工程测量计算坐标

合集下载

工程测量中坐标方位角计算公式

工程测量中坐标方位角计算公式

工程测量中如何计算坐标方位角?
工程测量中坐标方位角计算是测量过程中非常重要的一项工作,
它不仅能够精确测算点位之间的距离和方向,还能够在工程项目中起
到指导作用。

那么,在实际操作中,我们应该如何计算坐标方位角呢?
首先,我们需要确定测量点位的基准点和目标点,并使用仪器进
行测量。

在取得测量数据之后,我们可以利用以下公式进行坐标方位
角的计算:
tanθ = (E2 - E1) / (N2 - N1),其中E1和E2为基准点和目标
点的东坐标,N1和N2为基准点和目标点的北坐标。

在进行计算时,需要注意以下几点:
1.计算中的角度应该以北为0度,逆时针旋转为正向。

2.坐标位置的表示需要考虑到坐标系的不同,因此应根据不同的
坐标系进行转换。

3.在测量时,应该尽可能使用高精度的仪器,减小误差的产生。

通过以上几点的注意事项,我们可以更加准确地进行坐标方位角
的计算,为工程项目的实施提供可靠的测量数据和指导意见。

工程测量坐标换算公式

工程测量坐标换算公式

工程测量坐标换算公式引言在工程测量中,坐标是表示地理位置或空间位置的重要参数。

然而,不同国家和地区可能使用不同的坐标系统和单位,因此在不同系统之间进行坐标换算是必不可少的。

本文将介绍几种常用的工程测量坐标换算公式,包括大地坐标和平面坐标之间的换算,以及坐标系转换的方法。

大地坐标与平面坐标的换算大地坐标是指基于地球椭球体的坐标系统,通常使用经度和纬度来表示一个地理位置。

而平面坐标是指基于平面坐标系的坐标系统,通常使用东坐标和北坐标来表示一个空间位置。

在工程测量中,我们常常需要在大地坐标和平面坐标之间进行转换。

下面介绍两种常用的坐标换算公式。

大地坐标转平面坐标大地坐标转平面坐标的公式可以通过坐标系统的参数计算得出。

其中,一个常用的公式是高斯投影公式。

该公式通过将地球椭球体投影到一个平面上,将经纬度转换为平面坐标。

高斯投影公式可以表示为:x = N * cos(B) * (L - L0)y = N * (Q + (1 + Q^2 + R^2) * tan^3(B)/6 + (5 - Q^2 + 9R^2 + 4R^4) * t an^7(B)/120)其中,x 和 y 分别是地理位置的平面坐标,B 是纬度,L 是经度,L0 是中央经线,N 是椭球体的半短轴,Q 是子午线的曲率半径,R 是卯酉圈的曲率半径。

平面坐标转大地坐标平面坐标转大地坐标的公式也可以通过坐标系统的参数计算得出。

一个常用的公式是反高斯投影公式。

该公式通过将平面坐标转换为地球椭球体上的经纬度。

反高斯投影公式可以表示为:B = Bf + (y/(A + Bf)) * [(1 - e^2/4 - 3e^4/64 - 5e^6/256) * sin(2Bf) + (3e^2/8 + 3e^4/32 + 45e^6/1024) * sin(4Bf) - (15e^4/256 + 45e^6/1024) * sin(6Bf) + (35e^6/3072) * sin(8Bf)]L = L0 + (x/N)其中,B 和 L 是地理位置的大地坐标,Bf 是纬度的初值,y 和 x 分别是平面坐标的坐标值,A 是椭球体的长半轴,e 是椭球体的第一偏心率,L0 是中央经线,N 是椭球体的半短轴。

工程测量计算坐标

工程测量计算坐标

知道方位角和距离怎么计算坐标设原点坐标为(x,y),那么计算坐标(x1,y1)为x1=x+s·cosθy1=y+s·sinθ其中θ为方位角,s为距离CAD里计算方位角和距离CAD默认的世界坐标系跟测量上用的坐标系是不同的。

世界坐标系中的X即测量坐标系中的Y,世界坐标系中的Y即测量坐标系中的X。

不知道你是不是要编程的方法或源程序?下面是在CAD下的常用操作方法:用命令id可以查看点的XYZ坐标例如:命令: '_id 指定点: X = 517.0964 Y = 431.1433 Z = 0.0000命令: ID 指定点: X = 879.0322 Y = 267.6949 Z = 0.0000用命令dist(快捷命令di)即可知道两点间的角度和距离例如:命令: '_dist 指定第一点: 指定第二点:距离 = 397.1308,XY 平面中的倾角 = 335d41'46.7",与 XY 平面的夹角 = 0d0'0.0"X 增量 = 361.9358, Y 增量 = -163.4483, Z 增量 = 0.0000其中的“XY 平面中的倾角= 335d41'46.7”是世界坐标系内的平面夹角,用450度减去这个值335d41'46.7"即是坐标方位角114°18′13.3〃。

你可以用计算器验算一下,点1、X = 431.1433,Y = 517.0964;点2、X = 267.6949,Y = 879.0322的坐标方位角和距离值是不是114°18′13.3〃和397.131m。

已知两坐标点求方位角和距离的计算公式如点A(X1,Y1 ) 点B(X2,Y2) A到B的方位角为:Tan(Y2-Y1)/(X2-X1)其中(X2-X1)>0时加360°,(X2-X1)<0时加180° 而距离就是((X2-X1)平方+(Y2-Y1)平方)最后开方得到的值即为A到B距离方位角坐标计算公式设角为x: tanx=a(对边Y1-Y2)/b(邻边X1-X2)=z,因为a,b,z可求出,利用三角函数tan可求出方位角x,谢谢采纳!追问能不能再说的清楚点回答问题是你学过三角函数吗?学了就很容易理解了,在三角形abc中,sinx=对边a/斜边c,cosx=邻边b/斜边c,tanx=对边a/邻边b,其中sinx,cosx,tanx是定值,可以在科学计算器中得到,如果还是不理解的话建议还是先看看这方面的知识吧,希望我的回答对你有所帮助!请问前辈,坐标反算中求方位角的计算公式已知A(X1,Y1)、B(X2,Y2)先求出AB的象限角:θ=arctan((Y2-Y1)/(X2-X1))再根据条件将象限角θ转换为方位角α:当X1-X2>0 , Y1-Y2>0,α=θ;当X1-X2<0 , Y1-Y2>0,α=θ+180°当X1-X2<0 , Y1-Y2<0,α=θ+180°当X1-X2>0 , Y1-Y2<0,α=θ+360°坐标正算编辑坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。

工程测量坐标增量计算公式

工程测量坐标增量计算公式

工程测量坐标增量计算公式引言在工程测量中,我们经常需要计算出物体的坐标增量。

坐标增量是指物体在两个不同时刻或不同位置的坐标之差。

它在工程测量中具有重要的应用,可以用于测量物体的位移、形变等重要参数。

本文将介绍工程测量中常用的坐标增量计算公式。

坐标增量计算公式1. 平面坐标增量计算公式若已知点P在两个不同时刻的坐标分别为P1(x1, y1)和P2(x2, y2),其中(x1,y1)为起始坐标,(x2, y2)为终止坐标,则平面坐标增量Δx和Δy的计算公式为:Δx = x2 - x1Δy = y2 - y12. 空间坐标增量计算公式若已知点P在两个不同时刻的坐标分别为P1(x1, y1, z1)和P2(x2, y2, z2),其中(x1, y1, z1)为起始坐标,(x2, y2, z2)为终止坐标,则空间坐标增量Δx、Δy和Δz的计算公式为:Δx = x2 - x1Δy = y2 - y1Δz = z2 - z13. 坐标增量的直角坐标变换公式在实际工程测量中,有时需要将坐标增量从一个坐标系转换到另一个坐标系。

设已知点P在坐标系A和坐标系B中的坐标分别为P_A(x_A, y_A, z_A)和P_B(x_B,y_B, z_B),其中P_A和P_B为相同点在不同坐标系下的表示,则可以通过坐标变换公式将P_A的坐标增量(Δx_A, Δy_A, Δz_A)转换为P_B的坐标增量(Δx_B, Δy_B, Δz_B):Δx_B = a11 * Δx_A + a12 * Δy_A + a13 * Δz_AΔy_B = a21 * Δx_A + a22 * Δy_A + a23 * Δz_AΔz_B = a31 * Δx_A + a32 * Δy_A + a33 * Δz_A其中a11、a12、a13、a21、a22、a23、a31、a32、a33为坐标系变换矩阵的元素。

应用实例1. 测量建筑物形变在工程建设中,为了确保建筑物的稳定性和安全性,需要对建筑物的形变进行监测。

工程测量坐标怎么算

工程测量坐标怎么算

工程测量坐标的计算方法在工程测量中,确定地物或工程物体的位置和坐标是非常重要的。

通过测量,我们可以确定物体在水平面和垂直面上的位置,计算出其准确的坐标。

本文将介绍工程测量中常用的坐标计算方法。

1. 水平方向坐标计算1.1 几何坐标法几何坐标法主要是通过测量物体在水平面上的距离和方向来确定其坐标。

这种方法适用于小范围测量,通常使用全站仪、经纬仪、电子测距仪等仪器进行测量。

具体步骤如下:1.设置测站:选择一个稳定的点作为测站,并用全站仪或经纬仪记录其坐标作为基准点。

2.目标测量:使用测量仪器测量目标物体与测站之间的水平距离和方向角。

3.计算坐标:根据基准点坐标和测量距离、方向角,利用三角函数计算目标物体的坐标。

1.2 平差计算法平差计算法是一种通过多个测量点之间的相互关系来计算坐标的方法。

该方法适用于大范围的测量,可以消除个别测量误差对结果的影响,提高计算的准确性。

具体步骤如下:1.设置基准点:选择一个已知坐标的点作为基准点。

2.进行测量:使用仪器对各个目标测点进行水平测量,得到其相对于基准点的距离和方向角。

3.建立观测方程:将各个目标测点与基准点之间的距离和方向角建立观测方程。

4.进行平差计算:通过最小二乘法或最小二乘平差法对观测方程进行计算,得到各个目标测点的坐标。

2. 垂直方向坐标计算垂直方向的坐标计算主要是确定物体在垂直方向上的高程。

常用的计算方法有如下两种:2.1 水平法加测高法在这种方法中,首先测量目标物体与基准点的水平距离和方向角,然后测量目标物体的高程差。

通过这些测量数据,可以计算出目标物体的高程。

具体步骤如下:1.设置基准点:选择一个已知高程的点作为基准点。

2.进行水平测量:使用测量仪器测量目标物体与基准点之间的水平距离和方向角。

3.测量高程差:使用水准仪等仪器测量目标物体的高程差。

4.计算目标物体的高程:根据基准点的高程和水平距离、方向角、高程差,利用三角函数计算出目标物体的高程。

工程测量:坐标正反算

工程测量:坐标正反算
然后代入公式,求出直线另一端点B的坐标:
=+Δ=1376.00−57.69=1318.31
=+Δ=748.00+52.86=800.86
坐标反算
02
二、坐标反算
坐标反算,就是根据直线两个端点的已知坐标,计算直线的水平距离D和坐
标方位角α。
X

X
B

X

A
B

Δ = −
= + Δ
= + Δ
思考
坐标正算和坐标反算的适用情形?
谢谢观看
T
H
A
N
K
Y
O
U
已知直线AB的水平距离为78.25m,坐标方位角为137°30′00″,其中一个端点A的坐标
为(1376.00,748.00),求直线另一个端点B的坐标(、)。
解:先求出直线AB的坐标增量
Δ=·cos=78.25×cos137°30′00″= −57.69
Δ=·sin=78.25×sin137°30′00″=52.86
《工程测量》
坐标正反算
目录
01
02
坐标正算
坐标反算
坐标正算
01
一、坐标正算
坐标正算,就是根据直线的起点坐标、水平距离和坐标方位角,计算直线
另一个端点的坐标。
X

X
B

X

A
B

A
Y
Y
A
B
Y
一、坐标正算
(一)坐标正算原理
如图所示,已知直线AB的一个端点A的坐标为(、),水平距离、坐标方位
A
Y
Y

工程测量坐标正反算公式

工程测量坐标正反算公式

工程测量坐标正反算公式工程测量坐标正反算公式是指基于已知控制点坐标和测量仪器测量数据,通过计算获得被测物体或地形的坐标点。

在这个过程中,正算指的是从控制点计算被测点坐标的过程,而反算则是从已知被测点坐标计算控制点坐标的过程。

在本文中,我将详细介绍工程测量坐标正反算公式的原理和实际应用场景。

一、工程测量坐标正反算公式原理工程测量坐标正反算公式的原理主要是基于三角测量和距离测量原理。

三角测量法利用三角形的几何关系,通过测量三角形内角或边长,计算出三角形的各个顶点坐标。

而距离测量法则是通过测量被测物体或地形与仪器的距离,然后利用三角函数计算出被测物体或地形的坐标。

在实际工作中,测量仪器主要有全站仪、经纬仪、水准仪和电子测距仪等。

全站仪是一种常用的测量仪器,它可以测量水平角、垂直角和斜距,并输出相应的坐标值。

而经纬仪则是一种测量方位角和高度差的仪器,它常用于野外导线路线测量;水准仪则用于测量高差,电子测距仪则用于测量地形点到仪器的直线距离。

在进行工程测量坐标正反算时,需要先确定控制点坐标。

控制点分为基准控制点和工作控制点,基准控制点是指通过已知的测量结果或GPS测量等方式已知其坐标的点,而工作控制点则是在进行实测工作时测量得到的坐标点。

基准控制点与工作控制点之间的坐标关系构成了控制网络,该网络是工程测量的基础。

对于工程测量坐标正算来说,可以利用如下公式计算:X = XC + D × cos(V)Y = YC + D × sin(V) × cos(H)Z = ZC + D × sin(V) × sin(H) + hX、Y、Z为被测点的坐标;XC、YC、ZC为控制点的坐标;D为控制点与被测点的距离;V为控制点与被测点之间的垂直角;H为控制点与被测点之间的水平角;h为控制点与被测点之间的高差。

该公式利用三角函数计算出被测点的坐标,精度高且适用于不同的测量场景。

工程测量坐标计算公式

工程测量坐标计算公式

工程测量坐标计算公式在工程测量中,坐标计算是一项核心任务。

通过测量仪器和先进的计算方法,可以准确测算出各点的坐标值,为工程设计和施工提供重要的数据支持。

1. 三角测量法三角测量法是工程测量中常用的一种测量方法。

它基于三角形的几何性质,通过测量已知边长和夹角,计算出未知边长和角度,并进而确定点的坐标。

三角测量法中常用的计算公式有以下几种:1.1 正弦定理正弦定理用于计算三角形的边长和角度关系。

对于任意三角形ABC,已知边长a、b和夹角C,可以通过以下公式计算出夹角A和B的正弦值:sinA / a = sinB / b = sinC / c1.2 余弦定理余弦定理用于计算三角形的边长和角度关系。

对于任意三角形ABC,已知边长a、b和夹角C,可以通过以下公式计算出夹角A和B的余弦值:cosC = (a^2 + b^2 - c^2) / (2ab)1.3 正切定理正切定理用于计算三角形的角度关系。

对于任意三角形ABC,已知边长a、b 和夹角C,可以通过以下公式计算出夹角A和B的正切值:tanA = (b * sinC) / (a - b * cosC)2. 直角坐标系转换在工程测量中,常常需要将已知点的直角坐标系转换到其他坐标系。

以下是常见的坐标系转换公式:2.1 极坐标系转直角坐标系对于平面上的点P,已知其极径r和极角θ,可以通过以下公式计算其在直角坐标系下的坐标(x,y):x = r * cosθy = r * sinθ2.2 直角坐标系转极坐标系对于平面上的点P,已知其直角坐标(x,y),可以通过以下公式计算其在极坐标系下的坐标(r,θ):r = √(x^2 + y^2)θ = atan2(y, x)其中,atan2函数是一个带有两个参数的反正切函数,可以避免参数带来的符号问题。

3. 平面直角坐标系旋转在工程测量中,有时需要将已知点的坐标系进行旋转。

以下是平面直角坐标系绕原点逆时针旋转α度后的旋转公式:x' = x * cosα - y * sinαy' = x * sinα + y * cosα其中,(x,y)是原坐标系下的点坐标,(x’,y’)是旋转后的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程测量计算坐标
知道方位角与距离怎么计算坐标
设原点坐标为(x,y),那么计算坐标(x1,y1)为
x1=x+s • cos 0
y1=y+s • sin 0
其中0为方位角,s为距离
CAD里计算方位角与距离
CAD默认的世界坐标系跟测量上用的坐标系就是不同的。

世界坐标系中的X即测量坐标系中的Y,世界坐标系中的Y即测量坐标系中的X。

不知道您就是不就是要编程的方法或源程序?下面就是在CAD下的常用操作方法:
用命令id可以查瞧点的XYZ坐标
例如:
命令:'_id 指定点:X = 517、0964 Y = 431、1433 Z = 0、0000
命令:ID 指定点:X = 879、0322 Y = 267、6949 Z = 0、0000
用命令dist(快捷命令di)即可知道两点间的角度与距离
例如:
命令:'_dist指定第一点:指定第二点:
距离=397、1308,XY 平面中的倾角=335d41'46、7",与XY 平面的夹角=0d0'0、0"
X 增量=361、9358, Y 增量=-163、4483, Z 增量=0、0000
其中的“XY平面中的倾角=335d41'46、7”就是世界坐标系内的平面夹角,用450度减去这个值335d41'46、7"即就是坐标方位角114° 18' 13 3 〃。

您可以用计算器验算一下,点1、X = 431、1433,Y = 517、0964;点2、X = 267、6949,Y = 879、
0322的坐标方位角与距离值就是不就是114° 18' 133 〃与397、131m。

已知两坐标点求方位角与距离的计算公式
如点A(X1,Y1 ) 点B(X2,Y2) A 到B 的方位角为:Tan(Y2-Y1)/(X2-X1) 其中
(X2-X1)>0 时加360° ,(X2-X1)<0 时加180°
而距离就就是((X2-X1)平方+(Y2-Y1)平方)最后开方得到的值即为A到B距离
方位角坐标计算公式
工程测量计算坐标
设角为: x: tanx=a(对边Y1-Y2)/b(邻边X1-X2)=z,因为a,b,z可求出,利用三角函数tan
可求出方位角X,谢谢采纳!
追问
能不能再说的清楚点
回答
问题就是您学过三角函数不?学了就很容易理解了,在三角形abc中,sinx =对边a/斜边c,cosx=邻边b/斜边c,tanx=对边a/邻边b,其中sinx,cosx,t
anx就是定值,可以在科学计算器中得到,如果还就是不理解的话建议还就
是先瞧瞧这方面的知识吧,希望我的回答对您有所帮助!
请问前辈,坐标反算中求方位角的计算公式
已知 A(X1,Y1)、B(X2,Y2)
先求出AB的象限角:
9 =arcta n((Y2-Y1)/(X2-X1))
再根据条件将象限角9转换为方位角a:
当 X1-X2>0 , Y1- Y2>0, a=9;
当 X1-X2<0 , Y1- Y2>0, a= 9 +180°
当 X1-X2<0 , Y1- Y2<0, a= 9 +180°
当 X1-X2>0 , Y1- Y2<0, a= 9 +360°
坐标正算
编辑坐标正算,就就是根据直线的边长、坐标方位角与一个端点的坐标,计算直线另一个端点
的坐标的工作。

计算实例:
实例1,设直线AB的边长DAB与一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为:
XB=XA+X XAB (5 、1)
YB=YA+X YAB (5 、2)
式中,△ XAB △ YAB称为坐标增量,也就就是直线两端点A、B的坐标值之差。

由图5、3中,根据三角函数,可写出坐标增量的计算公式为:
△XAB=DAB COS a AB (5、3)
△YAB=DAB sin a AB (5 4)
式中AX、AY的符号取决于方位角a所在的象限。

实例2、已知直线B1的边长为125、36m,坐标方位角为211° 07' 53 ,其中一个端点
B的坐标为(1536、86 ,837、54),求直线另一个端点1的坐标X1,Y1。

解:先代入公式(5、3)、(5、4),求出直线B1的坐标增量:
工程测量计算坐标
△XB1=DB1- Cos a B1=125、36 X cos211 ° 07' 〃芋—107、31m
△YB1=DB1- sin a B仁125 36X sin211 ° 07'〃5〃= —64、81m
然后代入公式(5、1)、(5、2),求出直线另一端点1的坐标:
X1=XB+A XB1=1536、86 — 107、31=1429、55m
丫仁YB+A YB1=837、54 —64、8仁772、73m
坐标增量计算也常使用小型计算器计算,而且非常简单。

如使用fx140等类型的计算器可使用功能转换键INV与极坐标与直角坐标换算键P^R以及x—y键。

按键顺序为:
D INV P T R a =显示△ X X<--> y 显示AY。

如上例,按125、36 INV P T R 211° 07' 5〃=显示一107.31( △ XB1);
按x --> y 显示一64、81( △ YB1)
坐标正算与坐标反算
根据直线的起点与终点的坐标,计算直线的水平距离与坐标方位角的过程叫坐标反算根据直线的起点坐标、直线的水平距离以及坐标方位角来计算终点的坐标的过程叫坐标正算。

相关文档
最新文档