工程测量坐标计算..
建筑工程坐标计算方法

用命令id可以查看点的XYZ坐标 例如:
命令: '_id 指定点: X = 517.0964 Y = 431.1433 Z = 0.0000
命令: ID 指定点: X = 879.0322 Y = 267.6949 Z = 0.0000
用命令dist(快捷命令di)即可知道两点间的角度和距离 例如:
命令: '_dist 指定第一点: 指定第二点:
距离 = 397.1308,XY 平面中的倾角 = 335d41'46.7", 与 XY 平面的夹角 = 0d0'0.0" X 增量 = 361.9358, Y 增量 = -163.4483, Z 增量 = 0.0000
其中的“XY 平面中的倾角 = 335d41'46.7”是世界坐标系内的平面夹角,用450度减去这个值335d41'46.7"即是坐标方位角114°18′13.3〃。
建筑工程测量坐标计算方法:
设原点坐标为(x,y),那么计算坐标(x1ቤተ መጻሕፍቲ ባይዱy1)为 x1=x+s·cosθ y1=y+s·sinθ
其中θ为方位角,s为距离
CAD里计算方位角和距离:CAD默认的世界坐标系跟测量上用的坐标系是不同的。世界坐标系中的X即测量坐标系中的Y,世界坐标系中的Y即测量坐标系中的X。
工程测量坐标增量计算公式

工程测量坐标增量计算公式引言在工程测量中,我们经常需要计算出物体的坐标增量。
坐标增量是指物体在两个不同时刻或不同位置的坐标之差。
它在工程测量中具有重要的应用,可以用于测量物体的位移、形变等重要参数。
本文将介绍工程测量中常用的坐标增量计算公式。
坐标增量计算公式1. 平面坐标增量计算公式若已知点P在两个不同时刻的坐标分别为P1(x1, y1)和P2(x2, y2),其中(x1,y1)为起始坐标,(x2, y2)为终止坐标,则平面坐标增量Δx和Δy的计算公式为:Δx = x2 - x1Δy = y2 - y12. 空间坐标增量计算公式若已知点P在两个不同时刻的坐标分别为P1(x1, y1, z1)和P2(x2, y2, z2),其中(x1, y1, z1)为起始坐标,(x2, y2, z2)为终止坐标,则空间坐标增量Δx、Δy和Δz的计算公式为:Δx = x2 - x1Δy = y2 - y1Δz = z2 - z13. 坐标增量的直角坐标变换公式在实际工程测量中,有时需要将坐标增量从一个坐标系转换到另一个坐标系。
设已知点P在坐标系A和坐标系B中的坐标分别为P_A(x_A, y_A, z_A)和P_B(x_B,y_B, z_B),其中P_A和P_B为相同点在不同坐标系下的表示,则可以通过坐标变换公式将P_A的坐标增量(Δx_A, Δy_A, Δz_A)转换为P_B的坐标增量(Δx_B, Δy_B, Δz_B):Δx_B = a11 * Δx_A + a12 * Δy_A + a13 * Δz_AΔy_B = a21 * Δx_A + a22 * Δy_A + a23 * Δz_AΔz_B = a31 * Δx_A + a32 * Δy_A + a33 * Δz_A其中a11、a12、a13、a21、a22、a23、a31、a32、a33为坐标系变换矩阵的元素。
应用实例1. 测量建筑物形变在工程建设中,为了确保建筑物的稳定性和安全性,需要对建筑物的形变进行监测。
工程测量坐标怎么算

工程测量坐标的计算方法在工程测量中,确定地物或工程物体的位置和坐标是非常重要的。
通过测量,我们可以确定物体在水平面和垂直面上的位置,计算出其准确的坐标。
本文将介绍工程测量中常用的坐标计算方法。
1. 水平方向坐标计算1.1 几何坐标法几何坐标法主要是通过测量物体在水平面上的距离和方向来确定其坐标。
这种方法适用于小范围测量,通常使用全站仪、经纬仪、电子测距仪等仪器进行测量。
具体步骤如下:1.设置测站:选择一个稳定的点作为测站,并用全站仪或经纬仪记录其坐标作为基准点。
2.目标测量:使用测量仪器测量目标物体与测站之间的水平距离和方向角。
3.计算坐标:根据基准点坐标和测量距离、方向角,利用三角函数计算目标物体的坐标。
1.2 平差计算法平差计算法是一种通过多个测量点之间的相互关系来计算坐标的方法。
该方法适用于大范围的测量,可以消除个别测量误差对结果的影响,提高计算的准确性。
具体步骤如下:1.设置基准点:选择一个已知坐标的点作为基准点。
2.进行测量:使用仪器对各个目标测点进行水平测量,得到其相对于基准点的距离和方向角。
3.建立观测方程:将各个目标测点与基准点之间的距离和方向角建立观测方程。
4.进行平差计算:通过最小二乘法或最小二乘平差法对观测方程进行计算,得到各个目标测点的坐标。
2. 垂直方向坐标计算垂直方向的坐标计算主要是确定物体在垂直方向上的高程。
常用的计算方法有如下两种:2.1 水平法加测高法在这种方法中,首先测量目标物体与基准点的水平距离和方向角,然后测量目标物体的高程差。
通过这些测量数据,可以计算出目标物体的高程。
具体步骤如下:1.设置基准点:选择一个已知高程的点作为基准点。
2.进行水平测量:使用测量仪器测量目标物体与基准点之间的水平距离和方向角。
3.测量高程差:使用水准仪等仪器测量目标物体的高程差。
4.计算目标物体的高程:根据基准点的高程和水平距离、方向角、高程差,利用三角函数计算出目标物体的高程。
测量坐标计算公式是什么

测量坐标计算公式是什么1. 引言在测量和定位领域,测量坐标计算公式是一种用于推导或计算物体在空间中的位置坐标的数学公式。
通过测量坐标计算公式,我们可以确定物体在三维空间中的位置,实现精确的定位和导航。
2. 二维坐标计算公式在二维平面坐标系中,我们通常使用直角坐标系表示一个点的位置。
假设我们有一个点P,其坐标为(x, y),其中x表示点P在x轴上的位置,y表示点P在y轴上的位置。
在二维坐标系中,我们可以使用以下公式计算点P的位置:•距离公式:假设点P的坐标为(x1, y1),点Q的坐标为(x2, y2),两点之间的距离可以通过以下公式计算:距离公式距离公式•中点公式:假设点P的坐标为(x1, y1),点Q的坐标为(x2, y2),点M 为P和Q的中点,其坐标可以通过以下公式计算:中点公式中点公式•勾股定理:假设点P的坐标为(x1, y1),点Q的坐标为(x2, y2),两点之间的距离可以通过勾股定理计算:勾股定理勾股定理3. 三维坐标计算公式在三维空间中,我们可以使用笛卡尔坐标系表示一个点的位置。
假设我们有一个点P,其坐标为(x, y, z),其中x表示点P在x轴上的位置,y表示点P在y轴上的位置,z表示点P在z轴上的位置。
在三维坐标系中,我们可以使用以下公式计算点P的位置:•距离公式:假设点P的坐标为(x1, y1, z1),点Q的坐标为(x2, y2, z2),两点之间的距离可以通过以下公式计算:距离公式距离公式•中点公式:假设点P的坐标为(x1, y1, z1),点Q的坐标为(x2, y2, z2),点M为P和Q的中点,其坐标可以通过以下公式计算:中点公式中点公式•线段相交公式:假设点P的坐标为(x1, y1, z1),点Q的坐标为(x2, y2, z2),线段AB的起始点为A,终止点为B,我们可以使用以下公式判断线段AB是否与平面PQ相交:线段相交公式线段相交公式4. 应用举例测量坐标计算公式在实际应用中具有广泛的应用。
工程测量坐标正反算公式

工程测量坐标正反算公式工程测量坐标正反算公式是指基于已知控制点坐标和测量仪器测量数据,通过计算获得被测物体或地形的坐标点。
在这个过程中,正算指的是从控制点计算被测点坐标的过程,而反算则是从已知被测点坐标计算控制点坐标的过程。
在本文中,我将详细介绍工程测量坐标正反算公式的原理和实际应用场景。
一、工程测量坐标正反算公式原理工程测量坐标正反算公式的原理主要是基于三角测量和距离测量原理。
三角测量法利用三角形的几何关系,通过测量三角形内角或边长,计算出三角形的各个顶点坐标。
而距离测量法则是通过测量被测物体或地形与仪器的距离,然后利用三角函数计算出被测物体或地形的坐标。
在实际工作中,测量仪器主要有全站仪、经纬仪、水准仪和电子测距仪等。
全站仪是一种常用的测量仪器,它可以测量水平角、垂直角和斜距,并输出相应的坐标值。
而经纬仪则是一种测量方位角和高度差的仪器,它常用于野外导线路线测量;水准仪则用于测量高差,电子测距仪则用于测量地形点到仪器的直线距离。
在进行工程测量坐标正反算时,需要先确定控制点坐标。
控制点分为基准控制点和工作控制点,基准控制点是指通过已知的测量结果或GPS测量等方式已知其坐标的点,而工作控制点则是在进行实测工作时测量得到的坐标点。
基准控制点与工作控制点之间的坐标关系构成了控制网络,该网络是工程测量的基础。
对于工程测量坐标正算来说,可以利用如下公式计算:X = XC + D × cos(V)Y = YC + D × sin(V) × cos(H)Z = ZC + D × sin(V) × sin(H) + hX、Y、Z为被测点的坐标;XC、YC、ZC为控制点的坐标;D为控制点与被测点的距离;V为控制点与被测点之间的垂直角;H为控制点与被测点之间的水平角;h为控制点与被测点之间的高差。
该公式利用三角函数计算出被测点的坐标,精度高且适用于不同的测量场景。
工程测量技术培训(坐标计算)

待求:A
B的方位角 AB ,
间距DAB
DAB (xBxA)2(yByA)2 AB ta1n(yByA)(xBxA)
坐标的递推公式
xi xi1xi xi1si cosi)( yi yi1yi yi1si sini)(
累加后可得
i
xi X A
sk cos( k )
k 1
i
yi YA
式中 l = | Li- L0 |
四、曲线桥梁布置及坐标计算 4.1梁的布置 设在曲线上的钢筋混凝土简支梁式桥,每孔 梁仍是直的,于是各孔梁中线的连接线成为 折线,以适应梁上曲线线路之需要。但若按 图1 所示布置,使线路中线与梁的中线在梁 端相交,则由图可以看出,线路中线总是偏 在梁跨中线的外侧,当列车过桥时,外侧那
T=Rtgα/2
⑵
因为α很小,故 tgα/2=α/2=1/2(i1-i
2),所以 T=1/2 R(i1-i2)=R/2 Δi ⒉竖曲线长度 L
由于曲折角α很小,所以 L≈2T ⑶ ⒊竖曲线上各点高程及外矢距 E 由于α很小,故可以认为曲线上各点的 y 坐标方向与半径方向一 致,也认为它是切
线上与曲线上的高程差。从而得 (R+y)2=R^2+x^2 故 2Ry=x^2-y^2 又 y^2 与 x^2 相比较,其值甚微,可略去 不计。故有 2Ry=x^2 ,所以
五、竖曲线计算 5.1基本概念 线路纵断面是由许多不同坡度的坡段连接成的,为了缓和坡度在变坡点处的急剧 变化,使列车能平稳通过,在坡段间设臵曲线连接, 这种连接不同坡段的曲线 称为竖曲线。坡度变化之点称为变坡点。 竖曲线有凸形与凹形两种。顶点在曲线之上者为凸形竖曲线;反之称为凹形竖曲 线。连接两相邻坡度线的竖曲线,可以用圆曲线,也 可以用抛物线。目前,我 国铁路上多采用圆曲线连接。 5.2 竖曲线的测设(圆曲线) 如图 1,竖曲线与平面曲线一样,首先要进行曲线要素的计算。 由于允许坡度 的数值不大,纵断面上的曲折角α可以认为 α=Δi=i1-i2 ⑴,式中,i1、i2 为两相邻的纵向坡度值; Δi为变坡点的坡 度代数差。 曲线要素除了半径 R 及纵向转折角α外,还有: ⒈竖曲线切线长度 T
工程测量坐标计算公式

工程测量坐标计算公式在工程测量中,坐标计算是一项核心任务。
通过测量仪器和先进的计算方法,可以准确测算出各点的坐标值,为工程设计和施工提供重要的数据支持。
1. 三角测量法三角测量法是工程测量中常用的一种测量方法。
它基于三角形的几何性质,通过测量已知边长和夹角,计算出未知边长和角度,并进而确定点的坐标。
三角测量法中常用的计算公式有以下几种:1.1 正弦定理正弦定理用于计算三角形的边长和角度关系。
对于任意三角形ABC,已知边长a、b和夹角C,可以通过以下公式计算出夹角A和B的正弦值:sinA / a = sinB / b = sinC / c1.2 余弦定理余弦定理用于计算三角形的边长和角度关系。
对于任意三角形ABC,已知边长a、b和夹角C,可以通过以下公式计算出夹角A和B的余弦值:cosC = (a^2 + b^2 - c^2) / (2ab)1.3 正切定理正切定理用于计算三角形的角度关系。
对于任意三角形ABC,已知边长a、b 和夹角C,可以通过以下公式计算出夹角A和B的正切值:tanA = (b * sinC) / (a - b * cosC)2. 直角坐标系转换在工程测量中,常常需要将已知点的直角坐标系转换到其他坐标系。
以下是常见的坐标系转换公式:2.1 极坐标系转直角坐标系对于平面上的点P,已知其极径r和极角θ,可以通过以下公式计算其在直角坐标系下的坐标(x,y):x = r * cosθy = r * sinθ2.2 直角坐标系转极坐标系对于平面上的点P,已知其直角坐标(x,y),可以通过以下公式计算其在极坐标系下的坐标(r,θ):r = √(x^2 + y^2)θ = atan2(y, x)其中,atan2函数是一个带有两个参数的反正切函数,可以避免参数带来的符号问题。
3. 平面直角坐标系旋转在工程测量中,有时需要将已知点的坐标系进行旋转。
以下是平面直角坐标系绕原点逆时针旋转α度后的旋转公式:x' = x * cosα - y * sinαy' = x * sinα + y * cosα其中,(x,y)是原坐标系下的点坐标,(x’,y’)是旋转后的坐标。
《工程施工测量》坐标计算

《工程施工测量》坐标计算工程施工测量是指在工程建设过程中对各种位置、尺寸、高程等进行测量和计算的工作。
其中,坐标计算是测量工作的重要内容之一、坐标计算旨在确定一些点的平面坐标或者空间坐标,并利用这些坐标进行工程设计、施工和验收等工作。
坐标计算的基本原理是通过测量获取各点的坐标数据,然后利用计算方法进行数学计算得出点的坐标。
常见的坐标计算方法有平差计算法、微分计算法和三角计算法。
平差计算法是通过观测数据的处理求解出未知点的坐标。
其基本思想是根据观测数据建立相关方程组,并通过最小二乘法求解。
平差计算法通常包括三个步骤:建立方程、求解方程组和检查与分析。
建立方程时,需要根据观测数据的类型确定方程的形式,如平面坐标观测通常采用距离方程,而空间坐标观测通常采用坐标方程。
求解方程组时,可以采用高斯消元法、逆平差法等方法进行计算。
检查与分析时,需要对计算结果进行检查,判断计算精度是否符合要求,并对计算误差进行分析。
微分计算法是通过已知点的坐标和测量数据,在测区域内进行坐标计算的方法。
其基本思想是通过观测数据的微分运算,计算出所需的未知点的坐标。
微分计算法通常包括两个步骤:设定原点和计算坐标。
设定原点是确定测区域中的一个已知点作为空间原点,然后在该点建立一套坐标系。
计算坐标时,通过测量数据的微分运算,计算出未知点的坐标。
具体的计算方法有高程分布的微分计算、立体观测的微分计算和等值线的微分计算等。
三角计算法是通过测量三角形的边长和角度来计算点的坐标。
其基本思想是根据三角函数的相关定理和公式,利用测量数据求解未知点的坐标。
三角计算法通常包括两个步骤:测量三角形和计算坐标。
测量三角形时,通过测量三角形的边长和角度,来获取所需的观测数据。
计算坐标时,利用测量数据和三角函数的关系,通过计算公式来求解未知点的坐标。
常用的三角计算法有正弦定理、余弦定理和正切定理等。
坐标计算在工程施工测量中具有重要的作用。
它可以提供工程设计和施工中所需的位置、尺寸和高程等参数,为工程建设提供基础数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D1
i
D2
实际道路如右图: 切线方位角=起始方位角а 0+切线角β 同样的:左减右加! 所以左边的方位角为:а -90;右边的方位角为:а +90。
左边: DX1=X1+D1×Cos(а -90)
DY1=Y1+D1×Sin(а -90) ; 右边: DX2=X1+D2×Cos(а +90) DY1=Y1+D2×Sin(а +90) 。 (此处的а 为切线方位角)
路桥路线逐桩目:安徽路桥高铁路三标
路线分为:直线段、缓和曲线段、圆曲线段
1、直线段:略
2、缓和曲线(回旋线)段指的是平面线形中,在直线与圆曲线,圆曲线与圆曲线之间设置的 曲率连续变化的曲线。
缓和曲线段作用:
1 )便于驾驶员操纵方向盘
2 )乘客的舒适与稳定,减小离心力变化 4 )与圆曲线配合得当,增加线形美观
а
X1=X0+(K1-K0)*Cosа
Y1=Y0+(K1-K0)*Sinа X2=X0+(K2-K0)*Cosа Y2=Y0+(K2-K0)*Sinа
Z1
实际道路如右图:
Z2
D1
A1
D
2
1、左减右加! 所以左边的方位角为:а -90;右边的方位角为:а +90。
左边: DX1=X1+Z1×Cos(а -90)
及此点的偏角为δ 1=β 1/3=2.16689 计算方位角 :а 1=а (起始方位角 )+δ 1=86.0566667+2.16689=88.223560 L5
i
此点到起始点的直距为 S1=L1- 90 R 2 L2
=34.98497279
所以此点的坐标为 X1=X0+S1×Cosа 1=3519933.746 Y1=Y0+S1×Sinа 1= 526152.377
B A2 A1
X1, ,Y1
4、直线段的起始方位角=计算方位角=切线方位角
....
X2 ,,Y2
XN,YN
A X0 ,Y0
例如:某直线段AB(如上图),已知起点A的里程桩号K0和坐标(X0,Y0),终点B的里程 桩号KN和坐标(XN,YN)。以及起始方位角а ,计算AB段上的任意一点桩号的坐标 (如A1,A2)?
ZY+切线角θ i
D1
D2
(此处的а 为切线方位角)
实例:高铁路三标的E匝道
E匝道线形单元要素表 单 元 序 号 1 2 单 元 起始 类 点 别 半径 直 线 回 旋 线 圆 曲 单元要素值
终点 长度 半径 (米) (米)
无穷 大 364.99 5
线形单元位置 起点 终点 Y
25753.278
(米)
3 )满足超高、加宽缓和段的过渡,利于平稳行车 3、圆曲线段指的是道路平面走向改变方向或竖向改变坡度时所设置的连接两相邻直线段的圆 弧形曲线。
一、直线段的逐桩坐标计算
1、一般图纸上会给出起始点的桩号和坐标以及终点的桩号和坐标,起始方位角。 2、直线段的起始方位角 = 终点方位角。 3、直线段的里程 = 直距。
、切线角:β i=Li2×180/2RLπ 、 缓和曲线上任意点i的偏角: δ i=β i/3 、缓和曲线ZH点到任意点i的方位角(计算方 位角)为:
а i=а
(起始方位角)+δ
L 90 R L2
5 i 2
i
、直距Si=Li-
所以缓和曲线上任意点i的坐标为:
Xi=X0+Si×Cosа Yi=Y0+Si×Sinа
无穷大
桩号
E0+00.000
坐标 X
19907.561
走向方 位角
桩号
E3+64.995
坐标 X
19932.662
Y
26117.408
走向方 位角
86O3'24''
86O3'24''
无穷大
120
45
E3+64.995
19932.662
26117.408
86O3'24''
E4+09.995
19932.947
④、圆曲线ZY点到任一点i的弦长的方位角(计算方位角):а
i=а YZ+Δ i
⑤、所以圆曲线上任意点i的坐标为: Xi=XZY+Ci×Cosа
i i
Yi=YZY+Ci×Sinа
实际道路如右图:
切线方位角=起始方位角а 同样的:左减右加! 所以左边的方位角为:а -90;右边的方位角为:а +90。 左边: 右边: DX1=X1+D1×Cos(а -90) DY1=Y1+D1×Sin(а -90) ; DX2=X1+D2×Cos(а +90) DY1=Y1+D2×Sin(а +90) 。
例2:求缓和曲线段E3+64.995到E4+09.995这段上的任意一点的坐标?如E4+00.000点的坐标? 解:此点到起始点的里程L1=400-364.995=35.005m 由单元要素表可知此段曲线上的R=120m,L=45m; 切线角:β i=Li2×180/2RLπ
所以此点的切线角β 1=L12×180/2RLπ =(35.005)2*180/2*120*45*π =6.50007
解:先将方位角(X0 Y' Z'')化为角度(X+Y/60+Z/3600)0, 再将其化为弧度, 弧度=角度/180×π 。 XN=X0+(KN-K0)*Cosа
B L A
, 。(此处的а 为计算方位角)
1
YN=Y0+(KN-K0)*Sinа
L= KN-K0 所以:AB直线段上的任意一点的桩号坐标都可以求出, 如 A1(X1,Y1)、A2(X2,Y2)
三、圆曲线段的逐桩坐标计算
1、图纸一般会给出此段圆曲线段的半径(R)、 长度(L)、起始点的桩号和坐标以及终点的桩 号和坐标,起始方位角,终点方位角。
例如:某圆曲线段ZY/YZ段(如右图1),已知此 段圆曲线的起始点的桩号及坐标和终点的桩号 及坐标,半径R,长度L,求此圆曲线段上任一 点桩号的坐标?
26162.337
96O47'58''
3
120
120
109.51 9
E4+09.995
19932.947
26162.337
96O47'58''
E5+19.514
19875.432
26251.088
149O5'28''
例1:求直线段E0+00.000到E3+64.995这段的任意一点的坐标?如E1+00.000和E2+50.000的坐标。
解:任取圆曲线的一段圆弧(如右图2), ①、圆曲线上任一点i相对应的圆心角(即切线角):
Li θ i= R 式中:Li——圆曲线上任一点i离开ZY的弧长(即i 点桩号-起始点ZY的桩号) 180
o
(1)
②、圆曲线起始点ZY点到任一点i的偏角:
90 Δ i=θ i/2=
o
R
Li
③、圆曲线ZY点到任一点i的弦长(直距):Ci=2R*SinΔ i
DY1=Y1+Z1×Sin(а -90) ;
右边: DX2=X1+Z2×Cos(а +90) DY1=Y1+Z2×Sin(а +90) 。 (此处的а 为切线方位角)
二、缓和曲线(回旋线)段的逐桩坐标计算
1、图纸上会给出此段曲线的半径(R)、长度 (L)、起始点的桩号和坐标以及终点的桩号 和坐标,起始方位角,终点方位角。
解:由表格可知方位角为 86O3'24''=86+3/60+24/3600=86.05666670
E1+00.000处的坐标为 X1=X0+L1*Cosа =19907.561+100*Cos(86.056667)=3519914.438 Y1=Y0+L1*Sinа =25753.278+100*Sin(86.056667)=525853.041 由此可知直线段上的任意一点。