环境条件、缺陷、制造过程等多种因素的影响,如何选择合适的材料参数是一个关键问题。
在实际应用中,可以借助实验测试、材料数据库以及经验公式等方法来确定合适的材料参数。
3. 边界条件问题:有限元分析需要指定结构的边界条件,如约束条件和加载条件。
边界条件的选择对分析结果也有很大影响。
约束条件应该与实际情况相符,以反映结构的实际受力情况。
加载条件需要根据设计要求和实际工况来指定,以保证分析结果的准确性。
在边界条件的选择过程中,需要综合考虑结构的实际使用情况、安全性要求等因素。
4. 模型简化问题:有限元分析中,构建准确的模型需要考虑很多细节,如零件的精确几何形状、连接方式等。
在实际应用中,有时需要根据实际情况对模型进行简化。
模型简化的目的是为了减少计算复杂度和提高计算效率。
模型简化也可能引入误差,因此需要在精度和计算效率之间进行平衡。
对于复杂结构和多尺度问题,如何进行合理的模型简化是一个具有挑战性的问题。
5. 结果解释问题:有限元分析得到的结果是一系列的位移、应力、应变等数据,如何对这些数据进行解释和分析是另一个关键问题。
ANSYS 18.0有限元分析基础与实例教程课件第3章

四边形网络(默认)
三角形网络
图3-4 四边形单元形状的退化
图3-5 默认单元尺寸
2. 选择自由或映射网格划分
单元形状(MSHAPE)和网格划分类型(MSHEKEY)的设置共同影
响网格的生成,表3-2列出了ANSYS程序支持的单元形状和网格划分
类型。
表3-2 ANSYS程序支持的单元形状和网格划分类型
4.在节点处定义不同的厚度 可以利用下列方式对壳单元在节点处定义不同的厚度:
命令:RTHICK。 GUI:Main Menu > Preprocessor > Real Constants > Thickness Func 。
下面用一个实例来详细说明该过程,该实例的模型为10×10的矩形 板,用0.5×0.5的方形SHELL63单元划分网格。现在ANSYS程序里输 入如下命令流:
Main Menu > Preprocessor > Meshing > Mesh Attributes > All Volumes(Picked Volumes)
2.分配默认属性 可以通过指向属性表的不同条目来分配默认的属性,在开始划分网格 时,ANSYS程序会自动将默认属性分配给模型。直接分配给模型的单 元属性将取代上述默认属性,而且,当清除实体模型图元的节点和单 元时,其默认的单元属性也将被删除。
1
自由网格和映射网格示意图如图3-1所示。 ELEMENTS
SEP 16 2004
1
12:44:54
ELEMENTS
SEP 16 2004 12:45:40
Y ZX
Y ZX
图3-1 自由网格和映射网格示意图
3.2 设定单元属性
在生成节点和单元网格之前,必须定义合适的单元属性,包括如
有限元分析网格划分的关键技巧

网格规模和分辨率的选择是有限元分析网格划分中的重要环节。以下是选择 合理的网格规模和分辨率时需要考虑的几个因素:
1、分析精度:网格规模和分辨率越大,分析精度越高,但同时也会增加计 算成本。因此,需要在精度和成本之间找到平衡点。
2、计算资源:网格规模和分辨率越大,需要的计算资源越多,需要考虑计 算机硬件的性能和应用场景的需求。
4、三角形单元:适用于不规则区域和复杂结构的模拟,如表面模型等。
5、四边形单元:适用于规则区域和简单结构的模拟,如立方体、圆柱等。
6、高阶单元:高阶单元具有更高的计算精度,但同时也需要更多的计算资 源。
在选择合适的单元类型和阶次时,需要考虑以下因素:
1、分析精度:根据分析目标和实际需求,选择能够满足精度要求的单元类 型和阶次。
4、施加边界条件和载荷:对计算域的边界和加载条件进行定义,以模拟实 际工况。
5、进行有限元分析和求解:利用有限元分析软件进行计算,得到各节点处 的响应和位移等结果。
6、结果后处理:对分析结果进行可视化处理,如云图、动画等,以便更好 地理解和评估仿真结果。
技巧2:如何选择合适的单元类 型和阶次
5、经验准则:根据类似问题的经验和网格划分准则,可以指导网格规模和 分辨率的选择。例如,对于结构分析,通常建议最大单元尺寸不大于最小特征尺 寸的1/10。
技巧4:如何使用有限元分析软件自动划分网格
随着有限元分析软件的发展,越来越多的软件提供了自动划分网格的功能。 使用这些功能可以大大简化网格划分的过程,提高分析效率。下面介绍两种常见 的自动划分网格方法:
2、计算效率:在保证精度的前提下,尽量选择计算效率较高的单元类型和 阶次。
3、单元特性:了解各种单元类型的适用范围和局限性,以便在分析过程中 更好地满足实际需求。
有限元网格剖分与网格质量判定指标

有限元网格剖分与网格质量判定指标有限元网格剖分与网格质量判定指标一、引言有限元法是一种常用的数值分析方法,广泛应用于工程、力学等领域。
在有限元方法中,对于复杂的几何体,需要将其分割成多个简单的几何单元,称为有限元。
而有限元的形状和尺寸对计算结果的精度和稳定性有重要影响。
因此,有限元网格剖分和网格质量判定指标的选择和优化是提高有限元方法计算精度和效率的关键。
二、有限元网格剖分的基本原则和方法有限元网格剖分的基本原则是要确保网格足够细密,以捕捉几何体的细节和特征。
一般来说,有限元网格剖分可以分为以下几个步骤:1. 几何体建模:根据实际问题建立几何体模型,可以使用CAD软件进行建模。
2. 离散化:将几何体分割成简单的几何单元,如三角形、四边形或六面体等。
3. 网格生成:根据几何单元的尺寸和形状要求生成网格。
一般可采用三角形剖分算法或四边形剖分算法进行网格生成。
4. 网格平滑:对生成的网格进行平滑处理,以提高网格的质量。
三、网格质量判定指标网格质量判定指标是用来评价和衡量网格质量好坏的指标。
一个好的网格是指网格单元形状较正、网格单元之间大小相近、网格单元的边界规则等。
常用的网格质量判定指标包括:1. 网格单元形状度:用于评价网格单元的形状正交性和变形。
常用的形状度指标有内角度、调和平均内角度和狄利克雷三角形剖分等。
2. 网格单元尺寸误差:用于评价网格单元尺寸与理想尺寸之间的差异。
常用的尺寸误差指标有网格单元长度标准差、最大和最小网格单元尺寸比等。
3. 网格单元的四边形度:用于评价四边形网格的形状规则性。
常用的四边形度指标有圆度、直角度和Skewness等。
四、网格质量优化方法为了改善有限元网格质量,可以采用以下方法:1. 网格加密:通过将大尺寸网格单元划分为小尺寸网格单元,提高网格的细密度。
2. 网格平滑:通过对矩阵约束或拉普拉斯平滑等方法对网格进行平滑处理,改善网格单元的形状。
3. 网格优化:通过对网格单元的拓扑结构和形状进行优化,提高网格的质量。
机械设计中有限元分析的几个关键问题

机械设计中有限元分析的几个关键问题在机械设计中,有限元分析是一种常用的工具和方法。
它可以帮助工程师们对机械结构进行仿真和分析,评估其性能和可靠性,优化设计方案,减少试验成本和开发周期。
在进行有限元分析时,也存在一些关键问题需要注意和解决。
下面将介绍几个常见的有限元分析的关键问题。
1. 网格划分:网格划分是有限元分析的第一步,也是最关键的一步。
合理的网格划分对于结果的准确性和计算效率至关重要。
过于粗糙的网格会导致计算结果不精确,而过于细密的网格则会增加计算量。
需要根据设计要求和边界条件合理划分网格,尽量在重要的应力集中区域和位移较大的区域细化网格,以获得更准确的结果。
2. 材料本构模型:材料本构模型是用来描述材料力学性质的数学模型,对有限元分析结果的准确性和可靠性有重要影响。
选择合适的本构模型需要考虑材料的性质、应变应力关系和加载条件等因素。
常用的本构模型有弹性模型、塑性模型、粘弹性模型等。
在选择本构模型时,需要根据具体应用场景和加载条件进行合理选择,并进行验证和校准。
3. 边界条件:边界条件是有限元分析中非常重要的一个因素。
它直接影响着模型的应力分布和位移结果。
在设置边界条件时,需要根据实际问题的要求进行准确的设置。
一般包括固支边界、强制位移边界、加载边界等。
在实际应用中,边界条件的设置需要考虑结构的约束和外部加载的作用,并进行合理的假设和简化。
4. 模型验证:模型验证是确保有限元分析结果准确性和可靠性的关键环节。
在进行有限元分析前,可以进行一些简化模型或者理论计算,对部分区域或者特定加载情况进行验证。
验证的方法可以包括理论计算、试验验证、实际工程应用等。
验证的目的是检验有限元模型的准确性和可靠性,进一步提高分析结果的精确性。
5. 结果后处理:有限元分析的结果后处理是对分析结果进行展示和进一步分析的过程。
合适的结果后处理可以帮助工程师们更好地理解分析结果,发现问题和优化设计。
常用的结果后处理方法包括应力和位移的分布图、应变云图、动态变化曲线等。
结构有限元分析中的网格划分技术及其应用实例

结构有限元分析中的网格划分技术及其应用实例一、前言有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。
网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。
从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。
同理,平面应力和平面应变情况设计的单元求解方程也不相同。
在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。
辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。
由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。
CAD软件中流行的实体建模包括基于特征的参数化建模和空间自由曲面混合造型两种方法。
Pro/E和SoildWorks是特征参数化造型的代表,而CATIA与Unigraphics等则将特征参数化和空间自由曲面混合造型有机的结合起来。
现有CAD软件对表面形态的表示法已经大大超过了CAE软件,因此,在将CAD实体模型导入CAE软件的过程中,必须将CAD模型中其他表示法的表面形态转换到CAE软件的表示法上,转换精度的高低取决于接口程序的好坏。
在转换过程中,程序需要解决好几何图形(曲线与曲面的空间位置)和拓扑关系(各图形数据的逻辑关系)两个关键问题。
其中几何图形的传递相对容易实现,而图形间的拓扑关系容易出现传递失败的情况。
数据传递面临的一个重大挑战是,将导入CAE程序的CAD模型改造成适合有限元分析的网格模型。
在很多情况下,导入CAE程序的模型可能包含许多设计细节,如细小的孔、狭窄的槽,甚至是建模过程中形成的小曲面等。
这些细节往往不是基于结构的考虑,保留这些细节,单元数量势必增加,甚至会掩盖问题的主要矛盾,对分析结果造成负面影响。
机械设计中有限元分析的几个关键问题

机械设计中有限元分析的几个关键问题机械设计中的有限元分析是一种常用的分析工具,可以用来评估和优化机械结构的性能和可靠性。
进行有限元分析时需要注意一些关键问题,以确保分析的准确性和可靠性。
下面将介绍几个与有限元分析相关的关键问题。
是网格划分的问题。
有限元分析是基于将待分析的结构离散化为小的有限元单元来进行的,因此网格划分对于分析的准确性和计算效率起着至关重要的作用。
在进行网格划分时,需要注意保持单元之间的一致性和连续性,合理安排单元尺寸,尽量减少网格的畸变和奇异性。
对于复杂结构,还需要注意在关键部位增加足够的单元,以保证准确分析该部位的应力和变形。
是边界条件的设定问题。
在进行有限元分析时,需要明确定义结构的边界条件,即结构与外界的约束关系。
边界条件的设定直接影响分析的结果,因此需要根据实际情况合理设定。
对于静态问题,边界条件通常包括结构的约束和外载荷,需要根据结构的实际约束情况确定。
而对于动态问题,还需要考虑结构的初始条件和动态载荷,以及与结构相连接的其他部件的相互作用。
第三个关键问题是材料力学性质的模型选择。
有限元分析中常用的材料力学模型有线性弹性模型、非线性弹性模型、塑性流动模型等。
在选择材料模型时,需要根据材料的实际性质来确定。
对于大变形、高强度和高温等情况,可能需要采用非线性模型。
而对于金属材料的塑性分析,可能需要采用塑性流动模型。
选择合适的材料模型可以提高分析的准确性和可靠性。
另外一个关键问题是质量检查和网格收敛性分析。
质量检查是指对网格进行质量评估,主要包括网格形状、单元质量、网格畸变等方面的评估。
合理的网格质量对于分析的准确性起着重要的作用,因此在进行有限元分析之前,需要对网格进行质量检查,修复低质量的单元或进行网格优化。
还需要对分析结果进行网格收敛性分析,即通过逐步细化网格,观察分析结果是否收敛。
只有在分析结果收敛时才能认为分析是可靠的。
最后一个关键问题是结果的解释和验证。
有限元分析得到的结果需要进行解释和验证,以确保分析结果的可靠性。
ANSYS有限元分析中的网格划分

ANSYS有限元分析中的网格划分有限元分析中的网格划分好坏直接关系到模型计算的准确性。
本文简述了网格划分应用的基本理论,并以ANSYS限元分析中的网格划分为实例对象,详细讲述了网格划分基本理论及其在工程中的实际应用,具有一定的指导意义。
作者: 张洪才关键字: CAE ANSYS 网格划分有限元1 引言ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。
网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。
从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。
同理,平面应力和平面应变情况设计的单元求解方程也不相同。
在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。
辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。
由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。
2 ANSYS网格划分的指导思想ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。
在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。
为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。
利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。
有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2.4壳单元
壳单元可以模拟平板和曲壳一类结构。壳单元比梁 单元和实体单元要复杂的多,因此,壳类单元中各种 单元的选项很多,如节点与自由度、材料、特性、退 化、协调与非协调,完全积分与减缩积分、面内刚度 选择、剪切变形、节点偏置等,应详细了解各种单元 的使用说明。
2020/10/8
2020/10/8
3.定义材料特性 定义材料特性的命令及其对应的菜单操作如下: 命令:MP、TB
GUI:Main Menu>Preprocessor>Material
Props>Material Models
4.建立梁截面 建立梁截面的命令及其对应菜单操作如下: 命令:ECTYPE、SECDATA
2020/10/8
2020/10/8
Thanks
2020/10/8
粱单元分为多种单元,分别具有不同的特性,是一 类轴向拉压、弯曲、扭转的3D单元。
2020/10/8
4.2.3二维实体单元
2D实体单元是一类平面单元,可用于平面应力、 平面应变的分析,此类单元均位于XY平面内。单元 由不同的节点组成,但每个节点的自由度均为2个(谐 结构实体单元除外),即Ux和Uy。
4.2.5三维实体单元
3D实体单元用于模拟三维实体结构,此类单元每 个节点均具有三个自由度,即Ux,Uy,Uz三个平动 自由度。
2020/10/8
目 录
4.1 网格划分的概述 4.2 单元类型 4.3 网格划分流程
4.3.1单元划分基本过程
1.选择单元类型 选择单元类型的命令及其对应的菜单操作如下: 命令:ET GUI:Main Menu>Preprocessor>Element Type>Add/Edit/Delete 用户可在单元属性数据库中选择所需的单元。 2.定义实常数组 定义实常数组的命令及其对应菜单操作如下: 命令:R GUI:Main Menu>Preprocessor>Real Constants>Add/Edit/Delete 实常数组不是必须的,其定义与否与选用的单元有关该类单 元只承受杆轴向的拉压,不承受弯矩,节点只有平动 自由度。不同的单元具有弹性、塑性、蠕变、膨胀、 大转动、大挠度(也称大变形)、大应变(也称有限 应变),应力刚化(也称几何刚度、初始应力刚度) 等功能。
2020/10/8
4.2.2梁单元
有限元与ANYSYS
有限元分析流程
前处理
模型建立 网格划分 属性定义 接触设置 边界条件
计算
求解器
后处理
结果分析 模拟动画
目 录
4.1 网格划分的概述 4.2 单元类型 4.3 网格划分流程
4.1网格划分的概述
经过几何建模后生成了由点、线、面及体组成的几 何模型,经过单元划分后才能成为由节点和单元组成 的有限元模型。 要获得可靠的分析结果,用户必须在建模之前就确 定好选用何种单元进行分析。ANSYS的每种单元及 其选项设置对应了不同物理场的数学模型,任何分析 之前首先要分析问题,找到合适的单元类型并详细了 解单元的参数及功能,再根据单元的要求建立几何模 型。 建立几何模型并添加单元类型后,还要对几何模型 进行分析,设置合适的单元尺寸及单元划分方式,确 保能够进行单元划分且划分的网格能获得可靠的分析 结果。
GUI:Main Menu>Preprocessor>Sections>Beam 此命令用于使用Beam44、Beam188或Beam189单 元的梁进行网格划分。
2020/10/8
4.3.2选择网格划分方法
2020/10/8
2020/10/8
2020/10/8
2020/10/8
目 录
4.1 网格划分的概述 4.2 单元类型 4.3 网格划分流程
4.2单元类型
ANSYS大多数单元为结构单元,用户可以根据分 析目的选择不同的单元类型进行分析。表4-1为结构 分析单元概要。
4.2单元类型
4.2.1杆单元 4.2.2梁单元 4.2.3二维实体单元 4.2.4壳单元 4.2.5三维实体单元