菲涅耳衍射仿真

合集下载

基于MATLAB的夫琅和费衍射实验的计算机仿真

基于MATLAB的夫琅和费衍射实验的计算机仿真
学 物 理 实 验 .0 2r)6 —6 2 0 : 46 . 4
式 中 J x是 一 阶 贝塞 尔 函 数 , 拟 时 令 f l h 6 0m, ,) ( 模 = m,= 0 n
a 0O 1 利用 MAT A = .0 m, L B编程 , 程序运行完毕后 , 依次得到 以 下图形 7 。圆孔衍射和矩孔衍射的三维 图形基本相 同, 二维 图
平 面 上 会 聚 点 Q(,) xy 的和 振 动 的 相 对 强 度 为 : I I u) Sl ) ( Q) ds (lP m r


() 1
于学生的理解 。同时通过 多种元 件的夫琅和费衍射 计算机仿
真, 能够动态直观地呈现光学衍射 中各种物 理量之间 的关 系,
有利于大学物理实验中光学部分教学的开展 。因此 , 我们应 当 充分利用计算机软件功 能为教学增添活力 ,为 学生理解复杂
Z agZ i n S uig J n e gh n YagK n L ne g Yag njn h n hf g uY l i g n cu n u iu f n gu e n a F J n Ho
(】潘 柏 根 , 施群 , 志 建 . 于 V +的 夫 琅 和 费 衍 射 仿 真 [] 5 金 刘 基 c+ J.
仪 器 仪表 用 户 ,0 O4: 66 . 2 l()6 —9
[]夏 静 , 6 陆训 毅 , 德 君 . 杨 圆孔 、 方 孔 和 双 矩 孔 夫琅 和 赞 衍 射 的
I tr ̄inN nfr n e n nen o Co ee c o M e s rn Te h lg a d M e h to is a ui g c noo y n c ar nc
Au o a i n Co f r n e o I EE: 0 — 0 . t m to , n e e c f E 9 2 9 5

实验报告之仿真(光的干涉与衍射)

实验报告之仿真(光的干涉与衍射)

大学物理创新性试验实验项目:单缝﹑双缝﹑多缝衍射现象仿真实验专业班级:材料成型及控制工程0903班姓名:曹惠敏学号:090201097目录1光的衍射2衍射分类3实验现象4仿真模拟5实验总结光的衍射光在传播路径中,遇到不透明或透明的障碍物,绕过障碍物,产生偏离直线传播的现象称为光的衍射。

光的衍射现象是光的波动性的重要表现之一.波动在传播过程中,只要其波面受到某种限制,如振幅或相位的突变等,就必然伴随着衍射的发生. 然而,只有当这种限制的空间几何线度与波长大小可以比拟时,其衍射现象才能显著地表现出来.所有光学系统,特别是成像光学系统,一般都将光波限制在一个特定的空间域内,这使得光波的传播过程实际上就是一种衍射过程.因此,研究各种形状的衍射屏在不同实验条件下的衍射特性,对于深刻理解衍射的实质,研究光波在不同光学系统中的传播规律分析复杂图像的空间频谱分布以及改进光学滤波器设计等具有非常重要的意义.随着计算机技术的飞速发展, 计算机仿真已深入各种领域。

光的干涉与衍射既是光学的主要内容 , 也是人们研究与仿真的热点。

由于光波波长较短,与此相应的复杂形状衍射屏的制作较困难,并且实验过程中对光学系统及环境条件的要求较高.因而在实际的实验操作和观察上存在诸多不便. 计算机仿真以其良好的可控性、无破坏、易观察及低成本等优点,为数字化模拟现代光学实验提供了一种极好的手段. 本次实验利用MATLAB软件实现对任意形状衍射屏的夫琅禾费衍射实验的计算机仿真。

衍射分类⒈菲涅尔衍射菲涅尔衍射:入射光与衍射光不都是平行光的衍射。

惠更斯提出,媒质上波阵面上的各点,都可以看成是发射子波的波源,其后任意时刻这些子波的包迹,就是该时刻新的波阵面。

菲涅尔充实了惠更斯原理,他提出波前上每个面元都可视为子波的波源,在空间某点P的振动是所有这些子波在该点产生的相干振动的叠加,称为惠更斯-菲涅尔原理。

惠更斯-菲涅尔原理能定性地描述衍射现象中光的传播问题,成为我们解释光的各类衍射现象的理论依据。

基于matlab的衍射系统仿真 -

基于matlab的衍射系统仿真 -

成绩:《工程光学》综合性练习二题目:基于matlab的衍射系统仿真学院精密仪器与光电子工程学院专业测控技术与仪器年级20**级班级**班姓名20**年**月综合练习大作业二一、要求3-4人组成小组,对下面给出的各题目利用Matlab等工具进行仿真。

练习结束时每组提交一份报告及仿真程序。

在报告中应注明各仿真结果所对应的参数,如屏与衍射屏间距、孔径形状尺寸等。

二、仿真题目1.改变观察屏与衍射屏间距,观察观察屏上发生的衍射逐渐由菲涅耳衍射转为夫琅和费衍射1)原理图:S点光源发出的波长lam=500纳米S点发出光线经过单缝,缝宽a;单缝到衍射屏的距离L'2)Matlab代码clear;clcl=10;%l=input('单缝到衍射屏的距离L=');a=0.2;%a=input('单缝的宽度(mm)a=');lam=500e-6;%lam=input('波长(nm)');x=-1:0.001:1;%接收屏边界y=x./sqrt(x.^2+l^2);z=a.*y/lam;I=1000*(sinc(z)).^2;%计算接受屏某点光强subplot(2,1,1)%绘制仿真图样及强度曲线image(2,x,I)colormap(gray(3))title('单缝衍射条纹')subplot(2,1,2)plot(x,I)title(光强分布)3)初始仿真图样(d=10)4)改变d之后的图样(d=1000)5)变化规律根据衍射屏以及接受屏的相对位置不同,由此产生菲涅尔衍射和夫琅禾费衍射的区别,根据我们模拟的情况得到菲涅尔衍射和夫琅禾费衍射的明显不同是夫琅禾费衍射条件下:中央有一条特别明亮的亮条纹,其宽度是其他亮条纹的两倍;其他亮条纹的宽度相等,亮度逐渐下降。

2.改变孔径形状、尺寸,观察图样变化1)原理图矩孔衍射:透镜焦距:1000mm;照射光波长:500nm;孔高:a(mm);孔宽:b(mm);圆孔衍射:圆孔直径:r(mm);照射光波长:500nm;照射光波长:500nm;2)matlab代码矩孔衍射:focallength=1000;lambda=500;a=2.0;b=2.0;resolution=64;center=(resolution)/2;A=zeros(resolution,resolution);for i=1:1:resolutionfor j=1:1:resolutionif abs(i-center)<a*10/2&abs(j-center)<b*10/2 A(j,i)=255;endendendE=ones(resolution,resolution);k=2*pi*10000/focallength/lambda;imag=sqrt(-1);for m=1:1:resolutionx=m-center;for n=1:1:resolutiony=n-center;C=ones(resolution,resolution);for i=1:1:resolutionp=i-center;for j=1:1:resolutionq=j-center;C(j,i)=A(j,i)*exp(-imag*k*(x*p+y*q)); endendE(n,m)=sum(C(:));endendE=abs(E);I=E.^2;I=I.^(1/3);I=I.*255/max(max(I));L=I;I=I+256;CM=[pink(255).^(2/3);gray(255)];Colormap(CM);edge=(resolution-1)/20;[X,Y]=meshgrid([-edge:0.1:edge]);x=linspace(-edge,edge,resolution);y=linspace(-edge,edge,resolution);subplot(1,2,1);surf(x,y,L);axis([-edge,edge,-edge,edge,0,255]);caxis([0,511]);subplot(1,2,2);image(x,y,I);axis([-edge,edge,-edge,edge,0,511]);view(2);axis square;圆孔衍射:clearlmda=500e-9;%波长r=1.2e-3;%f=1;%焦距N=19;K=linspace(-0.1,0.1,N);lmda1=lmda*(1+K);xm=2000*lmda*f;xs=linspace(-xm,xm,2000);ys=xs;z0=zeros(2000);[x,y]=meshgrid(xs);for i=1:19s=2*pi*r*sqrt(x.^2+y.^2)./(lmda1(i));z=4*(besselj(1,s)./(s+eps)).^2;%光强公式z0=z0+z;endz1=z0/19;subplot(1,2,1)imshow(z1*255);%平面图xlabel('x')ylabel('y')subplot(1,2,2)mesh(x,y,z1)%三维图colormap(gray)xlabel('x')ylabel('y')zlabel('光强')3)仿真图样:矩孔衍射:a=1,b=2a=2,b=2可知:矩孔在一个维度上展宽一定倍数将导致衍射图样在相同维度上缩短相同倍数,同时能量会更向中心亮斑集中。

菲涅尔衍射matlab

菲涅尔衍射matlab

菲涅尔衍射matlab菲涅尔衍射(Fresnel diffraction)既是一种物理现象,也是一种集中光束的数学解析方法,是量子力学中的物理现象之一。

MATLAB使用菲涅尔衍射算法,可以在复杂物体和形状上进行准确的光分发分析和性能评估。

一、什么是菲涅尔衍射1.1 菲涅尔衍射的定义菲涅尔衍射,也称为衍射弥散,是由法国物理学家菲涅尔(Augustin Fresnel)在1817-1818年首次提出的一种物理现象。

它指的是当光线遇到光学系统的边界折射处或非特定孔径时,其交界处的散射效应。

当一束光线穿过一个孔径或光学系统边界时,菲涅尔衍射造成了衍射或散射,这会影响光束的衍射图像,其形式主要依赖介质的结构和入射光的波长。

1.2 菲涅尔衍射的应用菲涅尔衍射算法(fresnel diffraction algorithm)的主要应用有:(1)应用于光学系统的分析,包括照明系统、光学投影系统的性能分析,以实现信号的有效传输。

(2)在光纤传感器的分析中,可以应用菲涅尔衍射方法研究微弱信号的传输性能。

(3)在计算机视觉研究中,运用菲涅尔衍射可以最大限度地减少折射和反射的影响,从而获取更加真实的图像。

(4)在天体衍射中,菲涅尔衍射可以被用来描述在更大空间张量和体积空间进行光学计算。

二、MATLAB如何使用菲涅尔衍射2.1 编程实现的步骤(1)用MATLAB创建光学系统模型:根据系统模型,建立计算机模型,从而模拟系统性能。

(2)使用菲涅尔衍射计算光束穿过光学系统的散射衍射:在计算机模型的基础上,可以使用菲涅尔衍射算法,模拟光束穿过特定的不它孔径或者到达特定点时,菲涅尔衍射会发生的变化,从而计算出衍射图形。

(3)对光束进行测量:通过精确测量可以观察光束的变化,进而检查系统的性能,从而改进系统设计。

2.2 使用fresnel diffraction algorithm的Matlab工具Matlab中提供了fresnel diffraction algorithm的一系列Matlab工具,可以实现准确运算并生成衍射系数,这些工具可用于各种光学衍射、折射和反射模拟的仿真,可以作为视觉设计、光学性能测试和甚至作为优化,可以解决复杂的光学光谱计算问题。

圆孔矩孔的菲涅尔衍射模拟(matlab实现)-工程光学

圆孔矩孔的菲涅尔衍射模拟(matlab实现)-工程光学

工程光学综合练习-----圆孔、矩孔的菲涅尔衍射模拟圆孔和矩孔的菲涅尔衍射模拟一、原理由惠更斯-菲涅尔原理可知接收屏上的P点的复振幅可以表示为其中为衍射屏上的复振幅分布,为倾斜因子。

根据基尔霍夫对此公式的完善,有设衍射屏上点的坐标为(x1, y1),接收屏上点的坐标为(x, y),衍射屏与接收屏间距离为z1,当满足菲涅尔近似条件时,即此时可得到菲涅尔衍射的计算公式把上式指数项中的二次项展开,并改写成傅里叶变换的形式,可以写成上式为菲涅尔衍射的傅里叶变换表达式,它表明除了积分号前面的一个与x1、y1无关的振幅和相位因子外,菲涅尔衍射的复振幅分布是孔径平面的复振幅分布和一个二次相位因子乘积的傅里叶变换。

相对于夫琅和费衍射而言,菲涅尔衍射的观察屏距衍射屏不太远。

在菲涅尔衍射中,输入变量和输出变量分别为衍射孔径平面的光场分布和观察平面的光场以及光强分布,考虑到这三个量都是二维分布,而且Matlab主要应用于矩阵数值运算,所以本程序选择用二维矩阵来存储衍射孔径平面和观察平面的场分布,并分别以矩阵的列数和行数来对应平面的直角坐标值(x, y)以及(x1, y1)。

二、圆孔菲涅尔衍射用MATLAB分别构造表示衍射屏和接收屏的二维矩阵。

注意使两矩阵阶次相同,考虑到运算量的要求,采样点数不能过多,所以每个屏的x和y方向各取200到300点进行运算。

根据式(4),选取合适的衍射屏和接收屏尺寸和相距的距离,模拟结果如下:取典型的He-Ne激光器波长λ=632.8nm,固定衍射屏和接收屏尺寸和相距的距离,分别取不同的圆孔半径,得到以下三组衍射图样,其圆孔半径分别为12mm,20mm,50mm图1(r=12mm)图2(r=20mm)图3(r=50mm) 三、矩孔的菲涅尔衍射步骤与上述相同,仅需改变与衍射屏形状对应的矩阵。

这里选择矩孔的长宽相等,分别为15mm,20mm,30mm,其衍射图样及强度分布如图4、5、6图4(a=b=15mm)图5(a=b=20mm)图 6(a=b=30mm)四、MATLAB 程序%所有长度单位为毫米lamda=632.8e-6; k=2*pi/lamda;z=1000000;%先确定衍射屏N=300; %圆屏采样点数a=15;b=15;[m,n]=meshgrid(linspace(-N/2,N/2-1,N));I=rect(m/(2*a)).*rect(n/(2*b));q=exp(j*k*(m.^2+n.^2)/2/z);subplot(2,2,1); %圆孔图像画在2行2列的第一个位置 imagesc(I) %画衍射屏的形状colormap([0 0 0; 1 1 1]) %颜色以黑白区分axis imagetitle('衍射屏形状')L=300;M=300; %取相同点数用于矩阵运算若为圆孔,方框内替换为以下程序 r=12;a=1;b=1; I=zeros(N,N); [m,n]=meshgrid(linspace(-N/2,N/2-1,N)); D=((m-a).^2+(n-b).^2).^(1/2); i=find(D<=r); I(i)=1; %孔半径范围内透射系数为1[x,y]=meshgrid(linspace(-L/2,L/2,M));h=exp(j*k*z)*exp((j*k*(x.^2+y.^2))/(2*z))/(j*lamda*z);%接收屏H =fftshift(fft2(h));B=fftshift(fft2(I)); %圆孔频谱G=H.*B; %公式中为卷积,空间域中相卷相当于频域中相乘U= fftshift(ifft2(G)); %求逆变换,得到复振幅分布矩阵Br=(U/max(U)); %归一化subplot(2,2,2);imshow(abs(U));axis image;colormap(hot)% figure,imshow(C);title('衍射后的图样');subplot(2,2,3);mesh(x,y,abs(U)); %画三维图形subplot(2,2,4);plot(abs(Br))。

经典实验讲义-菲涅尔单缝衍射 (演示实验)

经典实验讲义-菲涅尔单缝衍射 (演示实验)

菲涅尔单缝衍射(演示实验)一、实验目的观察菲涅尔单缝衍射现象二、实验原理菲涅尔衍射和夫郎和费衍射是研究衍射现象的两种方法,前者是不需要用任何仪器就可以直接观察到衍射现象,在这种情况下,观察点和光源(或其中之一)与障碍物(或孔)间的距离有限,在计算光程和叠加后的光强等问题时,都难免遇到繁琐的数学运算。

而后者研究的是观察点和光源距障碍物都是无限远(平行光束)时的衍射现象,在这种情况下计算衍射图样中的光强分布时,数学运算就比较简单。

所谓光源无限远,实际上就是把光源置于第一个透镜的焦平面上,得到平行光束;所谓观察点无限远,实际上就是在第二个透镜的焦平面上观察衍射图样。

请读者在以下的三个实验中注意观察。

三、实验仪器1、He—Ne激光器(632.8nm)2、小孔径扩束镜L: f=6.2mm3、二维调整架: SZ-074、单面可调狭缝: SZ-225、白屏H: SZ-136、公用底座: SZ-047、一维底座: SZ-038、一维底座: SZ-039、公用底座: SZ-04四、仪器实物图及原理图图十六五、实验步骤把所有器件按图十六的顺序摆放在平台上,调至共轴。

激光器通过扩束镜(以不满足远场条件)投射到单缝上,如图十六所示,即可在屏幕上出现衍射条纹,缓慢地连续地将单缝由窄变宽,同时注意屏幕上的图样,即可观察到与理论分析结果一致的由夫郎和费单缝衍射图样过渡到菲涅尔单缝衍射图样。

也可不加扩束镜。

(图中数据均为参考数据)实验十七 菲涅尔圆孔衍射(演示实验)一、实验目的观察菲涅尔圆孔衍射现象二、实验原理附图13如附图13所示:S —单色光源P —光场中任一点S 与P 之间有一带圆孔的光屏M ,圆孔中心在SP 连线上。

这时S 对P 的作用就只是内露出的一部分波面∑上的那些次波源在P 点所产生的光振动的叠加。

按照波带法,分别以P 为中心,r+2/λ,r+λ…为半径将露出的波面分成若干个波带,各波带在P 点产生振动的振幅为: 122i j a a A =± 当圆孔露出奇数个波带时,P 点的光强度是约等于21a 亮点,而当圆孔露出偶数个波带时,P 点是光强度接近于零的暗点。

《菲涅耳衍射》PPT课件

《菲涅耳衍射》PPT课件

N
2 N
(1
R)
2 N
(78)
R r0 r0
AN
a1 2
aN 2
(76)
a1 a2 a3 aN
(4)轴外点的衍射
对于轴外任意点 P 的光强度,原则上也可以用同样 的方法进行讨论。
M
P
M0M2M
S
O1M 1
2
P
0
MN R N hN
rN=r0+N /
2
S
S O O
r0
P
0
(4)轴外点的衍射
通常在半定量处理菲涅耳衍射现象时,均采用比较 简单、物理概念很清晰的菲涅耳波带法或图解法。
4.3.1 菲涅耳圆孔衍射—菲涅耳波带法(Fresnel diffraction by a circular aperture — Fresnel's zone construction )
1. 菲涅耳波带法
N
1
2 2
(73)
(3)倾斜因子 由上图可见,倾斜因子为
K( ) 1 cos (74)
2
将(72)-(74)式代入(66)式,可以得到各个波带在 P0 点产生的光振动振幅
aN
πR
R r0
1
cos N
2
(75)
可见,各个波带产生的振幅 aN 的差别只取决于倾角
N。
aN
SN rN
K ( )
(66)
这说明,当孔小到只露出一个波带时,P0 点的光强 度由于衍射效应,增为无遮挡时 P0 点光强度的四倍。
I1 a12
只露出一个波带时的光强
A
a1 2
(80)
无遮挡时的光强

菲涅尔圆孔衍射和圆屏衍射(修正版)

菲涅尔圆孔衍射和圆屏衍射(修正版)

Rb kl bR
2 k
Rb l 1 bR
R
1 bl
K
Rb kl k 1 Rb
( k 1,2,3, )
4) 成像公式
Rb kl 由 bR 1 1 kl 得: 2 R b k
2 k
令: f
/ kl / l
2 k 2 1
d 2Rdr r Rb
2l aK ik ( R b ) U1 ( P ) e i ( R b)
a ik ( R b ) U (P) e Rb
又 比较得
1 U ( P )= U1 ( P) 2 K i
l
4. 菲涅耳波带片 1)定义:将偶数或奇数的半波带遮挡住,
U 3 ( P0 ) A( P0 )e
i ( 0 2 / m )
………….
U m ( P0 ) A( P0 )e
i ( 0 )
3)画出矢量图

m M Am
注意: 矢量图是正多边形,
一个完整半波带首尾矢量的 位相差是 4)连接首尾矢量,得到合成 矢量,则半波带在P0点产生的 光强为:
A4
(5)求遮住前n个半波带的圆屏衍射中心场 点Po处的合振幅
A( P0 ) An 1 An 2 A 1 1 [ An 1 ( 1 ) A ] An 1 2 2
1 A( P0 ) An 1 2
I A ( P0 )
2
(6)讨论:
4)由圆屏衍射的振幅公式 可知: 随圆屏半径的增大,
1 A( P0 ) An 1 2
无论n是奇还是偶,中心场点总是亮的。
5)半波带法的适用条件 能将圆孔或圆屏整分成半波带时的情况,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
和观察屏之间时,观察
屏上 P 点的光场复振幅,������0 ������ 表示无衍射屏时 P 点的光场复振幅,根据惠更斯菲涅耳原理,������1 ������ 和������2 ������ 可表示成对
1

2
开孔部分的积分,而两个屏
的开孔部分加起来就相当于屏不存在,因此 ������0 ������ = ������1 ������ + ������2 ������ 该式说明,互补屏在衍射某点产生的复振幅之和等于光波自由传播时在该点 产生的光场复振幅。 2 matlab 仿真程序设计 2.1 菲涅耳衍射的实现 在菲涅耳近似下,P点的光场复振幅可表示为 ������ ������, ������ = ������������ ������1 , ������1 ∗ ℎ(������, ������) 其中
总结与展望
利用所学知识基本完成了菲涅耳衍射的仿真。但在完成课程设计的过程中深 深的感受到自身各方面的不足。还需更为努力。对于该仿真,因为使用了卷积, 当采样数过大时,运算速度会变得很慢。该仿真还有更好的实现方式,是基于傅 里叶变换的,可大大降低时间复杂度,无奈能力,精力有限,就不去实现了。
参考文献
【1】 奥本海姆., Oppenheim A, 刘树棠. 信号与系统[M].西安: 西安交通大学出 版社, 1998.
E3 (������)图样
E3 (������)分布图
E3 ������ 与对应正方形衍射屏中央剖面光强分布对比图 可见巴比涅定理成立。
3.4 夫琅禾费衍射
菲涅耳数F ≪ 1时,衍射图样为夫琅禾费衍射。 选取F=0.1,n=400,p=2
F=0.1时圆孔衍射图样
F=0.1时圆孔衍射光强分布图
F=0.1时圆孔衍射中央剖面光强分布图 图样与教科书基本相符。
【2】 叶玉堂, 饶建珍, 肖峻. 光学教程[M]. 北京: 清华大学出版社, 2005.
【3】 维基百科编者. 菲涅耳衍射[G/OL]. 维基百科, 2014(20140701)[2015-12-23]. https:///w/index.php?title=%E8%8 F%B2%E6%B6%85%E8%80%B3%E8%A1%8D%E5%B0%84&oldid=31753533.
������ ������
+⋯
k
������ − ������1
2
+ ������ − ������1 3 8z1
2 2
≪ ������
上面第三项以及以后的各项都可略去,简化为 1 r = z1 + ������ − ������1 2 + ������ − ������1 2������1 = z1 +
由采样定理可知,采样频率。ω1 必须满足以下条件 ω1 ≥ 2������ 令 g(x, y) = x 2 + ������ 2 则 ik ℎ(������, ������) = exp g(x, y) 2z1 设g(x, y)的采样间隔为∆T,x,y有相同的采样间隔∆t,则 ∆T = 2x∆t + 2y∆t 2π 2������������1 ∆T = ≤ ω1 ������ 所以 ������������1 πz1 ∆t ≤ ≤ 2������������ ������ ������ + ������ 所以 πz1 ∆t = ������������������ 其中 p≥2 p越大,采样间隔越小。 容易得到行与列采样数n为 2L n= ∆t 2L2 ������������ n= ������������1 将菲涅耳数F代入得 n = 4β2 pF β= ������ ≥1 4������������
2
+ ������ − ������1 2 ]} ������������1 ������������1
则 ������ ������, ������ = ������������ ������1 , ������1 ∗ ℎ(������, ������) 衍射的巴比涅原理 巴比涅原理描述的是两个互补屏的衍射场之间的关系。它可以由基尔霍夫衍 射公式直接导出。 若两个衍射屏中,一个屏幕的开孔部分正好与另一个屏的不透明部分相对应, 这样的一对衍射屏称为互补屏。 1.3 设������1 ������ 和������2 ������ 分别表示
当F ≪ 1时,可以使用夫琅禾费积分式来计算其物理性质。 可知菲涅耳数决定了衍射的图样,所以希望只输入菲涅耳数,输出衍射图样。
2.3.2 屏幕尺寸 采用正方形屏幕,令其半边长为L。令圆孔半径为r,则有如下关系 L = βr β≥1 2.3.3 采样间隔 由 ik 2 ℎ(������, ������) = exp x + y2 2z1 可知,其角频率ω为 k ω= 2z1
光强分布图
中央剖面光强分布图 3.2 圆屏的菲涅耳衍射 选取F=10,n=400,p=8时的圆屏衍射
圆屏衍射图样
光强分布图
中央剖面光强分布图 3.3 验证巴比涅定理 选取F=10,n=400,p=8时的正方形衍射屏
正方形衍射图样
光强分布图
中央剖面光强分布图 选取F=10,n=400,p=8时的圆孔衍射E1 (������)与F=10,n=400,p=8时的圆屏衍射 E2 (������) E3 ������ = ������1 ������ + ������2 (������)
ik 2 x + y2 2z1 exp ikz1 C= iλz1 因此,在matlab中可以使用函数conv2实现菲涅耳衍射。需要注意的是h x, y 存在于整个空间中,matlab自然无法实现,但可选取有限的h x, y ,使在������ ������1 , ������1 上的每一点的响应h(x, y)完全覆盖观察屏,即可达到相同效果。 2.2 衍射屏的实现 在matlab, 衍射屏与观察屏可以用一个二维矩阵表示。 因为使用平行光入射, 所以通光处光场复振幅相同;不通光处,复振幅为0。因此一个简单的圆孔衍射 屏可以用以下矩阵表示 ℎ(������, ������) = exp 0 0 0 0 0 而其互补屏则可用以下矩阵表示 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0
菲涅耳数由k,z,r决定,屏幕尺寸则由n,p,F决定。 可令k = π,r = 1,则z = 2������������ 。 所以菲涅耳衍射的仿真函数接受3个参数,菲涅耳数F,采样数n,清晰度p。 3 仿真结果 3.1 圆孔的菲涅耳衍射 选取F=10,n=400,p=8时的圆孔衍射
kr 2
衍射图样
2
2 2 ������ 2 + ������ 2 xx1 + ������������1 ������1 + ������1 − + 2������1 ������1 2������1
这一近似称为菲涅耳近似,在这个区域内观察到的衍射现象叫菲涅耳衍射。 在菲涅耳近似下,P 点的光场复振幅为 ������ ������, ������ = 令 ℎ(������, ������) = exp ik 2 x + y2 2z1 exp ikz1 C= iλz1 exp ������������������1 ������������������1 ������������ ������ (������1 , ������1 )exp⁡ { [ ������ − ������1 2������1
2.3 参数选择 2.3.1 菲涅耳数 由于菲涅耳近似的条件过于繁琐,所以采用另一种判断方式,菲涅耳数F。 r2 kr 2 F= = ������������ 2������������
其中, 是孔径的尺寸, 是孔径与观察屏之间的距离, 是入射波的波长。 假若 ,则衍射波是处于近场,可以使用菲涅耳衍射积分式来计算其物理性质。
平行光入射情况下圆孔和圆屏的菲涅耳衍射图样仿真
摘要:在平行光入射情况下,利用Matlab编程仿真不同尺寸的圆孔和圆屏的 菲涅耳衍射图样,并验证巴比涅原理。 关键词:菲涅耳衍射巴比涅原理 matlab 仿真
引言
菲涅耳衍射是在菲涅耳近似条件成立的距离范围内所观察的衍射现象。 此时 直接运用公式定量计算菲涅耳衍射,数学处理十分复杂。因此,为研究菲涅耳衍 射现象,可采用 matlab 仿真的方式。 1 菲涅耳衍射原理 1.1 基尔霍夫衍射公式 最早成功地用波动理论解释衍射现象的是菲涅耳,他用光的干涉理论对惠更 斯原理加以补充,并予以发展,从而相当完善地解释了光的衍射现象。 基尔霍夫的研究弥补了菲涅耳理论的不足,他从微分波动方程出发,利用数 学场论中的格林定理以及电磁场的边值条件,给出了惠更斯-菲涅耳原理较完善 的数学表达式,建立了光的衍射理论。
其中, 、 分别是 、
与 之间的夹角。
1.2
菲涅耳近似
如图所示,孔径平面和观察平面分别取直角坐标系 ������1 , ������1 和 ������, ������ ,则由几何 关系有
2 r z1 x x1 y y1 2 2
对该式作二项式展开,有 ������ ������ ������ = ������������ + ������ − ������������ ������ + ������ − ������������ ������ − ������ ������ − ������������ ������ + ������ − ������������ ������������������ ������������������ 当z1 大到使得上式第三项引起的相位变化远远小于π时,即
相关文档
最新文档