液压系统的设计

合集下载

完整的液压系统设计毕业设计

完整的液压系统设计毕业设计

完整的液压系统设计毕业设计1. 引言液压系统在工程领域中具有广泛的应用,特别是在机械制造、航空航天、汽车制造等领域中。

本文档旨在设计一个完整的液压系统作为毕业设计,并提供系统设计的详细说明。

2. 设计目标本设计的目标是创建一个可靠、高效的液压系统,满足以下需求:•传递大量的力和动力;•控制和调节工作负载;•提供良好的工作稳定性;•实现节能和环保。

3. 系统设计3.1 系统结构我们的液压系统将包含以下主要组件:1.液压泵:负责将液体加压并输送到液压马达或液压缸;2.液压马达或液压缸:负责将液压能转化为机械能,实现力的传递及工作载荷控制;3.液体储存装置:用于储存液体并平衡系统压力;4.液压阀门:用于控制液体流动和压力,实现系统工作的调节和控制;5.传感器和仪表:用于监测和测量液压系统的压力、流量、温度等参数。

3.2 液体选择在设计液压系统时,我们需要选择合适的液体作为工作介质。

一般情况下,液压系统常采用液体油作为工作介质,因为它具有良好的润滑性、稳定性和耐高温性能。

对于不同的应用场景,需要考虑液体的黏度、温度范围、氧化稳定性以及环境友好程度等因素。

3.3 液压元件选型为了实现液压系统的设计目标,我们需要对液压元件进行合理的选型。

液压泵、液压马达或液压缸、液压阀门等元件都有不同的类型和规格可供选择。

在选型过程中,需要考虑力的传递要求、流量和压力范围、工作稳定性以及适应特定工况的能力等因素。

3.4 系统控制在液压系统设计中,系统的控制是十分重要的。

通过合理的控制方法和策略,可以实现对液体流动、压力和工作负载的准确控制。

常用的液压系统控制方法有手动控制、自动控制和比例控制等。

根据具体需求,选择适合的控制方式可以提高系统的稳定性和性能。

4. 系统优化为了提高液压系统的工作效率和节能性,我们可以进行进一步的优化。

以下是一些常见的系统优化方法:•使用高效节能的液压泵和液压马达;•优化液体流动路径,减小能量损失;•采用高效的液压阀门和控制系统,减小能量损耗;•合理设计系统布局和管路,减小摩擦损失;•控制液压系统的工作温度,在适当的范围内减小能量损失。

液压系统设计计算

液压系统设计计算

液压系统设计计算液压系统设计是指在机械设计中,通过使用液压技术来传递动力和控制目标的设计过程。

液压系统设计需要考虑多个因素,包括流体力学原理、液压元件的选择和配置、系统的工作参数等。

下面将介绍液压系统设计的一些基本计算。

首先,液压系统设计需要确定系统的工作参数,包括工作压力、流量和工作温度等。

工作压力是指系统中液体传递动力时所施加的压力,一般以帕斯卡为单位。

流量是指单位时间内通过液压系统的液体体积,一般以升/分钟为单位。

工作温度是指系统正常工作时液体的温度,一般以摄氏度为单位。

确定了工作参数后,液压系统设计还需要选择适当的液压元件。

液压元件包括液压泵、液压马达、液压阀等。

液压泵负责将机械能转换成液压能,并提供系统的流量和压力。

常用的液压泵有齿轮泵、柱塞泵和螺杆泵等。

液压马达则将液压能转换成机械能,常用的液压马达有齿轮马达、柱塞马达和液压缸等。

液压阀则用于控制液压系统的流量、压力和方向等。

常用的液压阀有溢流阀、换向阀和节流阀等。

功率(千瓦)=流量(升/分钟)x压力(帕)/600液压泵的选型还需要根据系统的工作压力和流量来确定。

一般来说,液压泵的压力和流量应该略大于系统的工作压力和流量,以确保系统正常工作。

液压泵的选择要考虑到工作环境的温度、液体的粘度和成本等因素。

液压缸的选择也需要进行一些计算。

输出力(牛顿)=压力(帕)x断面积(平方米)液压缸的选择要根据所需的输出力和工作压力来确定。

液压缸的密封性能和机械结构等因素也需要考虑。

另外,液压系统设计中还需要考虑管道的设计和安装。

管道的设计要根据系统的工作温度、压力和流量来确定。

管道的材料和尺寸选择要满足系统的需要,并保持良好的连接和密封性能。

综上所述,液压系统设计涉及到多个方面的计算和选择。

通过合理的设计和计算,可以确保液压系统的性能和可靠性。

因此,在液压系统的设计过程中,需要充分考虑各个因素,并进行适当的计算和分析。

液压控制系统设计

液压控制系统设计

液压控制系统设计
液压控制系统主要由液压源、执行器、控制装置和工作介质等主要部
分组成。

其中,液压源负责产生和控制液压能;执行器通过接受液压能来
完成机械运动;控制装置负责监测和调控液压系统的工作;工作介质则是
液压系统中传递和储存能量的媒介。

在液压控制系统设计中,需要考虑以下几个方面:
1.系统的功能要求:根据具体的应用需求,确定系统所需的功能,例
如控制的精度、速度要求、运动方式等等。

2.工作量及工作环境要求:根据实际工况,确定液压控制系统的工作
量大小和工作环境特点,例如温度、湿度、振动等。

3.液压元件的选择:根据系统的功能和工作环境要求,选择适合的液
压元件,例如液压泵、液压缸、液压阀等。

4.阀门的设计与选型:根据系统的控制要求,选择适合的液压阀门,
并设计合理的布置和组合,以实现所需的控制功能。

5.控制回路的设计:根据系统的功能要求,确定液压控制系统的基本
回路结构,包括传感器、信号处理器、控制阀等。

6.液压系统的安全性设计:考虑系统的安全性要求,采取相应的措施,如设置安全阀、溢流阀等,以确保系统不会发生意外事故。

7.系统性能的测试与调试:在系统设计完成后,需要进行系统性能的
测试与调试,以验证系统是否满足设计需求,并进行相应的调整和优化。

总之,液压控制系统设计需要综合考虑系统的功能需求、工作环境要求、液压元件的选择、阀门的设计与选型、控制回路的设计、系统的安全
性设计等因素,以实现高效、精确、可靠的控制效果。

设计过程中需要注重系统的可维护性和可扩展性,以方便后续的维护和升级。

同时,也需要注意系统的节能性能,采取相应的节能措施,以减少能源的消耗。

液压系统的设计

液压系统的设计

液压系统的设计液压系统设计是液压主机设计的重要组成部分,也是对前面各章内容的概括总结和综合应用。

本章主要阐述液压系统设计的一般步骤,设计内容和设计计算方法,并通过实例来说明液压系统的设计过程。

9.1 液压系统的设计步骤液压系统设计与主机的设计是紧密联系的,两者往往同时进行,互相协调。

设计液压系统时应首先明确主机对液压系统在动作、性能、工作环境等方面的要求,如执行元件的运动方式、行程、调速范围、负载条件、运行平稳性和精度、工作循环及周期、工作环境、安装空间大小、结构简单、工作安全可靠、效率高、使命寿命长、经济性好、使用维修方便等设计原则。

液压系统设计步骤大体上可按图9-1所示的内容和流程进行。

这里除了最后一项(8)外,均属性能设计范围。

这些步骤是相互关联,相互影响的,必须经反复修改才能完成。

设计步骤及方法介绍如下。

9.1.1 明确系统的设计要求设计液压系统时,首先要对液压主机的工况进行分析,明确主机对液压系统的要求,具体包括:1)主机的用途、主体布局、对液压装置的位置和空间尺寸的限制。

2)主机的工作循环,液压系统应完成的动作、动作顺序或互锁要求,以及自动化程度的要求。

3)液压执行元件的负载和运动速速的大小及其变化范围,运动平稳性、定位精度及转化精度等的要求。

4)液压系统的工作环境和工作条件。

5)工作效率、安全性、可靠性及经济性等要求。

9.1.2 分析系统工况,确定主要参数1.工况分析工况分析,就是分析主机在工作过程中各执行元件的运动速度和负载的变化规律。

它是拟定液压系统方案,选择或设计液压元件的依据。

工况分析包括动力参数分析和运动参数分析两个部分,即:1)动力参数分析就是通过计算液压执行元件的载荷大小和方向,并分析各执行元件在工作过程中可能产生的冲击、振动及过载等。

对于动作较复杂的机械设备,根据工艺要求,将各执行元件在各阶段所需克服的负载用图9-2a所示的负载-位移(F-L)曲线表示,称为负载图。

液压系统设计篇

液压系统设计篇

液压系统设计篇----4ffaa03a-7161-11ec-876d-7cb59b590d7d液压传动系统设计,除了应符合其主机在动作循环和静、动态性能等方面所提出的要求外,还必须满足结构简单、使用维护方便、工作安全可靠、性能好、成本低、效率高、寿命长等条件。

液压传动系统的设计一般依据流程图见图4-1的步骤进行设计。

图4-1液压传动系统设计流程图第一节明确设计要求要设计一个新的液压系统,首先必须明确机器对液压系统的动作和性能要求,并将这些技术要求作为设计的出发点和基础。

需要掌握的技术要求可能包括:1.机器的特性(1)充分了解主机的结构和总体布置,机构与从动件之间的连接条件和安装限制,以及其用途和工作目的。

(2)负载种类(恒定负载、变化负载及冲击负载)及大小和变化范围;运动方式(直线运动、回转运动、摆动)及运动量(位移、速度、加速度)的大小和要求的调节范围;惯性力、摩擦力、动作特性、动作时间和精度要求(定位精度、跟踪精度、同步精度)。

(3)原动机类型(电机、内燃机等)、容量(功率、速度、扭矩)和稳定性。

(4)操作方式(手动、自动)、信号处理方式(继电器控制、逻辑电路、可编程控制器、微机程序控制)。

(5)系统中每个执行器的动作顺序和动作时间之间的关系。

2.使用条件(1)设置地点。

(2)环境温度、湿度(高温、寒带、热带),粉尘种类和浓度(防护、净化等),腐蚀性气体(所有元件的结构、材质、表面处理、涂覆等),易爆气体(防爆措施),机械振动(机械强度、耐振结构),噪声限制(降低噪声措施)。

(3)维护程度和周期;维修人员的技术水平;保持空间、可操作性和互换性。

3.适用的标准和规则根据用户要求采用相关标准、法则。

4.安全性、可靠性(1)用户在安全方面是否有特殊要求。

(2)指定保修期和条件。

5.经济不能只考虑投资费用,还要考虑能源消耗、维护保养等运行费用。

6.工况分析液压系统的工况分析是为了找出各执行机构在各自工作过程中的速度和负载变化规律。

液压系统设计

液压系统设计

液压系统设计液压系统设计是指根据特定的需求和要求,规划和构建一个能够利用液体流体力学原理来传输能量和控制机械运动的系统。

液压系统设计通常包括液压传动装置的选择、液压元件的布置和连接、液压液的选用和系统控制的设计等方面。

以下将针对液压系统设计中的一些重要要素进行解释。

1. 液压传动装置的选择:在液压系统设计中,首先要根据需求选择合适的液压传动装置。

液压传动装置通常包括液压泵、液压马达和液压缸等。

液压泵负责将机械能转化为液压能,并将液压液推送到液压元件中;液压马达则将液压能转化为机械能,实现机械运动;液压缸则通过液压力推动活塞运动。

在选择液压传动装置时,需要考虑工作压力、流量需求、工作环境、可靠性和经济性等因素。

2. 液压元件的布置和连接:液压元件的布置和连接是液压系统设计中的重要环节。

液压元件包括液压阀、液压油箱、液压管路和液压过滤器等。

液压阀用于控制液压系统的流量、压力和方向等参数,以实现机械运动的控制。

液压油箱用于存储液压液,并通过液压泵将液压液送回液压系统。

液压管路则负责将液压液从液压泵传送到液压元件,并通过回路将液压液送回液压油箱。

液压过滤器则用于过滤液压液中的杂质和污染物,保持液压系统的正常运行。

3. 液压液的选用:在液压系统设计中,选择合适的液压液对系统的性能和可靠性至关重要。

液压液应具备良好的润滑性能、热稳定性、抗氧化性和抗腐蚀性,以确保液压元件的正常运行,并延长系统的使用寿命。

常见的液压液包括矿物油、合成液压油和生物液压油等。

选择液压液时,需要考虑工作温度、压力要求、环境因素和液压元件的材质等因素。

4. 系统控制的设计:液压系统的控制是液压系统设计中的另一个重要方面。

系统控制可以通过手动控制、自动控制和比例控制等方式实现。

手动控制包括使用手柄、脚踏板或开关等来控制液压系统的运行;自动控制可以通过传感器和控制器等设备来实现液压系统的自动化操作;比例控制则是根据输入信号的大小来控制液压系统的输出参数,以实现精确的控制。

液压系统设计毕业设计

液压系统设计毕业设计

液压系统设计毕业设计1. 引言液压系统是一种通过液体传递力量和控制信号的技术,广泛应用于各个领域,包括机械工程、航空航天工程、能源工程等。

本文旨在设计一个满足特定需求的液压系统,以应用于某工程项目的毕业设计。

本文将详细介绍液压系统的设计过程和原理,包括工作原理、组成部分、性能指标和系统布局等方面。

2. 工作原理液压系统的工作原理基于两个基本定律:压力定律和帕斯卡定律。

液压系统通过液体在封闭系统中传递力量和信号。

当液体被加压时,会产生静压力,这个压力会被传递到液体中的每一个部分。

液压系统主要由以下几个组件组成:•液压泵:将电动机或发动机的动力转化为液压能量,提供液压流体的流动。

•液压缸或液压马达:通过液压系统的力量来完成工作。

•油箱:存储液压油,保持液压系统的温度和压力稳定。

•阀门:控制液体的流动,包括方向阀、流量控制阀和压力控制阀等。

•导管和连接件:连接液压系统的各个部件,传递液体。

3. 性能指标设计液压系统时,需要考虑以下性能指标:•动力输出:液压系统需要能够提供足够的动力来执行所需的工作任务。

•响应时间:液压系统的响应时间应该尽可能短,以确保工作的准确性和效率。

•系统效率:液压系统的效率应高,以减少能量损失和热量产生。

•系统可靠性:液压系统需要具备一定的可靠性,以确保长时间运行的稳定性。

•安全性:液压系统在设计上需要满足工作环境的安全要求,以防止意外事故的发生。

4. 系统布局设计在设计液压系统的布局时,需要考虑以下因素:•功能需求:根据所需的工作任务确定液压系统的功能需求,包括液压泵的选型、液压缸的布置等。

•空间约束:根据工作场地的限制,确定液压系统的尺寸和布局。

•连接方式:选择合适的连接方式和连接件,确保液压系统的连接可靠性。

•管道布置:设计合理的管道布置,避免过长或过短的管道对系统性能产生影响。

•安全设备:根据安全要求,选择合适的安全设备,如压力开关、液压阀等。

5. 结论通过本文的液压系统设计,我们能够满足特定需求的液压系统的毕业设计要求。

液压系统设计规范要求

液压系统设计规范要求

液压系统设计规范要求液压系统作为一种常见的动力传递和控制系统,在许多行业中被广泛应用。

为了确保液压系统的正常运行和安全性,设计规范要求起着至关重要的作用。

下面是一些常见的液压系统设计规范要求的简要介绍。

1.压力等级要求:液压系统的设计应满足特定工作条件下所需的压力等级要求。

设计时需要根据工作负荷、系统结构和液压元件的性能来确定所需的压力等级,并选择相应的液压元件。

2.流量要求:液压系统的设计应满足特定工作条件下所需的流量要求。

设计时需要根据工作负荷、作动元件的速度要求和液压元件的流量特性来确定所需的流量,并选择相应的液压元件。

3.控制精度要求:液压系统的设计应满足特定工作条件下所需的控制精度要求。

设计时需要考虑液压元件的动态响应特性、控制阀的调节性能和系统的压力稳定性来确定所需的控制精度,并选择相应的液压元件和控制阀。

4.安全性要求:液压系统的设计应满足特定工作条件下的安全性要求。

设计时需要考虑系统的压力安全阀、过载保护装置和泄漏检测装置等安全措施,并选择相应的安全元件和安全阀。

5.节能要求:液压系统的设计应满足节能要求,减少能源消耗和环境污染。

设计时需要考虑选择高效的液压元件、采用能量回收装置和优化系统结构等方式来提高系统的能源利用效率。

6.维护性要求:液压系统的设计应满足方便维护和维修的要求。

设计时需要考虑系统的易维护性和易维修性,选择易操作的液压元件和控制阀,合理布置管路和连接件,以便于检修和更换。

7.可靠性要求:液压系统的设计应满足可靠性要求,确保系统能够长时间、稳定地运行。

设计时需要考虑液压元件的寿命和可靠性,选择可靠性较高的液压元件和材料,并采取相应的措施来提高系统的可靠性。

8.环境适应性要求:液压系统的设计应满足特定工作环境的要求,如高温、低温、潮湿、腐蚀等。

设计时需要选择适应工作环境的液压元件和密封件,选用符合环保要求的液压油和材料。

总之,液压系统设计规范要求涉及压力等级、流量要求、控制精度、安全性、节能性、维护性、可靠性和环境适应性等方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要面对我国经济近年来的快速发展,机械制造工业的壮大,在国民经济中占重要地位的制造业领域得以健康快速的发展。

制造装备的改进,使得作为制造工业重要设备的各类机加工艺装备也有了许多新的变化,尤其是孔加工,其在今天的液压系统的地位越来越重要。

镗床液压系统的设计,除了满足主机在动作和性能方面规定的要求外,还必须符合体积小、重量轻、成本低、效率高、结构简单、工作可靠、使用和维修方便等一些公认的普遍设计原则。

液压系统的设计主要是根据已知的条件,来确定液压工作方案、液压流量、压力和液压泵及其它元件的设计。

综上所述,完成整个设计过程需要进行一系列艰巨的工作。

设计者首先应树立正确的设计思想,努力掌握先进的科学技术知识和科学的辩证的思想方法。

同时,还要坚持理论联系实际,并在实践中不断总结和积累设计经验,向有关领域的科技工作者和从事生产实践的工作者学习,不断发展和创新,才能较好地完成机械设计任务。

关键词:液压缸液压泵换向阀前言液压气动技术最早是19世纪末在西方发展起来的。

我国从50年代后期开始起步。

目前各国都非常重视液压气动技术的开发和应用。

总的来看,美国在这一领域的技术、产值在世界上处于领先地位,但面临西欧和日本的激烈竞争。

从行业上看,一段时间里,主机制造商倾向于用外购的元件自行设计液压气动系统。

但由于技术日益复杂,使得用从各制造商购得的元件建立具有稳定市场效益的液压气动系统越来越困难。

设计的任务正向元件制造商转移,由专业液压气动厂商供应成套系统,但只有大公司才能承担这项任务。

基于此,全球性的跨国公司展开了竞争、合并。

大量的资金用于研究开发和技术革新,较小的公司负担不了这样的开支,其中很大一部分被挤出市场。

我国经过40多年的发展,液压气动行业已具有一定的独立开发能力,能生产出一批技术先进、质量较好的元件、系统和整机,随着我国加入WTO,向国际先进技术学习、与世界着名的大公司合作的机会越来越多,这将是这一行业的发展趋势。

近年来,液压传动由于应用了计算机技术、信息技术、自动控制技术、新材料等后取得了新的发展,使液压系统和元件正向高压、高速、高精度、高效率的方向发展,在完善比例控制、伺服控制、数字控制等技术上取得新的成就。

液压系统的发展方向是:创制新型节能、微型元件﹑高度的组合化、集成化和模块化和微电子结合,走向智能化。

综上所述,液压工业在国民经济中的作用是很大的,它常常用来衡量一个国家工业水平的重要标志之一。

与世界上主要的工业国家相比,我国的液压工业还有相当差距,标准化、优质化的工作有待于继续做好,智能化的工作刚刚起步,为此必须急起直追,才能迎头赶上。

第1章液压传动概述液压气动技术是机械设备中发展最快的技术之一。

特别是近年来与微电子、计算机技术相结合,使液压气动技术进入了一个新的发展阶段。

目前,已广泛应用在工业各领域。

由于近年来微电子、计算机技术的发展,液压、气动元器件制造技术的进一步提高,使液压气动技术不仅作为一种基本的传动形式上占有重要地位,而且以优良的静态、动态性能成为一种重要的控制手段。

液压传动的工作原理及组成工业各部门使用液压传动的出发点是不尽相同的:如工程机械、压力机械是利用它们在传递动力上的长处;航空工业是利用其结构简单、体积小、重量轻、输出功率大的特点;机床是利用它们在操纵控制上的优点,利用其能在工作过程中实现无级变速,易于实现频繁的换向,易于实现自动化等。

液压传动的工作原理:液压传动是利用液体的压力能来传递动力的一种传动式,液压传动的过程是将机械能转换和传递的过程。

液压系统的组成动力装置——液压泵;执行装置——液压缸和液压马达;控制调节装置——控制阀;辅助装置——除上面以外的其他装置。

液压传动的特点液压传动的优点1.液压传动装置运动平稳,反应快,惯性小,能高速启动,制动和换向。

2.在同等功率情况下,液压传动装置体积小,重量轻,结构紧凑。

例如同功率液压马达的重量只有电动机的10%-20%。

3.液压传动装置能在运行中方便的实现无及调速,且调速范围最大可达1:2000(一般为1:1000)。

5.操作简单方便,易于实现自动化。

当它电气联合控制时。

能实现复杂的自动工作循环和远距离控制。

6.易于实现过载保护。

液压元件能自行润滑,使用寿命较长。

7.液压元件实现了标准化、系列化、通用化,便于设计、制造和使用。

液压传动的缺点1.液压传动不能保证严格的传动比,这是由于液压油的可压缩性和泄露造成的。

2.液压传动对油温变化较敏感,这会影响它的工作稳定性。

因此液压传动不宜在很高或很低的温度下工作,一般工作温度在-15℃~60℃范围内较合适。

3.为了减少泄露,液压元件在制造精度上要求较高,因此它的造价高,且对油液的污染比较敏感。

4.液压传动装置出现故障时不易查找原因。

5.液压传动在能量转换(机械能—压力能—机械能)的过程中,特别是在节流调速系统中,其压力、流量损失大,故系统效率低。

6.液压传动在能量转换的过程中,其压力、流量损失大,故系统效率低。

液压工作的介质物理性质1.密度单位体积的液体质量称密度。

矿物油型液压油在15℃时的密度为900㎏/m 3左右,在实际使用中可以认为不受温度和压力的影响。

2.可压缩性和膨胀性液体受压力的作用而使体积发生变化的性质称为液体的可压缩性。

液体受温度的影响而使体积发生变化的性质成为液体的膨胀性。

体积为V 的液体,当压力变化量为△p 时,体积的绝对变化量为△V ,液体在单位压力变化下的体积相对变化量为k=-vv∆∆p 1 式中,k 称为液体的体积压缩系数。

因为压力增大时液体的体积减少所以上式右边加一负号,以使k为正值。

液体体积压缩系数的倒数称为液体的体积弹性模量,用K 表示。

即体积弹性模量K 表示液体产生单位体积相对变化量时所需要的压力增量。

在使用中,可用K 值来说明液体抵抗压缩能力的大小。

液压油的可压缩性对液压传动系统的动态性能影响较大,但当液压传动系统在静态下工作时,一般可以不予考虑。

对液压工作介质的要求⑴.有适当的黏度和良好的黏温特性⑵.氧化安定性和剪切安定性好⑶.抗乳化性、抗泡沫性好正确合理地选用工作介质,对于保证液压系统正常工作、延长使用寿命、提高工作可靠性、防止事故发生等都有非常重要的影响。

液压油液的选用,首先根据液压传动系统的工作环境和工作条件来选择合适的液压油类型,然后再选用液压油的黏度。

第2章总评方案工况分析分析系统工况。

首先,根据已知条件,绘制运动部件速度循环图。

如下图所示,然后计算各阶段的外负载并绘制负载图。

负载循环图液压缸所受外负载F包括三种类型:即:F=Fw+Ff+Fa式中:Fw----------工作负载对于金属切削机床来说,即为沿活塞运动方向的切削力。

本系统中Fw为15000N。

Fa--------运动部件速度变化时的惯性负载。

Ff--------导轨摩擦阻力负载。

启动时为静摩擦力,启动后为动摸擦力。

对于平导轨Ff可由下式求:Ff =f(G+FRn)G-------运动部件重力FRn-----垂值与导轨工作负载f-------导轨摩擦系数。

本系统中静摩擦系数为,动摩擦系数为。

则求的:Ffs=×20000=4000N。

Ffa=×20000=2000N。

上式中Ffs为静摩擦阻力,Ffa为动摩擦阻力。

Fa =2000061019.49.810.260G tg v•=⨯=∆⨯式中g----重力加速度t-------加速度或减速度时间﹑本系统中t取v------t时间内的速度变化量根据上述计算结果,列出各工作阶段所受的外负载如下表,并画出上图所示的负载循环图。

工作循环各阶段的外负载确定液压系统方案确定供油方式考虑到该机床在工作进给时负载较大,速度较低。

而在快速,快进是负载较小,速度较高。

从节省能量,减少发热考虑。

液压泵源系统宜选用双泵供油方式或变量泵供油。

现采用带压力反馈的限压式变量叶片泵。

调速方式的选择在中小型专用机床的液压系统中,进给速度的控制一般采用截流阀或调速阀。

根据铣削类专用机床工作时对低速性能和速度负载特性都有一定要求的特点,决定采用限压式变量泵和调速阀组成的容积截流调速。

这种调速回路具有效率高,发热小和速度刚性好的特点,并且调速阀装在回油路上,具有承受负切削力的能力。

速度换接方式的选择本系统采用电磁阀的快慢速换接回路,它的特点是结构简单,调节行程比较方便,阀的安装也比较容易,但速度换接的平稳性较差。

若要提高系统的换接平稳性,则可改用行程阀切换的速度换接回路。

最后把所选择的液压回路组合起来,即可组合成如下图所示.液压系统原理图电磁阀动作顺序如下表:执行元件的工况图:(a)压力循环图(b)流量循环图(C)功率循环图机床进给液压缸工况图t1---快进时间 t2----工进时间 t3----快退时间A:启动:按下启动键,电磁铁1YA通电,先导电磁铁阀4的左端接入系统。

由泵输出的油经先导电磁阀5流入液压缸,再经过先导电磁阀7的左端,进入液流阀回油路。

油路的工作情况为:进油路:过滤器2→变量泵3→先导电磁阀5→单向节流阀6→先导电磁阀7→液压缸8回油路:液压缸8→先导电磁阀5→油箱。

B:快进:按下启动键后,由电磁铁1YA ,3YA 通电。

先导电磁阀4的左端接入系统,同时先导电磁阀5的右端接入系统。

油路工作情况为:过滤器2→单向液压泵3→先导电磁阀5→液压缸8。

回油路:液压缸8→先导电磁阀5→油箱。

C:工进:按下按钮后,2YA 通电,先导电磁阀5的右端和先导电磁阀7的右端接入系统。

进油路:过滤器2→单向液压泵3→先导电磁阀5右端→液压缸8。

回油路:液压缸8→先导电磁阀7右端→油箱。

D:快退按下按钮后,1YA ,3YA,通电。

先导电磁阀5的左端和先导电磁阀7的右端接入系统。

进油路:过滤器2→单向液压泵3→先导电磁阀5→先导电磁阀7→液压缸8。

回油路:液压缸8→先导电磁阀5→油箱。

第3章 确定主要参数计算液压缸的尺寸流量液压缸的结构简单,与杠杆、连杆、齿轮齿条、凸轮等机构配合使用能实现多种机械运动以满足各种要求。

按结构特点的不同,缸可以分为活塞式、柱塞式和摆动式三大类;按作用方式分为单作用和双作用两种。

根据系统要求,选择活塞式单作用的液压缸。

通常活塞缸由后端盖、缸筒、活塞、活塞杆和前端盖等主要部分组成。

为了防止工作介质向缸外或由高压腔向低压腔泄露,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设有密封装置。

在前端盖外侧还装有防尘装置。

为防止活塞快速运动到行程终端时撞击缸盖,有些缸的端部设置缓冲装置。

液压缸工作的压力确定液压缸工作压力主要根据液压设备的类型来确定,对于不同用途的液压设备,由于工作条件不同,通常采用的压力范围也不同。

液压设备的常用的工作压力现参阅上表取液压缸的工作压力为Pa= 计算液压缸内直径D 和活塞杆直径d由负载图知最大负载F 为18900N 。

相关文档
最新文档