热处理原理及工艺第一章

合集下载

热处理原理与工艺

热处理原理与工艺

热处理原理与工艺热处理是一种通过加热和冷却来改变材料性能的工艺。

它可以使金属材料获得所需的力学性能、物理性能和化学性能,从而满足不同工程要求。

热处理工艺包括退火、正火、淬火、回火等,不同的工艺可以实现不同的效果。

下面将详细介绍热处理的原理和工艺。

首先,我们来介绍退火工艺。

退火是将金属材料加热到一定温度,保持一定时间后,再以适当速度冷却到室温。

退火的目的是消除材料内部的应力,改善塑性和韧性,降低硬度。

这种工艺适用于大多数金属材料,尤其是碳钢和合金钢。

其次,正火工艺是将金属材料加热到临界温度以上,保持一定时间后,再冷却到室温。

正火可以提高金属的硬度和强度,同时保持一定的韧性。

这种工艺适用于低碳钢、合金钢和工具钢等材料。

淬火是将金属材料加热到临界温度以上,然后迅速冷却到室温。

淬火可以使金属材料获得高硬度和高强度,但同时会降低其韧性。

这种工艺适用于合金钢、高速钢和不锈钢等材料。

最后,回火是将经过淬火处理的金属材料加热到一定温度,然后保持一定时间后冷却。

回火可以降低金属的脆性,提高韧性和塑性。

这种工艺适用于经过淬火处理的合金钢和工具钢等材料。

在进行热处理工艺时,需要注意控制加热温度、保温时间和冷却速度,以确保获得所需的材料性能。

同时,还需要考虑材料的化学成分、组织结构和形状等因素,综合运用各种热处理工艺,以达到最佳的效果。

总之,热处理是一种重要的金属材料加工工艺,通过改变材料的组织结构和性能,可以满足不同工程要求。

各种热处理工艺都有其特定的原理和适用范围,只有深入理解这些原理,才能正确地选择和应用热处理工艺,从而获得优质的金属材料。

热处理工艺

热处理工艺

3、不完全退火: 亚共析钢在Ac1~Ac3之间或过共析钢在Ac1~
4、球化退火:是使钢中的碳化物球化,获 得粒状珠光体的ቤተ መጻሕፍቲ ባይዱ种热处理工艺。



用途:主要应用于共析钢、过共析钢和高碳合金工具钢。 目的:降低硬度、均匀组织、改善切削加工性能,为淬 火做准备。 工艺参数: 加热温度:Ac1+20~30℃;过高-过低过共析钢球化退火后的组织:铁素体和球状渗碳体的混 合物,叫做球状珠光体或粒状珠光体,用P粒表示; 加热时间:一般为2~4小时或按公式计算 冷却速度:炉冷或Ar1以下〒20℃长时间等温,600 ℃ Q 8 .5 以后出炉空冷。 4
二、钢的正火(正常化或常化)
1、定义:是指将钢加热到Ac3(或ACcm)以上约 30~50℃,保温,完全A化后,从炉中取出空冷以得 到珠光体类型组织的热处理工艺,称为正火。 2、应用: ①改善切削加工性能:预备热处理 (含碳低于0.25%的---HB140-190)低碳钢 ②消除热加工缺陷,为淬火做组织准备:(中碳结构钢 铸、锻、轧件、焊接件的魏氏组织、粗大晶粒、带状 组织) ③消除过共析钢中的Fe3CⅡ,有利于球化退火的进行 (抑制二次碳化物的析出,获得伪共析体。) ④提高普通结构件的机械性能:作为最终热处理,代替 调质处理,力学性能要求不高的 中低碳钢和中低合金钢件
过共析钢的室温平衡组织为: P+Fe3CⅡ,不 仅硬度高,而且增大了钢的脆性,所以切削加 工困难,淬火时易变形、开裂;; 加热温度为Ac1以上20~30℃,在A中保留大 量的未溶渗碳体质点,并造成A的碳浓度分布 不均匀,在随后的缓冷过程中,或以原有的渗 碳体质点为核心,或在A富碳区产生新的核心, 均匀的形成颗粒状渗碳体; 球化退火前,若二次渗碳体网较厚,可先正火。

材料热处理原理第一章金属固态相变基础

材料热处理原理第一章金属固态相变基础
材料热处理原理
1#楼203 周二 5-6节 周四 1-2节
热处理
热处理原理与工艺
• 热处理:将金属或工件放在一定的介质中,通 过加热、保温和冷却的方法,使金属或合金的 内部组织结构发生变化,从而获得所需性能的 技术。
• 金属材料生产和机械制造过程的重要组成部分 之一。
• 热处理的特点:
– 一般不改变材料或工件的形状和整体的化学成分 – 改变材料或工件的微观组织和结构,或表面的化学成
特点:
(1)存在由于均匀切变引起的宏观形状改变,可在预先制备的抛光试样 表面上出现浮突现象。
(2)相变不需要通过扩散,新相和母相的化学成分相同。 (3)新相和母相之间存在一定的晶体学位向关系。 (4)某些材料发生非扩散相变时,相界面移动速度极快,可接近声速。
4. 按相变方式分类
➢ 有核相变:通过形核-长大方式进行的。
• 其两个生成相的结构和 成分均与母相不同
• 加热时也可发生 α+→转变,称为逆 共析相变
平衡相变
④调幅分解
• 某些合金在高温下具有均匀单相固溶体,但冷却到 某一温度范围时可分解成为与原固溶体结构相同但 成分不同的两个微区,这种转变称为调幅分解。
特点:转变初期不存在明显的相界面和成分突变; 通过上坡扩散实现成分变化; 一个自发分解过程; 不经历形核阶段; 分解速度快
3. 按原子迁移特征分类
扩散型相变
相变时原子迁移特征
非扩散型相变
3. 按原子迁移特征分类
(1)扩散型相变
相变时,相界面的移动是通过原子近程或远程扩散而进行的相变。
如:脱溶型相变、共析型相变(珠光体型转变)、调幅分解和有序化 转变等。
特点:
(1)有原子扩散运动,相变速率受原子扩散速度所控制; (2)新相和母相的成分往往不同; (3)只有因新相和母相比容不同而引起的体积变化,没有宏观形状

热处理原理与工艺赵乃勤第一章课后答案

热处理原理与工艺赵乃勤第一章课后答案

热处理原理与工艺赵乃勤第一章课后答案1试对珠光体片层间距随温度的降低而减小作出定性的解释。

答:S与△T成反比,且这一关系可定性解释如下:珠光体型相变为扩散型相变,是受碳、铁原子的扩散控制的。

当珠光体的形成温度下下降时,△T增加,扩散变得较为困难,从而层片间距必然减小(以缩短原子的扩散距离),所以S与△T成反比关系。

在一定的过冷度下,若S过大,为了达到相变对成分的要求,原子所需扩散的距离就要增大,这使转变发生困难;若S过小,则由于相界面面积增大,而使表面能增大,这时△GV不变,σS增加,必然使相变驱动力过小,而使相变不易进行。

可见,S与△T必然存在一定的定量关系,但S 与原奥氏体晶粒尺寸无关。

2分析珠光体相变的领先相及珠光体的形成机理。

答:从热力学上讲,在奥氏体中优先形成a相或Fe3C相都是可能的,所以分析谁是领先相,必须从相变对成分、结构的要求着手,从成分上讲,由于钢的含碳量较低,产生低碳区更为有利,即.有利于铁素体为领先相;但从结构上讲,在较高温度,特别在高碳钢中,往往出现先共析FezC相,或存在未溶Fe3C微粒,故一般认为过共析钢的领先相为FesC,而共析钢的领先相并不排除铁素体的可能性。

珠光体形成时,在奥氏体中的形核,符合- - 般的相变规律。

即母相奥氏体成分均匀时,往往优先在原奥氏体相界面上形核,而当母相成分不均匀时,则可能在晶粒内的亚晶界或缺陷处形核。

珠光体依靠碳原子的扩散,满足相变对成分的要求,而铁原子的自扩散,则完成点阵的改组。

而其生长的过程则是一个“互相促发,依次形核,逐渐伸展”的过程,若在奥氏体晶界上形成了一片渗碳体( 领先相为片状,主要是由于片状的应变能较低,片状在形核过程中的相变阻力小),然后同时向纵横方向生长,由于横向生长,使周围碳原子在向渗碳体聚集的同时,产生贫碳区,当其C%下降到该温度下xa /k浓度时,铁素体即在Fe3C——γ相界面上形核并长成片状;随着F的横向生长,又促使渗碳体片的形核并生长;如此不断形核生长,从而形成铁素体、渗碳体相相同的片层。

金属热处理技术手册

金属热处理技术手册

金属热处理技术手册
摘要:
本手册旨在对金属热处理技术进行全面而系统的介绍和总结。

内容
包括金属热处理的基本原理、分类、工艺流程、设备及技术等方面的
知识点。

希望能为金属材料加工及相关从业人员提供参考和实用指导。

第一章金属热处理的基本原理
金属热处理是指加热金属材料,将其保持在一定温度下并进行适当
冷却后得到期望的金属组织和性能的过程。

这一过程可以改善金属的
塑性、韧性、抗疲劳性、耐腐蚀性和耐热性能等特点。

第二章金属热处理的分类
金属热处理的分类按材料性质不同而异,主要包括调质、退火、正火、淬火等不同的热处理类型,各种类型的热处理都会在一定程度上
改变材料的性质和组织结构。

第三章金属热处理的工艺流程
金属热处理的工艺流程包括加热、保温、降温、处理等过程。

在这
一过程中,需要注意合理控制加热和冷却速率,保证金属组织均匀性
和性能等要素的达成。

第四章金属热处理的设备
金属热处理的设备通常包括热处理炉、热处理钢罐、加热炉、降温设备、炉具等。

其中,炉具的种类和质量直接决定着金属热处理成品的质量水平和工艺效率。

第五章金属热处理的技术
金属热处理的技术主要包括热处理工艺、工艺参数和环境因素等,其中前两者直接决定了金属组织和性能的变化方向和程度。

结论:
金属热处理作为一项重要的金属材料加工技术,一直以来受到广泛的关注和应用。

本手册对于金属热处理技术的全面系统介绍和总结,期望能为从事金属热处理的相关从业人员提供参考和实用指导,使其能更好地从事相关工作,提高工作效率和成果质量。

金属热处理原理与工艺(第1章)

金属热处理原理与工艺(第1章)
性能取决于组织形态
高硬、高强、高耐磨
1-16
珠光体(纯铁、铁素体)的机械性能 抗拉强度σb: 1000(176~274)MN/m2 屈服强度σ0.2: 600(98~166)MN/m2 延伸率δ: 10%(30~50%) 断面收缩率ψ: 12-15%(70~80%) 硬度HB: 241(50~80)
Chapter 1: Introductions
1-15
组织 奥氏体
比容 (cm3/g-1)
0.1212
线膨胀系数 (106K-1)
14.5
力学性能
低硬度、低屈服强度,高塑性
铁素体 0.1271
渗碳体 0.130
珠光体
-
莱氏体
-
23.0 12.5
-
低强度、低硬度,高塑形和韧 性
高硬、高强、高耐磨,低塑性 、低韧性
Chapter 1: Introductions
1-25
1-12
计算相及组织含量
【例】计算珠光体中F和Fe3C的含量。 WF=SK/PK=(6.69-0.77/6.69-0.0218)×100% =88.7%
WFe3c=100%-88.7%=11.3%
【课堂练习】分析wc=1.5%的铁碳合金在室温下 的相及组织,并分别计算其含量。
Chapter 1: Introductions
正火(normalizing)

三阶段:加热、保温、冷却
理 淬火(quenching ) 回火(tempering)

五要素:介质、V加、T、t 、V冷 类 固溶时效(aging treatment)
Chapter 1: Introductions
1-7
热处理与相图

热处理原理与工艺ppt

热处理原理与工艺ppt

1 2
空气冷却器
利用空气作为冷却介质,通过换热器将热量带 走。
水冷装置
利用水作为冷却介质,通过循环水将热量带走 。
3
油冷装置
利用油作为冷却介质,通过油循环将热量带走 。
辅助设备
输送装置
包括输送带、辊道等, 用于工件的输送和定位 。
装料装置
包括料仓、料斗、抓斗 等,用于工件的装料和 卸料。
加热元件
包括电热丝、硅碳棒等 ,用于加热设备中的加 热元件。
热处理质量控制
为了保证热处理效果的一致性和可靠性,需要对热处理过 程进行严格的质量控制,包括温度控制、时间控制和气氛 控制等。
展望
01
新技术的发展
随着科技的不断进步,新的热处理技术也不断涌现。例如,真空热处
理、保护气氛热处理和激光热处理等新技术的应用,将进一步提高热
处理质量和效率。
02
节能减排的需求
Байду номын сангаас
04
热处理的应用
工业应用
航空航天领域
为了提高航空航天构件的强度、硬度、韧性和疲劳性能,通常 需要进行热处理。
汽车工业
汽车零部件如齿轮、轴、弹簧等需要进行热处理,以提高其耐 磨性和抗疲劳性能。
机械制造
在机械制造过程中,对金属材料进行热处理可以改变其内部结 构,提高材料的使用性能。
日常生活应用
餐具
THANKS
热处理原理应用
广泛应用于机械制造业、 冶金工业、电子工业等领 域。
热处理的过程
加热
将金属材料加热到一定温 度,使其发生相变或奥氏 体化。
保温
保持一定时间,使金属材 料充分吸收热量,达到预 期的组织结构。
冷却

钢的热处理原理及工艺

钢的热处理原理及工艺

6.67 0.89 14.8 0.41 0.02
表明: 相界面向α一侧推移速度比向Fe3C一侧的推移速度快14.8倍。 通常情况下,片状珠光体的α片厚度比Fe3C片厚度大7倍。 所以奥氏体等温形成时,总是α先消失,剩余Fe3C。
3)残余Fe3C溶解
未溶解,这些Fe3C称为残余Fe3C。
也是一个点阵重构和碳的扩散过程。
(1)过冷奥氏体缓慢冷却,分解的过冷度很小,得到 近于平衡的珠光体组织。 (2)冷却速度较快时,可把过冷奥氏体过冷到较低温 度,碳原子尚可扩散,铁原子不能扩散,得到贝氏体组织。 (3)更快速的冷却,奥氏体迅速过冷到不能进行扩散 分解,得到马氏体组织。
Figure 8. TTT Diagram and microstructures obtained by different types of cooling rates
dC
A 长大
∆Cr↔k
dx
∆Cr↔α
2)奥氏体晶格改组
一般认为: ①平衡加热过热度很小时,通过Fe原子子扩散完成晶格改组。
②当加热过热度很大时,晶格改组通过Fe原子切变完成。
2)奥氏体晶核的长大速度
奥氏体晶核向铁素体和渗碳体两侧推移速度是不同的。
780℃时,
v v Fe 3C

C Fe 3C C
α→γ结束后,还有相当数量的Fe3C尚
残余Fe3C溶解
4)奥氏体均匀化
在原来Fe3C部位,C%较高,而原来α部位C% 较低,必须经过适当保温后,奥氏体中的C%才能均 匀。
A 均匀化
共析碳钢A形成过程示意图
1.奥氏体晶核的形成 2.奥氏体晶核的长大 3.残余渗碳体的溶解 4.奥氏体成分的均匀化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不同于金属凝固过程中的固—液界面,固态相变 时,新相与母相之间的界面是两种晶体的界面。 根据界面上两相原子在晶体学上匹配程度的不同, 可分为共格界面、半共格界面、非共格界面等三 类。
热处理原理及工艺第一章
1、共格界面
l 界面上的原子同时位于两相的结点上,即两相界 面上的原子排列匹配,界面上的原子为两相所共 有。
热处理原理及工艺-第一 章
2020/11/24
热处理原理及工艺第一章
一、金属固态相变的主要类型
(一)平衡转变
固态金属在缓慢加热和冷却时发生的能获得符合相图所示平衡组织的 相变。包括同素异构转变、多形性转变、平衡脱溶沉淀、共析转变、 调幅(增幅)分解、有序化转变。
(二)非平衡转变
固态金属在快速加热或冷却时,由于平衡转变受到抑制,可能发生某 些非平衡转变而得到在相图上不能 反映的非平衡组织。包括伪共析转 变、马氏体转变、块状转变、贝氏体转变、不平衡脱溶沉淀(时效)。
形成临界晶核的形核功为:
由此可见,当应变能和表面能增大时,临界晶核 的临界半径增大,形核功升高。
热处理原理及工艺第一章
因此, l 具有低的界面能但有很高的应变能的共格晶胚,
倾向于呈盘状或片状; l 而具有高的界面能但有低的应变能的非共格晶胚
则容易形成等轴状; l 如因体积膨胀而引起的应变能较大或界面能的各
热处理原理及工艺第一章
由于界面上原子排列的不规则性会导致界面能升 高,因此,非共格界面能最高,半共格界面能次 之,而共格界面能最低。因此,界面结构的不同, 对新相的形核、长大过程以及相变后的组织形态 等都将产生很大影响。
热处理原理及工艺第一章
(二)两相间的晶体学关系
1、取向(位向)关系
固态相变时,为了减少新相与母相之间的界面能, 两种晶体之间往往存在一定的位向关系,他们常 以低指数的、原子密度大而又彼此匹配较好的晶 面互相平行。如马氏体转变时马氏体的密排面 {011}与奥氏体的密排面{111}平行。 一般说来,当新相与母相间为共格或半共格界面 时,两相间必然存在一定的晶体学取向关系;若 两相间无一定的取向关系,则其界面必定为非共 格界面。
2、半共格界定程度是, 便难以继续维持完全共格, 于是将在界面上产生一些位 错,以降低界面的弹性应变 能,这时界面上的两相原子 变成部分地保持匹配,即半 共格
热处理原理及工艺第一章
3、非共格界面
两相界面处的原子排列相差很大, 即错配度很大时,只能形成非共 格界面。这种界面与大角度晶界 相似,是由原子不规则排列的很 薄的过渡层所构成。
热处理原理及工艺第一章
二、金属固态相变的主要特点
金属固态相变与凝固过程相同处: 以新相和母相的自由能差作为相变的驱动力; 大多数固态相变也都包含形核和长大两个基本过
程,并遵循结晶过程的一般规律。
但因其为固态下的结晶过程,故又具有不同于液 态金属结晶的一系列特点。
热处理原理及工艺第一章
(一)相界面
向异性很显著时,也可呈片状或针状。
热处理原理及工艺第一章
(二)非均质形核 母相中的晶体缺陷可以作为形核位置,因此,金属固态相 变主要依赖于非均质形核,其系统自由能总变化为:
与均质形核相比,多了一项-DGd,它表示非均质形核时由 于晶体缺陷消失而释放出的能量。因此,相变驱动力增加, 这将导致临界形核功降低,从而大大促进形核过程。
l 在固态相变阻力中,应变能与界面能究竟何者为主体需视具 体条件而定。
l 在过冷度很大时,临界晶核小,比表面积较大,界面能增大 占主要地位,因而需形成共格界面以降低界面能,故新相倾 向于形成盘状。
l 过冷度很小时,临界晶核大,比表面积大,使新相界面能减 少居于次要地位,倾向于形成非共格界面以降低应变能。
其中DG为系统自由能变化; V为新相体积; Dgv是新相与母相的自由能差; s为新相、母相间单位面积界面能;
E为新相单位体积应变能
热处理原理及工艺第一章
上式中,DgvV项为体自由能差即相变的驱动力,当低于平衡转变温度 时为负值,sS和EV项为相变阻力。可见,只有当DgvV的绝对值大于后 两项的和时,才能使DG<0,即形核称为可能。 临界晶核的半径大小可由上式导出,为:
(五)形成过渡相
l 过渡相也称中间亚稳相,指成分或结构,或者成分 和结构二者都处于新相与母相之间的一种亚稳状态 的相;
l 形成过渡相是减少相比阻力的有效途径之一; l 过渡相在一定条件下仍然能转变成平衡相。
热处理原理及工艺第一章
三、固态相变时的形核
(一)均匀形核
与液态金属相比,固态相变的阻力增加了一项应变能。按照经典 形核理论,系统自由能总变化为:
(三)应变能
l 包括共格应变能与比容差应变能; l 共格界面的共格应变能最大,半共格界面次之,非共格界面能
最小; l 比容差应变能为新相与母相之间比容差,在相变时产生体积约
束而产生弹性应变能,与新相的几何形状有关。
热处理原理及工艺第一章
l 应变能与界面能的总和为固态相变的阻力。与液态金属结晶 过程相比,固态相变的阻力是很大的。
只有对称孪晶界才是理想的 共格界面。
两相点阵总是有一定差别, 或者是点阵结构不同,或者 点阵参数不同,因此两相界 面要完全共格,在界面附近 就必须产生弹性应变。
热处理原理及工艺第一章
弹性应变能的大小取决于两相界面上原子间距的相对差值, 即错配度: 显然,错配度越大,弹性应变能就越大。
热处理原理及工艺第一章
热处理原理及工艺第一章
2、惯习面
l 固态相变时,新相往往在母相一定的晶面族上形 成,这种晶面被称为惯习面,通常用母相的晶面 指数来表示。如马氏体总是在奥氏体的{111}面上 形成。
l 惯习面的存在意味着在该晶面上新相与母相的原 子排列很相近,能较好的匹配,有助于减少两相 之间的界面能。
热处理原理及工艺第一章
热处理原理及工艺第一章
(四)晶体缺陷的作用
l 固态金属中存在各种晶体缺陷如位错、晶界和亚晶界; l 晶体缺陷周围有晶格畸变,储存着畸变能,可在固态相变
时释放出来作为相变驱动力; l 新相往往在缺陷处优先形核,提高形核率; l 晶体缺陷对晶核的生长和组元的扩散过程也有促进作用。
热处理原理及工艺第一章
相关文档
最新文档