八年级数学第一学期期中教学质量检测.doc
河南省南阳市邓州市2023-2024学年八年级上学期期中质量评估数学试卷(含答案)

邓州市2023~2024学年第一学期期中质量评估八年级数学试卷注意事项:1.本试卷共6页,三个大题,满分120分,答题时间100分钟;2.请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一.选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上.1.有理数16的平方根是()A.B.4C.D.82.下列各数的立方根是-2的数是()A.4B.-4C.8D.-83.在《九章算术》一书中,对开方开不尽的数起了一个名字,叫做“面”,这是中国传统数学对无理数的最早记载,下面符合“面”的描述的数是()A.B.C.D.4.下列运算正确的是()A.B.C.D.5.在电子显微镜下测得一个圆球体细胞的直径是纳米,则个这样的细胞排成的细胞链的长是()A.107纳米B.106纳米C.105纳米D.104纳米6.计算:(14a3b2-7ab2)÷7ab2的结果是()A.2a2B.2a2-1C.2a2-b D.2a2b-17.如图,△ABC绕点O旋转180°得到,则下列结论不成立的是()A.点A与点是对应点B.C.D.8.如下图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.(ab)2=a2b2B.(a+b)(a-b)=a2-b2C.(a-b)2=a2-2ab+b2D.(a+b)2=a2+2ab+b29.小明不慎将一块三角形玻璃摔碎成如图所示的四块(即图中标1,2,3,4的四块),你认为将其中的哪一块带到五金店,就能配成一块与原来一样大小的三角形()A.1B.2C.3D.410.观察:(x-1)(x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x+1)=x4-1……据此规律,当(x-1)(x5+x4+x3+x2+x+1)=0时,x2023的结果是()A.1B.-1C.1或-1D.1或-2二、填空(每小题3分,共15分)11.在实数-2,,0,1中,最小的实数是______.12.计算______.13.若(x+a)(x-4)的积中不含有x的一次项,则a的值为______.14.如图在3×3的方格图中,每个小方格的边长都为1,则______.第14题图15.如图,两个全等的直角三角板重叠在一起,将其中的一个三角板ABC沿着BC方向平移到△DEF的位置,AC与DE交于点O.若AB=10,DO=2,CF=3,则四边形CFDO的面积为______.第15题图三、解答题(本大题共8个小题,满分75分)16.(9分)(1)计算:(2)化简:17.(9分)因式分解(1)2am2-8a(2)(x-y)2+4xy18.(9分)(1)发现:任意五个连续整数的平方和能被5整除.验证:(-1)2+02+12+22+32的结果是5的几倍?(2)探索:设五个连续整数的中间一个数为m,写出它们的平方和,并说明能被5整除.19.(9分)如图,点D,E分别在AB,AC上,∠ADC=∠AEB=90°,BE,CD相交于点O,∠1=∠2,求证:OB=OC,小聪同学的证明过程如下:证明:在△ADO和△AEO中,∴△ADO≌△AEO(依据①______)∴OD=OE(依据②______)……任务:(1)小聪同学的证明过程中依据①是______,依据②是______;(2)按小聪同学的思路将证明过程补充完整;(3)图中共有______对全等三角形,它们是______.20.(9分)如图①,有一个长为4a,宽为b的长方形,沿图中虚线剪开可平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图②).请观察分析后完成下列问题:(1)图②中,阴影部分的面积可表示为()A.4ab B.(a+b)2C.(b-a)2D.4(b-a)(2)观察图②,请你归纳出(a+b)2,(a-b)2,ab之间的一个等量关系______;(3)运用(2)中归纳的结论:当时,求x-y的值.21.(9分)在综合实践课上,王老师要求同学们用所学知识测量池塘宽,如图,池塘两端A、B之间的距离无法直接测量,请同学们设计测量A、B之间距离的方案.(1)小明设计的方案如图①:他先在平地上选取一个可以直接到达A、B的点O,然后连接AO和BO,接着分别延长AO和BO并且使CO=AO,DO=BO,最后连接CD,测出CD的长即可.(2)小红设计的方案如图②:先确定直线AB,过点B作AB的垂线BE,在BE上选取一个可以直接到达点A的点D,连接AD,在线段AB的延长线上找一点C,使DC=DA,测BC的长即可.你认为以上两种方案可以吗?请说明理由.22.(10分)阅读材料;杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,西方人帕斯卡发现时,已比宋代杨辉要迟393年.如图,根据你观察的杨辉三角的排列规律,完成下列问题.(1)判断(a+b)5的展开式共有______项;写出(a+b)6的第三项的系数是______;(2)计算与猜想:①计算:②猜想:的展开式中含x3项的系数是______.(3)运用:若今天是星期五,过7天仍是星期五,那么再过86天是星期______.23.(11分)已知∠ABC=90°,D是直线AB上的点,AD=BC,作FA⊥AB于点A,且AF=BD,连结DC、DF.(1)自主探究:如图1,当点D在线段AB上,点F在点A右侧时,DF与DC的数量关系为______,位置关系为______;(2)思考拓展:如图2,当点D在线段AB的延长线上,点F在点A的左侧时,(1)中的结论还成立吗?请说明理由;(3)能力提升:当点D在线段BA的延长线上,点F在点A的______侧时,(1)中的两个结论依然成立,若此时BC=2,AB=1,则AF的长度为______.2023年秋期八年级数学期中试题参考答案一、选择题(每小题3分,共30分)题号12345678910答案A D A C B B C D A C 二、填空题(每小题3分,共15分)11.-212.8a313.414.180°15.27三、解答题(本大题共8个小题,共75分)16.(9分)第(1)小题4分,第(2)小题5分(1)解:.(2)解:.17.(9分)(1)(2)18.(9分)(1)验证:∴的结果是5的3倍(2)五个连续整数的平方和是:∵∵m是整数∴是整数∴能被5整除即:五个连续整数的平方和能被5整除19.(9分)(1)依据①是AAS(语言表述正确也可)依据②是全等三角形的对应边相等(2)∵∠ADC=∠AEB=90°∴∠BDO=∠CEO=90°在△BDO和△CEO中∴(字母不对应扣1分)∴OB=OC.(3)4.△ADO和△AEO,△BDO和△CEO,△ADC和△AEB,△AOB和△AOC20.(9分)(1)C.(2)(a+b)2-(a-b)2=4ab(答案不唯一,恒等变形正确都给分)(3)由(2)可知(a-b)2=(a+b)2-4ab∴∴.(少写一个扣1分)21.(9分)以上两种方案都可以小明的方案:在△COD和△AOB中∴△COD≌△AOB∴CD=AB.小红的方案:∵BE⊥AB∴∠ABD=∠CBD=90°在Rt△ABD和Rt△CBD中∴Rt△ABD≌Rt△CBD∴BC=BA.(本题字母不对应只扣1分)22.(10分)(1)615(2)①.②-160(3)六.23.(11分)(1)DF=DCDF⊥DC(2)(1)中的结论还成立.理由如下:∵∠ABC=90°,FA⊥AB∴∠FAD=∠DBC在△FAD和△DBC中∴△FAD≌△DBC∴FD=DC∠FDA=∠DCB又∵∠DCB+∠BDC=90°∴∠FDA+∠BDC=90°∴FD⊥DC.(3)左3.。
初中数学:江苏省南通市海安市海陵中学2023~2024 学年度第一学期八年级期中数学试题

海陵中学2023~2024学年度第一学期期中学业质量检测八年级数学考试时间:120分钟试卷分值:150分一、选择题(本大题共10小题,每小题3分,共30分)1.2023亚运会在中国杭州举行,下列图形中是轴对称图形的是()A. B. C. D.2.下列计算正确的是()A.824=a a a ÷ B.347•=a a a C.()3262=6a a D.2223a a a +=3.如图,△ABC ≌△DCB ,点A 和点D 是对应点,若AB =6cm ,BC =8cm ,AC =7cm ,则DB 的长为()A.6cmB.8cmC.7cmD.5cm 4.已知图中有三个正方形,则图中所有的全等三角形共有()对.A .2 B.3 C.4 D.55.如图,在ABC 中,=5cm =9cm AB BC ,,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则BAD 的周长为()cm .A.9B.23C.19D.146.如果()()12x x m ++的乘积中不含x 一次项,则m 为()A.-2 B.2 C.12 D.12-7.已知2=5a b -+,则代数式226a b b --的值为()A.3 B.6 C.9 D.128.如图,BD 是ABC 的角平分线,DE AB ⊥,垂足为E ,=6=4=2AB BC DE ,,,则ABC 的面积为()A.4B.6C.8D.109.如图,把ABC 沿线段DE 折叠,使点A 落在点F 处,BC DE ∥;若50B ∠=︒,则BDF ∠的度数为()A .40︒ B.80︒ C.50︒ D.100︒10.如图,Rt ACB 中,90ACB ︒∠=,ABC 的角平分线AD 、BE 相交于点P ,过P 作PF AD ⊥交BC 的延长线于点F ,交AC 于点H ,则下列结论:①135APB ︒∠=;②PF PA =;③AH BD AB +=;④S 四边形23ABDE S ABP = ,其中正确的个数是()A.4B.3C.2D.1二、填空题(本大题共有8小题,11~12每小题3分,13~18每小题4分,共30分)11.在平面直角坐标系中,点()3,1P 关于x 轴的对称点的坐标为___________.12.计算:()4223=x x x -÷_______.13.已知23m =,25n =,则422m n -的值为_______.14.如图,四边形ABCD 中,AD CD =,AB CB =,DE AB ∥交BC 于点E ,10BC =,4CE =,则DE 的长_______.15.已知249y my ++是完全平方式,则m =__________16.如图,在等腰三角形ABC 中,=AB AC ,D 为BC 延长线上一点,EC AC ⊥且=AC CE ,垂足为C ,连接BE ,若=6BC ,则BCE 的面积为_________.17.如图,已知ABC DBE ≌,边DE DB ,分别交AC 交于M ,N ,若BM BN =,48A ∠=︒,则ABD ∠的度数是_____.18.如图,Rt ABC △中,906810ACB AC BC AB BD ∠=︒===,,,,平分∠ABC ,如果点M ,N 分别为BD BC ,上的动点,那么CM MN +的最小值是__________.三、解答题(本大题共8小题,共90分)19.分解因式:(1)2244x xy y -+-;(2)()()64p p q q p q +-+.20.运用乘法公式计算:(1)260.1;(2)()(23)23x y x y +--+21.如图,点A ,B ,C ,D 在一条直线上,AE DF ∥,AE DF =,AB CD =.(1)求证:AEC DFB ≅ .(2)若40A ∠=︒,145ECD ∠=︒,求∠F 的度数.22.如图,812⨯的长方形网格中,网格线的交点叫做格点,点A ,B ,C 都是格点.请按要求解答下列问题:平面直角坐标系xOy 中,点A ,B 的坐标分别是()3,1-,()1,4-,(1)请在图中画出平面直角坐标系xOy ,则点C 的坐标是;(2)设l 是过点C 且平行于y 轴的直线:①在直线l 上找一点P ,使PA PB +最小,并求出点P 的坐标;②若(),Q m n 为网格中任一格点,直接写出点Q 关于直线l 的对称点1Q 的坐标(用含m ,n 的式子表示).23.如图,在Rt △ABC 中,∠ABC =90°,AB =BC ,D 是AC 上一点,AE ⊥BD ,交BD 的延长线于E ,CF ⊥BD 于F .(1)求证:CF =BE ;(2)若BD =2AE ,求证:∠EAD =∠ABE .24.已知:在ABC 中,AB AC =,45BAC ∠=︒.(1)如图,点D 在AB 边上,点E 在AC 边上,BD CE =,BE 与CD 交于点F .求证:BF CF =;(2)若点D 是AB 边上的一个动点,点E 是AC 边上的一个动点,且BD CE =,BE 与CD 交于点F .当BFD △是等腰三角形时,求FBD ∠的度数.25.图①是由边长分别为a ,()a b >的两个正方形拼成的图形,其面积为1S ,图②是长、宽分别为a ,b 的长方形,其面积为2S .(1)图③是由图①中的图形补成的大正方形,其面积为3S ,则1S ,2S ,3S 的数量关系是______;(2)对于图③,通过两种不同方法计算它的面积,可以得到一个代数恒等式是:_______;(3)在图①边长为a 的正方形中放入两个边长为b 的小正方形,得到图④所示的图形,若116S =,25S =,求图④中阴影部分的面积.26.已知,90MON ∠=︒,点A 在边OM 上,点P 是边ON 上一动点,OAP α∠=.以线段AP 为边在AP 上方作等边ABP ,连接OB 、BP ,再以线段OB 为边作等边OBC △(点C 、P 在OB 的同侧),作CH ON ⊥于点H .(1)如图1,60α=︒.①依题意补全图形;②求BPH ∠的度数;(2)如图2,当点P 在射线ON 上运动时,用等式表示线段OA 与CH 之间的数量关系,并证明.。
辽宁省大连市金州区2024-2025学年八年级上学期11月期中考试数学试题(含答案)

金普新区2024-2025学年度第一学期期中质量检测试卷八年级数学2024.11(本试卷共23道题 满分120分考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效。
第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段能组成三角形的是( )A .1,3,2B .2,5,8C .3,4,5D .5,5,102.下列计算正确的是( )A .B .C .D .3.在平面直角坐标系中,与点关于y 轴对称的点的坐标为( )A .B .C .D .4.中国体育代表团在2024年巴黎奥运会取得优异成绩,下列图标中,是轴对称图形的是()A .B .C .D .5.下列各图形中,分别是四位同学所画的中BC 边上的高AE ,其中正确的是()A .B .C .D .6.榫卯结构是我国古代建筑,家具及其他木制器械的主要结构方式.如图,将两块全等的木楔()水平钉入长为16 cm 的长方形木条中(点B ,C ,F ,E 在同一条直线上).若,则木楔BC 的长为( )(第6题)248a a a⋅=()428bb =2246a a a⋅=235a b ab +=()1,7A -A '()1,7()1,7-()1,7--()1,7-ABC △ABC DEF △△≌4cm CF =A .4 cmB .6 cmC .8 cmD .12 cm7.如图,AD ,CE 都是的中线,连接ED ,的面积足,则的面积是()(第7题)A .B .C .D .8.如图,三座商场分别坐落在A ,B ,C 所在位置,现要规划一个地铁站,使得该地铁站到三座商场的距离相等,该地铁站应建在()(第8题)A .三条高所在直线的交点B .三条中线的交点C .三个内角的角平分线的交点D .三条边的垂直平分线的交点9.如图,直线l 是一条河,P ,Q 是两个村庄,欲在l 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A .B .C .D .10.如图,在中,,,,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则的周长为()(第10题)A .6B .7C .8D .9第二部分 非选择题(共90分)ABC △ABC △220cm CDE △22.5cm25cm27.5cm210cmABC △ABC △ABC △ABC △ABC △10AB =7BC =6AC =AED △二、填空题(本题共5小题,每小题3分,共15分)11.如图是环己烷的结构简式(正六边形),其内角和为______°.(第11题)12.若,,则______.13.已知等腰三角形的一个底角是70°,则它的顶角的度数是______°.14.如图,中,,若沿图中虚线截去∠F ,则______°.(第14题)15.如图,四边形ABCD 中,,,,,以点B 为圆心,适当长为半径作弧,分别与AB ,BC 相交于点点E ,F ,再分别以点E ,F为圆心,大于的长为半径作弧,两弧在的内部相交于点G ,作射线BG ,与AD 相交于点H ,则HD 的长为______(用含a 的代数式表示).(第15题)三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分).计算:(1);(2).17.(8分)如图,点M ,N 在线段BD 上,,,.求证:.2ma =4na =m na+=DEF △35F ∠=︒12∠+∠=AD BC ∥AD AB >AD a =8AB =12EF ABC ∠()232462a a a a +⋅-()()()3243x y x y x x y x ++-+÷BM DN =AN CM =AN CM ∥ABN CDM △△≌(第17题)18.(8分)如图,已知中,,,.(1)画出与关于x 轴对称的图形,并写出各顶点坐标;(2)的面积为______.(第18题)19.(8分)如图,在中,AD 平分∠BAC ,于D ,于C ,且,.(1)求证:;(2)求证:.(第19题)20.(8分)如图,在中,CD 平分,E 为线段CD 上一点,过E 作交BA 的延长线于点F ,若,,求的度数.ABC △()1,3A ()3,1B ()5.4C ABC △111A B C △111A B C △ABC △ABC △AD BC ⊥EC BC ⊥AB BE =CD CE =AB AC =Rt Rt ABD BEC △△≌ABC △ACB ∠EF CD ⊥115BAC ∠=︒35B ∠=︒F ∠(第20题)21.(8分)如图,已知中,,于D ,的平分线分别交AD ,AB 于P 、Q .(1)试说明是等腰三角形;(2)若点Q 恰好在线段BC 的垂直平分线上,试说明线段AC 与线段BC 之间的数量关系.(第21题)22.(12分)阅读下列材料,解决相应问题:已知两个两位数,将它们各自的十位数字和个位数字交换位置后,得到两个与原两个两位数均不同的新数,若这两个两位数的乘积与交换位置后两个新两位数的乘积相等,则称这样的两个两位数为“倒同数对”.例如:,所以23和96与32和69都是“倒同数对”.(1)请判断43和68是否是“倒同数对”,并说明理由;(2)为探究“倒同数对”的本质,可设“倒同数对”中一个数的十位数字为m ,个位数字为n ,且;另一个数的十位数字为p ,个位数字为q ,且,请探究m ,n ,p ,q 的数量关系,并说明理由;(3)若有一个两位数,十位数字为x ,个位数字为,另一个两位数,十位数字为,个位数字为,且这两个数为“倒同数对”,则x 的值为______.23.(13分)【问题初探】(1)综合与实践数学活动课上,李老师给出了一个问题:如图1,若,,CD 平分,求证:.(第20题图1)①如图2,小明同学从结论的角度出发给出如下解题思路:在BC 上截取,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为BE 与AD的数量关系;Rt ABC △90BAC ∠=︒AD BC ⊥ACB ∠APQ △239632692208⨯=⨯=m n ≠p q ≠1x +3x +1x +60A ∠=︒90ACB ∠=︒ACB ∠BC AC AD =+CE CA =(第20题图2)②如图3,小强同学从CD 平分这个条件出发给出另一种解题思路:延长CA 至点E ,使,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为AE 与AD 的数最关系;请你选择一名同学的解题思路,写出证明过程:(第20题图3)【类比分析】(2)李老师发现两名同学都运用了转化思想,将证明三条线段的关系转化为证明两条线段的关系;为了帮助学生更好地感悟转化思想,李老师将问题进行变式,请你解答:如图4,在四边形ABCD 中,E 是BC 的中点,若AE 平分,,请你探究AB 、AD 、CD 的数量关系并证明;(第20题图4)【学以致用】(3)如图5,在中,,和的平分线交于点P ,M ,N 为AB ,AC 上的点,且P 为MN 中点,若,,,求BC 的值.(第20题图5)ACB ∠CE CB =BAD ∠90AED ∠=︒ABC △60A ∠=︒ABC ∠ABC ∠5BM =45CN =4MN =金普新区2024-2025学年度第一学期期中质量检测八年级数学参考答案及评分标准(说明:试题解法不唯一,其他方法备课组统一意见,酌情给分。
河北省石家庄市正定县2023-2024学年八年级上学期期中数学试题(含答案)

正定县2023-2024学年度第一学期期中质量检测八年级数学试卷一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.)10,,,0.101001001……(相邻两个1之间依次多一个0),其中无理数有( )A .1个B .2个C .3个D .4个2.代数式,,,,,,中,属于分式的有()A .2个B.3个C .4个D .5个3x 的取值范围是( )A .B .C .D .4.精确到0.1,得到21.0的数是下面的( )A .21.12B .21.05C .20.95D .20.9455.若分式中的x ,y 都扩大原来的3倍,那么分式的值( )A .扩大为原来的9倍B .扩大为原来的3倍C .不变D .缩小到原来的6.如图,若两个三角形全等,图中字母表示三角形边长,则的度数为( )6题图A .40°B .50°C .60°D .70°7.如图,是嘉淇同学做的练习题,他最后的得分是( )π1325x 1π224x +223x -1x 12xx ++211x x --2x ≥2x <2x ≠-2x >232x yx y +-131∠(4)请写出一个无理数——7题图A .5分B .10分C .15分D .20分8.解分式方程时,去分母后变形为( )A .B .C .D .9.如图,将边长分别为2和1的矩形沿图中虚线剪开,拼成一个正方形,则该正方形的边长最接近整数( )9题图A .1B .2C .3D .410.在中,,为边上一点.将沿折叠,使点恰好落在边上的点处.若,,,则的周长是( )10题图A .6B .7C .8D .911.若运算的结果为整式,则“□”中的式子可能是( )A .B .C .D .12.若关于的方程的解为正数,则的取值范围是( )A .B .C .且D .且13.在和中,,,.已知,则( )A .40°B .40°或140°C .或D .14.老师上课提出问题:“某超市的一种瓶装饮料每箱售价为36元,五一期间对该瓶装饮料进行促销活动,买一箱送两瓶,这相当于每瓶按原价九折销售,求这家超市销售这种饮料的原价每瓶是多少元及每箱多少瓶?”以下为四位同学列出的方程,正确的是( )π-22311x x x++=--()()2231x x ++=-()2231x x -+=-()()2231x x -+=-()()2231x x -+=-Rt ABC △90ACB ∠=︒D AB ABC △CD A BC E 3AC =4BC =5AB =BDE △22x x y y x ÷+- y x-y x +1x 3x x 2111x m x x ++=--m 3m <3m >3m >1m ≠3m <1m ≠ABC △A B C '''△40B B '∠=∠=︒6AB A B ''==4AC A C ''==C n ∠=︒C ∠'=n ︒180n ︒-︒n ︒甲:设该品牌的饮料每瓶是元,则 乙:设该品牌饮料每箱瓶,则丙:设该品牌的饮料每瓶是元,则 丁:设该品牌饮料每箱瓶,则A .甲、丁B .甲、乙C .乙、丙D .甲、乙、丙15.如图,在和中,点A ,E ,B ,D 在同一直线上,,,只添加一个条件,能判定的是( )15题图A .B .C .D .16.如图,点在线段上,于点,于点,,且,,点从点开始以速度沿向终点运动,同时点以的速度从点开始,在线段上往返运动(即沿运动),当点到达终点时,、同时停止运动.过、分别作的垂线,垂足分别为、.设运动的时间为,当以、、三点为顶点的三角形与全等时,t 的值为( )s .16题图A .1B .1或3C .2或4D .1或4二、填空题(本大题共4小题,每小题3分,20题第一个空1分,第二个空2分,共12分,请把答案填在题中的横线上)17的平方根是______.18.是方程的解,则a 的值为______.19.化简:的结果为______.20.如图,在中,,.点在线段上运动(不与,重合),连接,作,交线段于点.(1)当时,______°;x 363620.9x x-=x 36360.92x x ⨯=+x ()0.936236x ⨯+=x 36360.92x x ⨯=+ABC △DEF △//AC DF AC DF =ABC DEF ≌△△BC DE =ABC D ∠=∠A DEF ∠=∠AE DB=C BD AB BD ⊥B ED BD ⊥D 90ACE ∠=︒7cm AC =8cm CE =P A 2cm/s AC C Q 3cm/s E EC E C E →→P P Q P Q BD M N s t P C M QCN △5x =122x x a=-+2211x x x+--ABC △3AB AC ==40B C ∠=∠=︒D BC D B C AD 40ADE ∠=︒DE AC E 120BDA ∠=︒DEC ∠=(2)当______时,.三、解答题(本大题共6小题,共56分.解答应写出必要的文字说明、证明过程或演算步骤)21.(本小题满分8分)以下是某同学化简分式的部分运算过程:解:原式①②③…(1)上面的运算过程中第______步出现了错误;(2)请你写出完整的解答过程.22.(本小题满分8分)已知点A ,B 在数轴上所对应的数分别为,,A ,B 两点关于原点对称.(1)当时,求的值;(2)若不存在满足条件的,求的值.23.(本小题满分8分)已知正数的两个平方根分别是和互为相反数,求的平方根.24.(本小题满分8分)如图,已知,,,.求的值.25.(本小题满分12分)为加快公共领域充电基础设施建设,某停车场计划购买A ,B 两种型号的充电桩.已知型充电桩比型充DC =ABD DCE ≌△△2113422x x x x +⎛⎫-÷ ⎪-+-⎝⎭()()1122223x x x x x ⎡⎤+-=-⋅⎢⎥+-+⎣⎦()()()()12222223x x x x x x x ⎡⎤+--=-⋅⎢⎥+-+-⎣⎦()()122223x x x x x +---=⋅+-8m x -78x x--2m =x x m a 3x +26x -2a b +EC AC =BCE DCA ∠=∠A E ∠=∠4BC =DC A B电桩的单价少0.3万元,且用12万元购买型充电桩与用18万元购买型充电桩的数量相等.(1)A ,B 两种型号充电桩的单价各是多少?(2)该停车场计划共购买20个A ,B 型充电桩,购买总费用不超过15万元,且型充电桩购买数量不超过12个.问:共有哪几种购买方案?哪种方案所需购买总费用最少?26.(本小题满分12分)如图所示,在中,,点是线段延长线上一点,且,点是线段上一点,连接,以为斜边作等腰,连接,且.(1)过点作,垂足为.①求证:②求证:;(2)如图2,若点是线段延长线上一点,其他条件不变,请写出线段,,之间的数量关系,并说明理由.图1 图2A B A Rt ABC △90C ∠=︒D CA AD AB =F AB DF DF Rt DFE △EA EA AB ⊥D DG AE ⊥G DEG EFA≌△△AE AF BC =+F BA AE AF BC正定县2023-2024学年度第一学期期中教学质量检测八年级数学答案一、选择题1--5DCDCC 6--10ABCAA 11--15DDCCDB二、填空题17.; 18.1; 19.; 20.(1)120°;(2)3三、解答题21.(本题满分8分)解:(1)③--------------------------------2分(2)原式--------------------------------4分----------------------------------------6分-----------------------------------------------8分22.(本题满分8分)解:(1)根据题意得:把代入得:----------------------1分去分母得:--------------------------------------2分解得:-------------------------------------------3分经检验,是分式方程的解.--------------------------4分(2)去分母得:------------------------------------------5分已知不存在满足条件的x 的值,则,--------------------------6分把代入得-------------------------------------------------------------7分2±2-()()1122223x x x x x ⎡⎤+--⋅⎢⎥+-+⎣⎦()()()()12222223x x x x x x x ⎡⎤+--=-⋅⎢⎥+-+-⎣⎦()()122223x x x x x +-+-=⋅+-()()32223x x x -=⋅+-12x =+7088m x x x-+=--2m =27088x x x -+=--()270x --=9x =9x =7088m x x x-+=--()70m x --=8x =8x =()70m x --=()870m --=解得----------------------------------------------------------8分23.(本题满分8分)解:∵正数a 的两个平方根分别是和∴--------------------------------------------2分∴----------------------------------------------------3分∴------------------------------------------4分∴,-------------------------------------------5分∴,-----------------------------------------------------6分∴------------------------------7分∴的平方根是------------------------------8分24.(本题满分8分)解:∵,∴---------------------------------------2分在和中------------------------------5分∴--------------------------------6分∴.--------------------------------------------------8分25.(本题满分12分)解:(1)设A 型充电桩的单价为x 万元,则B 型充电桩的单价万元,根据题意得----------------------------------4分解得,经检验是原方程的解,---------------------6分答:A 型充电桩的单价为0.6万元,则B 型充电桩的单价为0.9万元;(2)设购买A 型充电桩m 个,则购买B 型充电桩个,根据题意,得:-----------------------------------------------------------------9分解得:又因,且是整数-∴,11,12--------------------------------------------------------10分∴该停车场有3种购买方案,1m =3x +26x -()3260x x ++-=1x =()2316a x =+=()23430b b -+-=10b =21621036a b +=+⨯=2a b +6±BCE ACD ∠=∠ACB ECD ∠=∠ACB △ECD △A E AC ECBCA DCE ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ACB ECD ≌△△4BC CD ==()0.3x +12180.3x x =+0.6x =0.6x =0.30.9x +=()20m -()0.60.92015m m +-≤10m ≥12m ≤10m =方案一:购买10个A 型充电桩、10个B 型充电桩;方案二购买11个A 型充电桩、9个B 型充电桩;方案三:购买12个A 型充电桩、8个B 型充电桩.----------------------------------------11分∵A 型机床的单价低于B 型机床的单价,∴购买方案三总费用最少,最少费用(万元)--------------------------12分26.(本题满分12分)证明(1)∵①,∴,∵,∴∴---------------------------2分在△DEG 和△EFA 中,∴---------------------------4分②证明:∵,,∴,∵,,∴----------------------6分∴,∵,∴,∴-----------------------8分(2),--------------------------------9分理由如下,如图2,过点D 作,交AE 的延长线于点G ,则,∵,∴,∵△DEE 是以DF 为斜边的等腰直角三角形,∴,,∴,∴,∴,---------------------10分∴,∵,∴,∴------------------------------------11分120.680.914.4=⨯+⨯=DG AE ⊥90DEG EDG ∠+∠=︒90DEF ∠=︒90DEG AEF ∠+∠=︒EDG FEA ∠=∠DGE EAF EDG FEADE EF ∠=∠∠=∠=⎧⎪⎨⎪⎩()AAS DEG EFA ≌△△90GDA GAD ∠+∠=︒90GAD BAC ∠+∠=︒GDA BAC ∠=∠AD AB =90DGA C ∠=∠=︒()AAS GDA CAB ≌△△BC AG =DEG EFA ≌△△EG AF =AE AG GE AF BC =+=+BC AE AF =+DG AE ⊥90DGE ∠=︒AE AB ⊥90EAF DGE ∠=∠=︒90DEF ∠=︒DE EF =90GDE GED GED AEF ∠+∠=∠+∠=︒GDE AEF ∠=∠()AAS GDE AEF ≌△△GE AF =90DGE EAF ∠=∠=︒//DG AB GDA CAB ∠=∠在和中,∴,∴,∴------------------------------------12分GDA∠CAB∠DGA CGDA CABAD AB∠=∠∠=∠=⎧⎪⎨⎪⎩()AASGDA CAB≌△△BC AG= BC EG AE AF AE=+=+。
山东省德州市庆云县2023-2024学年八年级上学期期中质量检测数学试卷(含答案)

八年级数学试题2023年11月一、单选题(每题4分,共计48分)1.下列倡导节约的图案中,是轴对称图形的是()A .B .C .D .2.用木棉钉成一个三角架,两根小棒分别是7cm 和10cm ,第三根小捧可取()A .2cmB .3cmC .11cmD .17cm3己知点()(),0A m n n ≠在平面直角坐标系中,则下列各点中与点A 关于x 轴对的是()A .(),m n -B .(),m n -C .(),m n --D .(),n m 4.如图,点E 、F 在BC 上,AB CD =,AF DE =,AF 、DE 相交于点G ,添加下列哪一个条件,可使得ABF DCE ≌△△()4题图A .B C ∠=∠B .AG DG=C .AFE DEF∠=∠D .BF CE=5.如图,在ABC △中,90C ∠=︒,10AB =,AD 是ABC △的一条角平分线.若3CD =,则ABD △的面积为()5题图A .13B .14C .15D .216.如图,小莉从A 点出发,沿直线前进10米后左转20︒,再沿直线前进10米,又向左转20︒, ,照这样走下去,她第一次回到出发点A 时,一共走的路程是()6题图A .150米B .160米C .180米D .200米7.数学课上,同学们探讨利用不同画图工具画角的平分线的方法.小旭说:我用两块念30°的直角三角板就可以画角平分线,如图,取OM ON =,把直角三角板按如图所示的位置放置.两直角边交于点P ,则射线OP 及AOB ∠的平分线,小旭这样画的理论依据是()A .SSAB .HLC .ASMD .SSS8.具备下列条件的ABC △中,不是直角三角形的是()A .3ABC ∠=∠=∠B .A B C ∠+∠=∠C .12A B C ∠=∠=∠D .::1:2:3A B C ∠∠=∠9.如图,将四边形纸片ABCD 沿EF 折叠,点A 落在A 处,若1290∠+∠=︒,则A ∠的度数是()9题图A .45°B .40°C .35°D .30°10.将一副三角板按如图所示方式摆放,使有刻度的边互相垂直,则1∠=()10题图A .45°B .50°C .60°D .75°11.如图,在ABC △中,2AB =,4BC =,ABC △的高AD 与CE 的比为()11题图A .1:2B .2:1C .1:4D .4:112.在数学活动课上,小明提出这样一个问题:90B C ∠=∠=︒,E 是BC 的中点,DE 平分ADC ∠.如图,则下列说法正确答案是()(1)AE 平分DAB ;(2)E EBA DC ≌△△;(3)AB CD AD +=;(4)AE DE ⊥;(5)//AB CD ;(6)CD CE =.A .2个B .3个C .4个D .5个二、填空题(每题4分,共计24分)13.如图,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的.13题图14.正多边形的一个内角为144°,那么该正多边形的内角和为.15.如图,105BAC ∠=︒,若MP 、NQ 分别垂直平分AB 、AC ,则PAQ ∠=.15题图16.如图,一艘轮船在A 处看见巡逻艇M 在北偏东62°的方向上,此时一艘客船在B 处看见巡逻艇M 在北偏东13︒的方向上,则AMB ∠=.16题图17.如图,等腰三角形ABC 的底边BC 长为4,面积是12,腰AC 的垂直平分线EF 分别交AC ,AB 于点E 、F ,若点D 为底边BC 的中点,点M 为线段EF 上一动点,则CM DM +的最小值为.18.如图,在ABC △中,ABC ∠和ACB ∠的平分线相交于点O .过点O 作//EF BC ,交AB 于点E ,交AC 于点F ,过点O 作OD AC ⊥于点D .设线段OD 的长为m ,下列结论中:①EF BE CF =+;②1902BOC A ∠=︒+∠;③点O 到ABC △各边的距离相等;④设ABC △的周长为p ,则12ABC S pm =△.正确的结论有.(填序号)18题图三、解答题(共计78分)19.(8分)已知一个正多边形的边数为n .(1)若这个多边形的内角和为其外角和的4倍,求n 的值;(2)若这个正多边形的一个内角为135°,求n 的值.20.(10分)如图,ABC △中,AB AC =且36A ∠=︒.(1)尺规作图:作B ∠的角平分线,交AC 于点D (保留作图痕迹,不写作法)(2)求ADB ∠的度数。
初中数学山东省济南市历城区八年级数学上学期期中质量检测考试题.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:4的算术平方根是()A.2 B.-2 C.±2 D.16试题2:实数…(相邻两个3之间依次多一个1),其中有理数的个数是()A.4 B.3 C.2 D.1试题3:下列各组数中互为相反数的是()A. -2与B. -2与C.2与D.试题4:下列四组值中,是二元一次方程的解的是()A. B. C. D.试题5:下列函数中,y随x的增大而增大的函数是()A.y=3-x B.y=-0.5x C.y=-2x+1 D.y=x试题6:一次函数y=-2x-1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限试题7:五根小木棒,其长度分别为 7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是 ( )A B C D试题8:下列各式计算正确的是( )A.+= B.4-3=1C.=3 D. 2×3=6试题9:如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2B.x=0C.x=﹣1D.x=﹣3试题10:我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马拉3片瓦,3匹小马拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A .B .C .D .试题11:在同一坐标系中表示一次函数与正比例函数(为常数,且)的图象,可能正确的是()试题12:如图,直线y =x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为直线OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0) B.(﹣6,0)C.(﹣,0) D .(﹣,0)试题13:化简:= .试题14:若(1,),(2,)是正比例函数图象上的两点,则(填“>”“<”或“=”)试题15:已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则P点坐标为_________.试题16:已知 x,y 满足方程组,则的为.试题17:一次函数y= -2x+4的图象与坐标轴所围成的三角形面积是.试题18:如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为.试题19:试题20:试题21:试题22:试题23:试题24:试题25:下面的方格图是由边长为1的若干个小正方形拼成的,的顶点A,B,C均在小正方形的顶点上.(1)在图中建立恰当的平面直角坐标系,取小正方形的边长为一个单位长度,且使点A的坐标为(-4,2),并注明B,C 两点坐标;(2)在(1)中建立的平面直角坐标系中,画出关于y轴的对称的,并写出各顶点的坐标.试题26:如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成以下图案,已知A(-2,6),求长方形纸片的长和宽各是多少,并求点 B 的坐标。
山东省济南市历下区2023-2024学年八年级上学期期中数学试题(含答案)

2023~2024学年第一学期八年级期中教学质量检测数学试题(2023.11)考试时间120分钟满分150分第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限2.下列各式中,是最简二次根式的是()ABCD3.下列关于的函数是一次函数的是()A.B.C.D.4.是下面哪个二元一次方程的解()A.B.C.D.5.下列计算正确的是()ABCD6.一次函数的图象过点,且随的增大而减小,则的值为()A.B.或2C.1D.27.将第一象限的“小旗”各点的横坐标保持不变,纵坐标分别乘以,符合上述要求的图形是()A.B.C.D.8.某校规定学生体测成绩由三部分组成:长跑占成绩的,50米跑占成绩的,立定跳远占成绩的.小明上述三项成绩依次是92分,100分,80分,则小明本次的体测成绩为()分.A.95B.93C.91D.899.一次函数与的图象如图所示,下列选项正确的是()()1,2Ax2yx=y=21y x=-52y x=-53xy=⎧⎨=⎩27x y-=2y x=-+2x y=--231x y-=-+===2+=()20y mx m m=+≠()0,4y x m2-2-1-50%25%25%1y kx b=+2y mx n=+第9题图①对于函数来说,随的增大而减小;②函数的图象不经过第一象限;③A .①②B .①③C .②③D .①②③10.两地相距240千米,早上9点,甲车从地出发去地,20分钟后,乙车从地出发去地.甲、乙两车离开各自出发地的路程(千米)与甲车出发的时间(小时)之间的关系如图所示,下列描述中不正确的有()个.第10题图①甲车的平均速度是60千米/小时;②乙车的平均速度是80千米/小时;③甲车与乙车在早上10点相遇;④两车在10:40或10:58时相距20千米.A .1B .2C .3D .4第Ⅱ卷(非选择题共110分)二、填空题(本大题共6个小题,每小题4分,共24分.)11.如图,在“笑脸”的“嘴巴”上找一格点,这一格点的坐标可以为______(写出一点即可).第11题图12.赵老师每天登录“学习强国”进行学习,在获得信息和知识的同时,还能获得“点点通”奖励.上表是王1y kx b =+s t y kx n =+22k m n b -=-AB A B B A 12s s 、t老师最近一周每日“点点通”奖励情况,这组数据的平均数是______点.星期一二三四五六日“点点通”(点)15202523211719第12题图13.列方程组解题:“今有马二、牛一,直金七两;马三、牛二,直金十二两.马、牛各直金几何?”其大意是:2匹马,1头牛,一共价值7两;3匹马,2头牛,一共价值12两,问每匹马、每头牛各价值多少两?设每匹马两,每头牛两.根据题意,可列方程组为______.14.直线与直线相交于点,则关于的方程组的解为______.15.下表列出了一项实验的统计数据(单位:):5080100150 (30)455580…它表示皮球从一定高度落下时,弹跳高度是下落高度的一次函数,那么变量与之间的关系式为______.16.如图,在平面直角坐标系中,直线表达式为,点是直线上一点,直线过点,且与直线的夹角,则直线的表达式为______.第16题图三、解答题(本大题共10个小题,共86分.请写出文字说明、证明过程或演算步骤.)17.(本小题满分6分)计算:(1);(2.18.(本小题满分6分)解方程组:(1);(2).19.(本小题满分6分)x y 1y x =+y mx n =+()1,M b ,x y 1x yy mx n+=⎧⎨-=⎩cm x yy x y x AB 13y x =()3,1M AB CD M AB 45AMC ∠=︒CD (22++127x y x y =+⎧⎨+=⎩351458x y x y -=-⎧⎨+=⎩和都是方程的解,求与的值.20.(本小题满分8分)如图,直线是一次函数的图象,且经过点和点.第20题图(1)求和的值;(2)求直线与两坐标轴所围成的三角形的面积.21.(本小题满分8分)如图,在平面直角坐标系中,.第21题图(1)作出;(2)作出关于轴的对称图形;(3)求的面积.22.(本小题满分8分)2023年中秋、国庆双节假期期间,济南趵突泉景区共纳客200多万人次,为迎接游客,甲、乙两个纪念品商店对标价都是每个10元纪念印章推出优惠活动:甲商店购买5个以上,从第6个开始按标价的9折卖:乙商店从第1个开始就按标价的9.5折卖.(1)直接写出两商店优惠后的价格(元)与购买数量(个)的关系式();(2)小明要买8个纪念印章,到哪个商店购买比较省钱,请说明理由;21x y =-⎧⎨=⎩14x y =⎧⎨=⎩ax y b -=a b l y kx b =+()0,4A ()5,2B --k b l ()()()4,1,3,3,2,2A B C ----ABC △ABC △y 111A B C △111A B C △y x 5x >(3)若纪念印章的成本为每个7元,请写出甲商店的利润(元)与卖出数量(个)的关系(卖出5个以上).23.(本小题满分10分)2023年10月1日是中华人民共和国成立74周年,学校开展了“迎国庆·弘扬中华传统文化”知识竞赛活动,学校从初中三个年级各随机抽取10人进行相关测试,获得了他们的成绩(单位:分),并对数据(成绩)进行整理、描述和分析,下面给出了相关信息:a .30名同学中华传统文化知识测试成绩的统计图如图1:图1b .30名同学中华传统文化知识测试成绩的频数分布直方图如图2(数据分成6组:,).图2c .测试成绩在这一组的是:70 72 72 74 74 74 75 77d .小明的中华传统文化知识测试成绩为77分.根据以上信息,回答下列问题:(1)测试成绩在这一组的同学成绩的众数为______分;(2)小明的测试成绩在抽取的30名同学的成绩中从高到低排名第______名;(3)抽取的30名同学的成绩的中位数为______分;(4)序号(见图1横轴)为1-10的学生是七年级的,他们成绩的方差记为;序号为11-20的学生是八年级的,他们成绩的方差记为;序号为21-30的学生是九年级的,他们成绩的方差记为.直接写出①,②,③中最小的是______(填序号);(5)成绩80分及以上记为优秀,若该校初中三个年级1800w x 4050x ≤<5060,6070,7080,8090,90100x x x x x ≤<≤<≤<≤<≤<7080x ≤<7080x ≤<21s 22s 23s 21s 22s 23s名同学都参加测试,请估计成绩优秀的同学人数.24.(本小题满分10分)根据以下素材,探索完成任务.如何设计布料剪裁方案?素材1图1中是第31届世界大学生夏季运动会吉祥物“蓉宝”玩偶,经测量,制作该款吉祥物头部所需布料尺寸为,身子布料尺寸.图2是两部分布料的尺寸示意图.图1图2素材2某工厂制作该款式吉祥物,经清点库存时发现,需在市场上购进某型号布料加工制作该款式的玩偶.已知该布料长为,宽为.(剪裁时不计损耗)我是布料剪裁师任务一拟定剪裁方案若要不造成布料浪费,请你设计出一匹该布料的所有剪裁方案:方案一:剪裁头部布料16张和身子布料0张.方案二:剪裁头部布料______张和身子布料______张.方案三:剪裁头部布料______张和身子布料______张.任务二解决实际问题工厂目前已有裁剪好的12张头部布料和4张身子布料,经商议,现需购买一批该型号布料,其中一部分按照方案二裁剪,另一部分按照方案三裁剪,一共制作700个“蓉宝”玩偶.请问:需要购买该型号布料共多少匹(恰好全部用完)?25.(本小题满分12分)为激发学生们对科技的好奇心和探索欲,培养学生的创新意识和创新精神,某学校开展了“智能小车实验探究”50cm 15cm ⨯50cm 40cm ⨯240cm 50cm活动.某小组观察探究小车运动中的函数关系,如图,在一条长为的水平直线轨道上,放置一辆长为的智能小车,开始时小车左端与处挡板重合,然后以的速度匀速向右行驶,当小车接触到处的挡板时因为要改变方向需停顿,然后以相同的速度返回,至再次与处的挡板接触时小车停止运动.在这个过程中,设小车的右端与处挡板的距离为,小车出发后的时间为,请根据所给条件解决下列问题:第25题图(1)小车运动时间为时,的值为______;(2)小车从处驶向处的过程中,求与的函数表达式;(3)当小车左端与处挡板的距离比小车右端与处挡板距离的2倍多时,请求出的值.26.(本小题满分12分)如图,直线与轴、轴分别交于点,直线与轴、轴分别交于点.第26题图第26题备用图(1)直线过定点的坐标为______(填写合适的选项);A .B .C .D .(2)若直线将的面积分为两部分,请求出的值.(3)当时,将直线沿直线作轴对称得直线,此时直线与轴平行,直接写出此时的值.初二年级期中检测数学试题参考答案(2023.11)一、选择题(本大题共10个小题,每小题4分,共40分.)50cm 4cm A 2cm /s B 1s A B ()cm s ()s t 3s s cm B A s t A B 4cmt 1:l y =+x y ,60A B BAO ∠=︒、2:l y kx k =-+x y C D、y kx k =-+M ()1,3(32⎛⎝(2,2l AOB △1:7k 0k >2l 1l 3l 3lx 2:l y kx k =-+k题号12345678910答案ACDABABCDC二、填空题(本大题共6个小题,每小题4分,共24分.)题号111213141516答案答案不唯一20三.解答题(本大题共9个小题,共78分.请写出文字说明、证明过程或演算步骤)17.(满分共6分)(1)(218.(满分共6分)(1)解:将①代入②得:,解得:将代入①得:原方程组的解为(2)解:由①+②得:,解得:将代入②得:,解得:原方程组的解为19.(满分共6分)解:将代入,得:()0,2-273212x y x y +=⎧⎨+=⎩12x y =⎧⎨=⎩152y x =+1522y x =-+()2222431+=-=-=0+=-+=127x y x y =+⎧⎨+=⎩①②127y y ++=2y =2y =213x =+=∴32x y =⎧⎨=⎩351458x y x y -=-⎧⎨+=⎩①②77x =1x =1x =458y +=45y =∴145x y =⎧⎪⎨=⎪⎩21x y =-⎧⎨=⎩ax y b -=21a b--=将代入,得:解得:20.(满分共8分)解:(1)将点和点代入得:解得:,直线的表达式为(2)点把代入,得解得:点,即点21.(满分共8分)解:(1)即为所求;(2)即为所求;(3)22.(满分共8分)解:(1)14x y =⎧⎨=⎩ax y b -=4a b -=1,3a b ==-()0,4A ()5,2B --y kx b=+452b k b =⎧⎨-+=-⎩654k b ⎧=-⎪⎨⎪=⎩6,45k b ∴==∴l 645y x =-+ ()0,4,4A OA ∴=0y =645y x =+6405x +=103x =-∴10,03C ⎛⎫- ⎪⎝⎭103OC = ()0,4,4A OA ∴=11102042233AOC S OA OC ∴=⋅=⨯⨯=△ABC △111A B C △1111117251523122222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=△()500.910595y x x =+⨯⨯-=+甲0.95109.5y x x=⨯=乙(2)到乙商店购买较省钱把代入得:(元)把代入得:(元),到乙商店购买较省钱(3)23.(满分共10分)解:(1)74(2)11(3)73(4)③(5)(人)答:成绩优秀的同学人数为600人.24.(满分共10分)解:任务一:设一卷该布料裁切头部布料张,身子布料张,,,为非负整数,或或故答案为:8 30 6(方法二和方法三可以互换位置)任务二:设用卷该布料裁切头部布料8张,身子布料3张,用卷该布料裁切头部布料0张,身子布料6张,解得:(卷),需要购买该布料159卷.25.(满分共12分)解:(1)40(2)(秒)(3)①当小车从到运动时:解得:②当小车从到运动时:解得:或26.(满分共12分)解:(1)B8x =y 甲98577y =⨯+=甲8x =y 乙9.5876y =⨯=乙7677< ∴95725w x x x =+-=+10180060030⨯=m n 1540240m n +=4883nm -∴=,m n 160m n =⎧∴⎨=⎩83m n =⎧⎨=⎩0,6m n =⎧⎨=⎩x y 870012,367004x x y =-⎧⎨+=-⎩8673x y =⎧⎨=⎩8673159+= ∴()504223-÷= 23124∴+=()224s t ∴=⨯-248s t ∴=-A B ()224624t t =⨯-+16t =B A ()()50424822484t t ---=⨯-+31t =16t ∴=31t =(2)将代入得:将代入得:直线过定点,直线也过定点,是两直线的交点直线将的面积分为两部分,①当时,②当时,(3)0x=y =+y=(0,,B OB ∴=0y=y =+=4x ()4,0,4A OA ∴=11422AOB S OA OB ∴=⨯⨯=⨯⨯=△ 2l (M 1l (M M ∴ 2l AOB △1:70k>18BMD AOB S S ∴=⨯=△△12BMD M S BD x =⨯⨯=△BD=(0,D∴k ∴=0k<18AMC AOB S S ∴=⨯=△△12AMC M S AC y =⨯⨯= △23AC ∴=10,03C ⎛⎫∴ ⎪⎝⎭k ∴=k =。
山东省滨州市滨城区2023-2024学年八年级上学期期中考试数学试题(含答案)

2023-2024学年度第一学期教学质量抽测八年级数学试题(A )温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共8页.满分120分.考试用时120分钟.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、姓名、准考证号填写在答题卡中规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共30分)一、选择题:本大题共10个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B 铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分30分.1.2023年9.23-10.8日,19届亚运会在杭州如火如荼地进行,运动健儿们摘金夺银,全国人民感受到一波强烈的民族自豪感.下列图案表示的运动项日标志中,是轴对称图形的是( )A .B .C .D .2.如图,在中,平分交于点,则的度数为()A .B .C .D .3.已知三角形的两边长分别为3、7,则第三边的取值范围是( )A .B .C .D .4.下列选项中,不能判断是等边三角形的是( )A .B .C .D .,且5.如图,长方形沿着折叠,使点落在边上的点处.如果,,则长方形的面积是()ABC △60,48,A B CD ∠=︒∠=︒ACB ∠AB D BDC ∠72︒90︒96︒108︒a 410a <<410a ≤≤4a >10a <ABC △A B C∠=∠=∠,60AB AC B =∠=︒60,60A B ∠=︒∠=︒AB AC =B C ∠=∠ABCD AE D BC F 60BAF ∠=︒3AB =ABCDA .12B .16C .18D .206.在下列条件:①;②;③;④中,能确定为直角三角形的条件有( ).A .4个B .3个C .2个D .1个7.下列说法中,正确的有()个①两个全等的三角形一定关于某直线对称;②关于某条直线对称的两个图形,对称点所连线段被对称轴垂直平分;③等腰三角形的高、中线、角平分线互相重合;④到三角形三个顶点距离相等的点是三角形三边垂直平分线的交点;⑤的三边为,且满足关系,则为等边三角形.A .1个B .2个C .3个D .4个8.如图所示,是直线上任意两点,,则下列结论错误的是()A .B .平分但不垂直C .垂直平分D .9.如图,在平面直角坐标系中,点在轴的负半轴上,点在第三象限,是等边三角形,点在线段上,且,点是线段上的动点,点是轴负半轴上的动点,当的值最小时,,则点的坐标是()::1:2:3A B C ∠∠∠=2A B C ∠=∠=∠90A B ∠+∠=︒1123A B C ∠=∠=∠ABC △ABC △a b c 、、222()()()0a b b c c a -+-+-=ABC △,C D l ,AC BC AD BD ==ACD BCD∠=∠CD AB AB CD AB ACD BCDS S =△△A x B ABO △E OA 2AE =F AB P y EP FP +7AF =AA .B .C .D .10.如图,在中,,点分别是的边的中点,边分别与相交于点,且,连接,现在下列四个结论;①,②平分,③,④,⑤.则其中正确的结论有( )A .①②③④⑤B .②③④C .①②③⑤D .①②④第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,满分18分)11.如图,把手机放在一个支架上面,就可以非常方便地使用,这是因为手机支架利用了三角形的______性.12.点关于轴的对称点的坐标是______.13.在中,若,则______.14.如图,在中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多为______个()8,0-()9,0-()10,0-()7,0-ABC △120BAC ∠=︒,E F ABC △AB AC 、BC DE DF 、,H G ,DE AB DF AC ⊥⊥AD AG AH 、、60EDF ∠=︒AD GAH ∠B ADF ∠=∠GD GH =60EDF ∠=︒()3,4P -x P 'ABC △20,50B A C ∠=∠+︒∠=︒B ∠=Rt ABC △90B ∠=︒ABC △ABC △15.如图,中,是的角平分线,则______.16.如图,已知点是边上的动点(不与重合),在的同侧作等边和等边,连接,下列结论正确是______(填序号)①;②;③;④是等边三角形;⑤平分;⑥;⑦;⑧;⑨;⑩图中共有2对全等三角形.三、解答题:(本大题共11个小题,满分72分.解答时请写出必要的演推过程.)17.(4分)卷面分4分,第18题-27题.要求:①字迹清晰、工整;②卷面整洁;③使用蓝色笔或黑色笔,不用红色笔,作图时必须用铅笔和绘图工具.18.(6分)如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点(即三角形的顶点都在格点上).ABC △3,2,AB AC AD ==ABC △:BD DC =B AC ,A C AC ABD △BCE △,AE CD ABE DBC △≌△60CHE ∠=︒//GF AC BFG △HB AHC ∠AH DH BH =+CH BH EH =+HGF HBF ∠=∠HFG GBH ∠=∠ABC △(1)的面积为______.(2)在图中作出关于直线的对称图形.(3)在上找一点,使得的距离最短,在图中作出点的位置.19.(8分)如图,.求证:(1);(2).20.(7分)(1)一个多边形的内角和比它的外角和的3倍少,求这个多边形的边数;(2)下面是证明三角形内角和定理推论1的方法,选择其中一种,完成证明.三角形内角和定理推论1:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,,点是延长线上一点.求证:.方法一:利用三角形的内角和定理进行证明证明:方法二:构造平行线进行证明证明:21.(6分)如图,在中,与是的高.ABC △ABC △MN A B C '''△MN P PB PC +P ,12,AB AE C D =∠=∠∠=∠ABC AED △≌△1DEC ∠=∠180︒ABC △D BC ACD A B ∠=∠+∠ABC △AD CE ABC △(1)若,求;(2)若的高与的比是多小?22.(8分)如图所示,将两个含角的三角尺摆放在一起,可以证得是等边三角形,于是我们得到:在直角三角形中,如果一个锐角等于,那么它所对的直角边等于斜边的一半,交换命题的条件和结论,会得到一个新命题:在直角三角形中,______.请判断此命题的真假,若为真命题,请给出证明:若为假命题,请说明理由.23.(4分)如图,已知直角请用尺规作图法,在边上求作一点,使.(保留作图痕迹,不写作法)24.(8分)如图,在中,,点在上,且,7cm,10cm,8cm AB BC CE ===AD 2,3,AB BC ABC ==△AD CE 30︒ABD △30︒,90,ABC B AB BC ∠=︒<△AC P BP AC ⊥ABC △AB AC =D AC BD BC AD ==求(1)图中有哪些等腰三角形?(2)各角的度数.25.(8分)如图,在中,是的垂直平分线,交于点连接.求证:(1)是等边三角形;(2)点在线段的垂直平分线上.26.(10分)在平面直角坐标系中,点满足,点在第一象限,,且 图1 图2 图3(1)如图1,点的坐标为(2)如图2,若点运动到位置,点运动到位置,保持,求的值;(3)如图3,若是线段上一点,为中点,作,连,判定线段与的关系,并加以证明.27.(3分)在人教版八年级上册第十二章、第十三章学习了角平分线以及线段垂直平分线的相关内容,在以后得学习中还将学习一类图形——平行四边形,类比角平分线以及线段垂直平分线的研究思路(路径),我们将从哪些方面学习平行四边形?2023-2024学年度第一学期教学质量抽测八年级数学试题(A )参考答案与试题解析一、选择题(共10小题,满分30分,每小题3分)题号12345678910答案B C A D C B C B A C二、填空题(共6小题,满分18分,每小题3分)11.稳定;12.(3,4); 13.75°; 14.7; 15.3∶2; 16.①②③④⑤⑥⑦⑧⑨三.解答题:(本大题共11个小题,满分72分.解答时请写出必要的演推过程.)7.(4分)卷面分4分,第18题-27题.要求:①字迹清晰、工整;②卷面整洁;③使用蓝色笔或黑色笔,ABC △Rt ABC △90,30,ACB B DE ∠=︒∠=︒AB AB BC 、D E 、CD AE 、ADC △E CD ()()0,,,0,,A a B b a b 2(2)40a b -+-=P PA PB =PA PB⊥P A 1A B 1B PA PB ⊥11OB OA -Q AB C AQ ,PR PQ PR PQ =⊥BR BR PC不用红色笔,作图时必须用铅笔和绘图工具.18.解:(1).(2)如图,即为所求;(3)如图,点即为所求.19.证明:(1),,即,在和中,,;(2),,,.20.解:(1)设这个多边形的边数是,依题意得,,.这个多边形的边数是7.(2)证明:方法一:,.又,.,.方法二:过点作.,111343214131232 1.55222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=---=△A B C '''△P 12∠=∠ 12EAC EAC ∴∠+∠=∠+∠BAC EAD ∠=∠ABC △AED △C D BAC EAD AB AE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABC AED ∴△≌△ABC AED △≌△B AED ∴∠=∠1B AEC DEC AED ∠+∠=∠=∠+∠ 1DEC ∴∠=∠n ()21803360180n -⨯︒=⨯︒-︒()261n -=-7n =∴180A B ACB ∠+∠+∠=︒ ()180ACB A B ∴∠=︒-∠+∠180ACB ACD ∠+∠=︒ 180ACB ACD ∴∠=︒-∠()180180A B ACD ∴︒-∠+∠=︒-∠ACD A B ∴∠=∠+∠C //CE AB ,ACE A ECD B ∴∠=∠∠=∠.21.(1)解:,,;(2)解:,,.22.解:在直角三角形中,一条直角边等于斜边的一半,那么这条直角边所对的角是,此命题是真命题,理由如下:已知:在中,,求证:.证明:延长至点,使,连接,,是线段的垂直平分线,,,,是等边三角形,,,.23.以点为圆心长度为半径画弧交于点,以为圆心,大于为半径画弧交于点,连接交于,点即为所作.24.解:(1)(2)设.,;ACD ACE ECD A B ∴∠=∠+∠=∠+∠1122ABC S AB CE BC AD =⋅=⋅ △11781022AD ∴⨯⨯=⨯⨯28cm 5AD ∴=1122ABC S AB CE BC AD =⋅=⋅ △112322CE AD ∴⨯⨯=⨯⨯23AD CE ∴=30︒ABC △190,2C BC AB ∠=︒=30A ∠=︒BC D CD BC =AD 90,ACB CD BC ∠=︒= AC ∴BD AB AD ∴=12BC AB = BD AB ∴=ABD ∴△60BAD ∴∠=︒AC BD ⊥ 1302BAC BAD ∴∠=∠=︒B AB AC D A D 、12AD E BE AC P P ,,ABC ABD BCD△△△A x ∠=AD BD = ABD A x ∴∠=∠=,;,,;,,.25.(1)证明:在中,,,是的垂直平分线,,,是等边三角形;(2)证明:是的垂直平分线,,,则,,平分,,,是等边三角形,,点在线段的垂直平分线上.26.(1)解:,,,,,过点作,过点作,则:,,,,,又,,,,即:,,,;(2),,,,又,,,;(3),理由如下:BD BC = 2BCD BDC ABD A x ∴∠=∠=∠+∠=AB AC = 2ABC BCD x ∴∠=∠=DBC x ∴∠=22180x x x ++=︒ 36x ∴=︒36,72A ABC ACB ∴∠=︒∠=∠=︒Rt ABC △90,30ACB B ∠=︒∠=︒160,2BAC AC AB ∴∠=︒=DE AB 12AD DB AB ∴==AD AC ∴=ADC ∴△DE AB ,AE BE DE AB ∴=⊥30EAB B ∴∠=∠=︒30EAC BAC EAB ∠=∠-∠=︒BAE CAE ∴∠=∠AE ∴BAC ∠,DE AB AC BC ⊥⊥ DE EC ∴=ADC △AD AC ∴=∴E CD 2(2)40a b -+-= 20,40a b ∴-=-=2,4a b ∴==()()0,2,4,0A B ∴2,4OA OB ∴==P PN OA ⊥B BM PN ⊥90PNA PMB ∠=∠=︒90APN NAP ∴∠+∠=︒PA PB ⊥ 90APN BPM ∴∠+∠=︒BPM NAP ∴∠=∠PA PB =PNA BMP ∴△≌△,PN BM AN PM ∴==OA AN PM OB ∴++=24AN AN ++=1AN ∴=3ON PN OA AN ∴==+=()3,3P ∴11,PA PB PA PB ⊥⊥ 1111APA A PB A PB B PB ∴∠+∠=∠+∠11APA B PB ∴∠=∠1360180,180PAO PBO AOB APB PBB PBO ∠+∠=︒-∠-∠=︒∠+∠=︒ 1PAO PBB ∴∠=∠PA PB =11PAA PBB ∴△≌△11AA BB ∴=()1111426OB OA OB BB AA OA OB OA ∴-=+--=+=+=2,BR PC BR BC =⊥延长至点,使,连接,为的中点,,,,,,,,,,,,,,,.27.答:平行四边形的定义、性质、判定及应用.(答出3点即可得满分).PC S PC CS =AS C AQ AC CQ ∴=PCQ SCA ∠=∠ PCQ SCA ∴△≌△,AS PQ ASC CPQ ∴=∠=∠//AS PQ ∴180SAP APQ ∴∠+∠=︒,PR PQ PA PB ⊥⊥ 180BPR APQ APB APR APQ APB RPQ ∴∠+∠=∠+∠+∠=∠+∠=︒SAP BPR ∴∠=∠,AS PQ PR PA PB === PRB ASP ∴△≌△2,BR PS PC APS PBR ∴==∠=∠90APS BPS ∠+∠=︒ 90BPS PBR ∴∠+∠=︒BR PC ∴⊥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020 年八年级数学第一学期期中教学质量检测
同学们 , 你们好 ! 转眼半个学期飞快地过去了 . 在这半个学期里 , 我们学到了许多新的数学知识 , 提高了数学思维能力 . 现在让我们在这里展示一下自己的真实水平吧 ! 祝大家成功 !
一.精心选一选(本题有
10 小题,每题
3 分,共
30 分)
1.如图,两只手的食指和拇指在同一平面内,它们构成的一对角可以看作是(
A .同位角 B. 内错角
C. 同旁内角
D. 对顶角
)
2.下列说法正确个数有(
①两直线平行,同位角相等③两直线平行,同旁内角相等
④两平行线中,一直线上的点到另一直线的距离处处相等
A .1 个B. 2
个
C.3 个
D. 4 个
3.下列说法不能判断一个三角形是等边三角形的是(
)
A .有三条边相等 B. 有一个角是 60°的等腰三角形
第 1 题图
C. 有三个角相等
D.
有两个角之和等于另一个角的两倍
4.下列几何体中,是棱柱的有(
)
A .4 个 B.3 个 C.2 个
D.1 个
5.下列各图形中,经过折叠不能围成一个立方体的是(
)
6.对于以下调查,不应作抽样的是(
A .日光灯管厂要检测一批灯管的使用寿命
C. 了解现代大学生的主要娱乐方式
D. )
B. 了解居民对废电池的处理情况
防治某突发性传染病期间,某学校对学生测量体温
7.若直角三角形的两边长为
3cm
和
4cm ,则第三边长为(
)
A .5cm
B.
5 cm
C. 7 cm
D.5cm 或
7 cm
8.对于下列一组数据:
18、 8、 9、9、 8、8、 9、 18、9、 11. 它们的众数和中位数分别是(
A .9 和 10
B.9 和 11
C.8 和 10
D.8 和 11 9.如图,已知 AD ⊥BD , AC ⊥ BC , E 为 AB 的中点,则△ CDE 一定是( B )
A .等腰直角三角形
B. 等腰三角形
C.直角三角形
D. 等边三角形
10.如图,在△ ABC 中,∠ B=90 °,∠ ACB 、∠ CAF 的平分线所在的直线交于点
H ,则∠ H )
的
度数是(
)
A .30°
B.45 °
C.60 °
D.以上都有可能
)
②两直线平行,内错角相等
F
D
D
C
A
H
B
E
A E
B
C
第 9 题图
第10题图
二.细心填一填(本题有 10 小题,每题 3 分,共 30 分)
11.如图,若直线 a // b ,∠ 2=50°,则∠ 1=
度。
12.若直角三角形两条直角边长为
3cm 和 4cm ,则斜边上的高线长为
13.某几何体的主视图与左视图是正方形,俯视图是一个圆,则这个几何体是
14.某天老师布置了 均每人做对 30
25
20
15 12
10 9
5 5
第 15 题图
B
对7题
对8题
对9题
对10题
1
a
2
b
第 11题图
cm 。
D
E
C
15.将一条两边沿互相平行的纸带按如图方式对折,若∠ 1=30°,则∠ α = 度。
16.如图,在△ ABC 中,AB=AC ,DE 垂直平分 AB 交 AB 于点 D ,交 AC 于点 E ,若∠ A=50 °,
则∠ CBE= 度。
17.如下图,在一个立方体的表面分别标上数字 1,2,3, 4, 5,6,请在右边表面展开图中分别填上对应的数字。
6 1
18.数据: -3, -1, 0, 1,3 的标准差是 。
第 20 题图
19.若等腰三角形一腰上的高线长是腰长的一半,则这个等腰三角形的顶角是
度。
20.如图, 2002 年 8 月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的 《勾股圆方 图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形。
如果大正方形的面 积是 13,小正方形的面积是 1,直角三角形较短直角边为 a ,较长直角边为 b ,那么( a+b )2 的
值为。
三.动手画一画(本题有
2 小题,共 8 分)
24
10 道课外练习,小明将解题情况绘成条形统计图如下图,试问该班同学平道题。
第 16 题图
A
21. (本题 5 分)已知线段 a, h(如图),用直尺圆规作等腰三角形 ABC,使底边 BC=a, BC边上的高
为 h。
(要求保留作图痕迹并写出作法)
h
a
22.(本题 3 分)如图是由 7 个相同的小立方块搭成的几何体,请画出它的三视图。
四.耐心做一做(本题有 5 小题,共 32 分)
23.(本题5分)如图,在B 港有两艘渔船甲船和乙船,若甲船沿北偏东60°的方向以每小时8 海里速度前进,乙船沿南偏东30°的方向以每小时15 海里速度前进,两小时后,甲船到M 岛,乙船到 P 岛,求 M 岛与 P 岛之间的距离。
北
60M
B
30
P
24.(本题 6 分)如图所示是底面为正三角形的直三棱柱,请根据图中所标尺寸计算它的侧面积
和表面积。
3cm
2cm
25. (本题 6 分)如图, BD是等腰三角形ABC的底边 AC上的高, DE∥ BC,交 AB 于点 E。
请判断
△ BDE是怎样的特殊三角形,并说明理由。
A
D
E
B C
26.(本题统计了这7 分)龙港某公司生产部有技术工人
15 名工人某月的加工零件个数:
15 人,生产部为了合理制定产品的每月生产定额,
每人加工件数540 450 300240 210120 人数 1 1 2 6 3 2
( 1)写出这 15 人该月加工零件数的平均数、中位数和众数;
( 2)假如生产部负责人把每位工人的月加工零件数定为什么?
如果你作为生产部负责人,会如何处理定额问题?
260 件,你认为这个定额是否合理,为
27.(本题 8 分)在△ ABC中,∠ C=2∠A, BD平分∠ ABC。
( 1)如图甲,若 AB=AC,则 BC+CD=AB,请说明理由;( 2)如图乙,若 AB≠ AC,上述结论是否同样成立?请说明理由。
A
A
D
D
B C B C
甲乙。