准谐振反激的原理、应用及参数计算

合集下载

反激计算

反激计算

反激计算一、变压器设计1. 确定最小工作频率: min f准谐振模式下,工作频率是变化的,最小输入电压满载情况下的频率。

2. 估算匝比: Vd Vo Vin Vds n +-=maxmax .一般反射电压)(Vd Vo n VOR +=取得大一些,选800VMOS 管,考虑一定裕量,取Vds_max=640V 。

3. 确定最大占空比: Ton Vin ⨯=()Toff Vd Vo n ⨯+= (伏秒平衡) Tf Toff Ton T ++= (us Tf 15.0到≈) f T 1= TT o nD =⇒T o f f Vd Vo n TonVin =+⨯)( ①T o f f Tf Ton T =-- ② ① 除以②得1))((=--+⨯Tf Ton T Vd Vo n TonVin整理得Tf Ton T Vd Vo n TonVin --=+⨯)(两边同时除以Ton)()(Vd Vo n Vd Vo n vin Ton Tf T +++=- 又有 f D T o n=,fT 1=得 )1()()(max Tf f Vd VO n Vin Vd Vo n D ⨯-⨯+++=a. 伏秒平衡: 处于稳定状态的电感,开关导通时间(电流上升段)的伏秒数须与开关断开(电流下降段)时的伏秒数在数值上相等,尽管两者符号相反。

b.减小。

增大,损耗减小。

和管开关损耗减小。

,增大,增大,,增大。

增大,增大。

增大,当,则设D Vin Coss MOS F T on 1f T on D D )(X a 11,,Tf Toff D T Ton Vd Vo n ba b c b X c b c X b c a b a c b a aX ++=⨯=+⇒+-=-=-=-=+=+=c. Tf :MOS 管Vds 下降时间典型值0.5到1us ,MOS 管Id 为0到下次导通的死区时间。

4.计算初级绕组电感量: min _212f Lp pk Ip Pin ⨯⨯=③T o n LpVin pk Ip ⨯=min_ fDT D T o n=⨯= 得Pinf D Vin Lp ⨯⨯⨯=min 2max min 22③ 式: 电感阻止电流变化的性质表明电感的储能特性。

准谐振反激变换 芯片

准谐振反激变换 芯片

准谐振反激变换芯片准谐振反激变换芯片是一种使用半导体技术制造的电子器件,用于实现电能的高效转换和管理。

它在电力电子领域中起着至关重要的作用,常被应用于电源供应、驱动电路和各类转换器中。

本文将一步一步地回答关于准谐振反激变换芯片的关键问题,以帮助读者更好地了解其工作原理和应用领域。

第一步:什么是准谐振反激变换?准谐振反激变换是一种电力电子变换器拓扑结构,主要用于高效地将输入电源转换成所需的电压或电流输出。

它的特点是在转换过程中充分利用电感和电容的特性,以减小开关器件的开关损耗和电流/电压的峰值,从而提高整个电路的能量转换效率。

第二步:准谐振反激变换芯片的工作原理是什么?准谐振反激变换芯片的工作原理主要基于电感和电容的振荡特性。

它通常由多个开关器件、变压器、电容和电感组成。

当输入电源施加到变压器的一侧时,开关器件周期性地开关,将电流施加到变压器的另一侧。

同时,电容和电感将能量存储并释放到输出负载中。

这种周期性开关和能量存储释放的过程可以通过控制开关器件的开关状态和频率来实现。

准谐振反激变换芯片通过精确控制开关器件的开关时间和电流/电压波形,使得变压器和电容/电感的振荡达到合适的状态,以达到高效的电能转换和管理。

第三步:准谐振反激变换芯片的应用领域有哪些?准谐振反激变换芯片在电力电子领域具有广泛的应用。

以下是几个典型的应用领域:1. 电源供应:准谐振反激变换芯片被广泛应用于各种类型的电源供应,例如开关电源、充电器和逆变器。

它可以提供高效的能量转换和稳定的输出电压/电流,满足电子设备对电源的要求。

2. 驱动电路:准谐振反激变换芯片也可以用于驱动各种电机和执行器,在工业自动化和机器人领域中得到广泛应用。

它可以提供高效的电能转换和精确的电机控制,实现高性能的运动系统。

3. 新能源应用:随着可再生能源(如太阳能和风能)的快速发展,准谐振反激变换芯片也被广泛应用于新能源领域。

它可以实现将可再生能源转换成可用电能,并提供高效的电能管理和储存解决方案。

反激式开关电源准谐振变换的实现

反激式开关电源准谐振变换的实现

反激式开关电源准谐振变换的实现
准谐振变换的基本原理是通过控制开关管的导通和截止,使得电感和
电容在谐振频率上发生能量交换,从而实现对输入电源的变换。

其工作周
期分为两个状态,分别是开关导通状态和开关截止状态。

在开关导通状态下,开关管导通,输入电源的电流通过开关管和电感
流入负载。

此时,谐振电容的电压为零。

当电流达到峰值时,开关管截止。

在开关截止状态下,开关管截止,负载和电感之间形成了一条环路。

电感和谐振电容开始发生交换能量,将负载能量储存到电感中,谐振电容
的电压开始增加。

为了实现准谐振变换,需要考虑谐振频率的选择和谐振网络的设计。

谐振频率的选择取决于输入电压和输出电压的比例关系。

谐振网络的设计
主要包括谐振电感、谐振电容和开关管的选择。

在实际应用中,准谐振变换可以实现高效率、小体积的电源变换。


传统的开关电源相比,准谐振变换具有以下特点:
1.高效率:准谐振变换可以实现高达95%以上的转换效率,减少能量
损耗,提高能源利用率。

2.小体积:准谐振变换可以采用高频开关管,减小变压器和谐振元件
的尺寸,使整个电路体积更小。

3.稳定性好:准谐振变换通过控制开关管的导通和截止,使得能量交
换在谐振频率上发生,输出电压较为稳定。

4.输入电流波形好:准谐振变换在输入电流波形上具有较低的峰值和
谐振频率,减小了对输入电源的干扰。

总之,反激式开关电源准谐振变换通过谐振网络的设计和控制实现对输入电源的变换,具有高效率、小体积和稳定性好的特点。

它在电源变换领域有着广泛的应用前景。

反激式准谐振 计算频率

反激式准谐振 计算频率

反激式准谐振计算频率一、引言在电力电子领域中,反激式准谐振电路是一种常用的电路拓扑。

它具有转换效率高、体积小、成本低等优点,广泛应用于开关电源、充电器等领域。

反激式准谐振电路的频率特性对于其性能和稳定性具有重要影响。

因此,准确计算反激式准谐振电路的频率是至关重要的。

本文将详细介绍反激式准谐振电路的工作原理、频率计算方法以及影响频率的因素。

二、反激式准谐振电路的工作原理反激式准谐振电路由开关管、磁性元件、电容和二极管等组成。

其工作原理基于开关管的开启和关闭,以及磁性元件中的电流和电压的变化。

在开关管开启时,电流流入磁性元件,同时电容充电;在开关管关闭时,电流反向流动,磁性元件中的能量传递给负载。

这个过程在一个固定的频率下重复,形成了准谐振。

三、反激式准谐振频率的计算方法反激式准谐振电路的频率计算需要考虑多个因素,包括磁性元件的参数、电容的参数以及电路的拓扑结构等。

其中,磁性元件的参数包括磁芯的磁感应强度、匝数和气隙长度等;电容的参数包括容量和耐压值等。

这些参数的选择直接影响着反激式准谐振电路的频率。

在实际应用中,通常采用经验公式或仿真软件来计算反激式准谐振电路的频率。

其中,经验公式是根据实际测试数据总结出来的,适用于特定规格的磁性元件和电容。

而仿真软件则可以通过模拟电路的实际工作情况,得到更为精确的结果。

四、影响反激式准谐振频率的因素在实际应用中,反激式准谐振电路的频率会受到多种因素的影响。

以下是其中的几个主要因素:1.输入电压和负载电流:输入电压和负载电流的变化会影响磁性元件中的电流和电压,从而影响反激式准谐振电路的频率。

在实际应用中,需要根据输入电压和负载电流的变化范围,选择合适的磁性元件和电容,以保证电路的稳定工作。

2.磁性元件的磁感应强度:磁感应强度是磁性元件的重要参数,它直接影响着磁性元件的工作状态和能量传输效率。

在实际应用中,需要根据磁感应强度的变化范围,选择合适的磁性元件,以保证电路的稳定工作。

反激准谐振工作原理

反激准谐振工作原理

反激准谐振工作原理小伙伴们!今天咱们来唠唠反激准谐振这个超有趣的东西。

咱先来说说反激变换器是啥。

想象一下,就像是一个超级智能的小助手,它能把输入的电能变来变去。

在反激变换器里啊,有个变压器,这个变压器可不像咱们平常看到的那种老老实实传电的家伙。

它有点调皮呢,在开关管导通的时候,它就开始储存能量,就像小松鼠囤坚果一样,把电能都囤在自己这儿。

然后呢,当开关管一关,它就把储存的能量释放出去,给到负载那边。

这一存一放的过程,就像是一场能量的接力赛。

那准谐振又是咋回事呢?这就更有意思啦。

准谐振就像是给这个反激变换器加上了一个魔法咒语。

当开关管关断的时候啊,电路里会发生一些奇妙的变化。

这个时候,电路里的一些元件,像是电感啊、电容啊,它们之间就开始互相作用。

就好像是一群小伙伴在开派对,电感和电容开始玩起了一种特殊的游戏。

你看啊,电感有个特点,它不喜欢电流突然变化,就像一个慢性子的小老头。

电容呢,它对电压的变化也有自己的小脾气。

在准谐振状态下,它们之间的能量交换就变得很有规律。

比如说,电感的能量会逐渐转移到电容上,这时候电容的电压就会慢慢升高。

这个过程就像是海浪一波一波地涌过来,电容的电压就像海浪的高度一样,一点一点地变化着。

而且哦,准谐振还有个很大的好处呢。

它能够降低开关管的损耗。

你想啊,开关管就像一个忙碌的小工人,一直在那开开关关的。

如果没有准谐振这个魔法,它在开关的时候就会消耗很多能量,就像小工人干活累得气喘吁吁还浪费很多力气一样。

但是有了准谐振,就像是给小工人找了个省力的工具,让它在开关的时候能够轻松一些,损耗的能量就少啦。

在这个反激准谐振电路里啊,还有很多小细节值得我们去琢磨。

比如说,电路里的各种参数就像是做菜时的调料一样,得搭配得刚刚好。

电阻的大小、电感的电感量、电容的容量,这些都得相互配合。

如果哪个参数出了问题,就像做菜时盐放多了或者少了一样,整个电路的工作就会变得不正常。

再说说这个电路的工作频率。

双管准谐振反激技术用于一体机电脑电源的高效率实现

双管准谐振反激技术用于一体机电脑电源的高效率实现

双管准谐振反激技术用于一体机电脑电源的高效率实现双管准谐振反激技术是一种用于一体机电脑电源的高效率实现的技术。

它通过合理的电路设计和控制策略,可以在电源转换过程中实现高效率的能量转换,提高电源的效率和性能。

以下将详细介绍双管准谐振反激技术在一体机电脑电源中的应用。

一体机电脑是现代生活中常见的电子设备之一,它通常由显示器、计算机主机和电源三个部分组成。

其中,电源的效率和性能对整个一体机电脑的使用体验和能耗有着重要影响。

传统的一体机电脑电源往往采用开关电源技术,虽然在一定程度上满足了电源的输出要求,但存在着一些问题,例如效率较低、热损失大、功率因素低、电磁干扰等。

为了改善传统电源的这些问题,双管准谐振反激技术被引入到一体机电脑电源中。

该技术以谐振电路为基础,通过对电源的控制和调节,实现高效率能量转换。

在双管准谐振反激技术中,通过合理的电路设计和控制策略,将电源的工作频率与变压器的谐振频率相匹配,以减小开关损耗和谐振回路的能耗,从而提高电源的整体效率。

双管准谐振反激电源的基本工作原理是通过在输入端串联电感,使电源供电端看到一个较大的电感值,降低电流幅值,减小电路开关损耗。

同时,在输出端串联电容,使补偿电流回流到源极,形成零电流开关。

另外,在控制方面,采用自适应控制算法,实时调节开关频率和占空比,以实现电源工作在最佳工作点,进一步提高能量转换效率。

通过应用双管准谐振反激技术,一体机电脑电源可以获得以下几个方面的优势。

首先,该技术可以显著提高电源的效率,减少能量损耗,降低电源的负载和运行温度,延长电源的使用寿命。

其次,双管准谐振反激技术可以提高电源的功率因素,减少电网的谐波污染和无功功率的产生,提高电网的利用率。

此外,该技术还可以降低电磁干扰,减少电子设备之间的电磁干扰,提高整个系统的稳定性和可靠性。

总结来说,双管准谐振反激技术是一种用于一体机电脑电源的高效率实现的技术。

通过合理的电路设计和控制策略,该技术可以提高电源的转换效率、功率因素和稳定性,降低能量损耗和电磁干扰,提高整个系统的性能和可靠性。

准谐振式反激式开关电源IRIS4015原理及设计要点

准谐振式反激式开关电源IRIS4015原理及设计要点


口 J 压居 月遨 泪
图 1 I 05 I R 1 内部原理框图 S4 II 05可以 RS 1 4 工作在准谐振模式下,该模式下频率可变, 在轻载和高电 源电 压下达最大。 RS05 II 1 4 具有各种保护电 路如: 温度补偿的 逐个脉冲过电 流保护( C )过电 O P 压锁定保护( V )热关闭电 T D ; 、 O P、 路(S ) 启动电流最大不超过 10A 有源低通滤波器可使轻载时稳定 0u , 度提高;内 置温度补偿基准电 压; 具有可调 门驱动;并且可以 通过外部元件调整开关速度用于E I M 控制。 21 I41工作原理如下: . RS05 I II 05 启动Z作方式 U 34 相似, RS 1 的 4 C 82 不再赘述。 注意: 启动电 s 阻R 和启动电 C 的 容 Z 取值范围如
下:
C ; u 10 F : 2 F一 0 u 2
-7 3 5-
一 一 一 遗. & - 经* A 一 一 一 xl 艺 Af - kt i 竺 }
R : 。 一 6K ( s 4K 7 8 I 输入电 1 伏) Z 压 1 0
8K。 一 5K 输入电压 20 10 S ( 2 2 2 伏)
ON it Ca t l W dh nr a
图4 次级电压控制对脉冲宽度的影响 23 准谐振工作方式的分析 . 准谐振方式是在 V S D最小情况下的清 况下,由 初级线圈电 感和一个缓冲电容器提供一个控制 M SE O F T开 通 的谐振信号,以降低开关损耗。在这种工作模式下的O P B将高于V () 4V 最大6 ) C/ F t 2 =. h 15 V ,当 这个电 压维持在V ()以上时, O F T m 1 M SE 保持关断状态 ( 注意: 准谐振信号最小持续时f u) 此, 7I 。因 s 准谐振模式下的谐振频率的一半周期用来使M SE O FT导通。漏极和源极之间的 谐振电容C 与变压器初级 3 电 感形成谐振电路, 在控制绕组D与 O P B端加一个由C, C/ F 3 马、 , R 组成的 延迟电 路产生准谐振信号, 在M SE 截止时控制比较器2 O FT 并触发准谐振方式。

L6565(自己总结的)

L6565(自己总结的)

一.准谐振反激式开关电源原理分析:准谐振反激式开关电源等效原理图准谐振反激式开关电源等效原理图如上图所示。

其中Lm为原边励磁电感,Lk为原边漏感。

电容Cd包括主开关管Q的输出电容Coss、变压器的匝间电容以及电路中的其他一些杂散电容。

Rp为初级绕组的寄生电阻,包括变压器原边绕组的电阻,铜线的高频趋肤效应、磁材料的损耗以及辐射效应的等效电阻。

准谐振反激式开关电源工作在DCM或CRCM状态,副边二极管电流下降到零之后(当副边绕组中的能量释放完毕之后,即变压器磁通完全复位),电容Cd,原边电感Lp=Lm+Lk 以及电阻Rp构成一个RLC谐振电路,主开关管Q两端电压Vds将产生振荡,振荡频率由L P、C P决定,衰减因子由R P决定。

对于传统的反激式变换器,其工作频率是固定的,因此开关管V ds再次导通有可能出现在振荡电压的任何位置(包括峰顶和谷底),视负载情况而定。

而这无疑增加了开关管的损耗。

可以设想,如果控制开关管每次都是在振荡电压的谷底导通,那么就可以实现零电压导通(或是低电压导通),这必将减少开关损耗,降低EMI噪声。

准谐振反激式开关电源正是如此,不管负载情况如何,总是在当检测到Vds波形振荡到谷底时,控制器控制主开关管Q开通,降低主开关管Q的开通损耗,同时使得输出电容Cd上的能量损耗达到最小。

这个的实现方法比较简单,只要增加磁通复位检测功能(通常是辅助绕组来实现),以便在检测到振荡电压达到最低点时打开开关管,就能达到目的。

二.L6565芯片:L6565芯片特点:在轻负载下也能自动降低工作频率,以保证变换电源能够最大限度的工作在电压过零ZVS状态。

同时因线电压前馈功能,有可以确保变换电源在电网电压波动幅度足够大时,其输出功率仍然维持恒定。

芯片内部集成有启动电路、精密基准电压源、电压误差放大器、电流检测比较器、零点流检测电路、RS锁存器、图腾柱式驱动级以及打嗝模式比较器和过流保护等功能。

L6565引脚图1 .INV 输出电压采样反馈输入2 .COMP 误差放大器输出端3 .VFF 母线前馈电压输入4 .CS 电感电流采样反馈输入5 .ZCD 零电流检测信号和禁止电路输入6 .GND 控制电路接地7 .GD 驱动方波脉冲输出8 .VCC 控制电路电源供电端L6565内部电路1. 电源供给模块:图中,芯片内栅极驱动器电压直接由VCC提供,其它所有电路的工作电压均由一个线性电压调节器通过Vcc产生一个7V的内部电压来供电。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

准谐振反激的原理、应用及参数计算
如果不用固定的时钟来初始化导通时间,而利用检测电路来有效地“感测”MOSFET (VDS) 漏源电压的第一个最小值或谷值,并仅在这时启动MOSFET导通时间,结果会是由于寄生电容被充电到最小电压,导通的电流尖峰将会最小化。

这情况常被称为谷值开关(Valley Switching) 或准谐振开关。

这篇文章的目的目的在于和大家分享关于准谐振反激的原理、应用及参数计算方面的知识。

准谐振QR
Q(Quasi)
R( resonant)
主要是降低mosfet的开关损耗,而mos的开关损耗主要是来源于自身的输出电容。

从上图中,大家可以讨论一下,一般的开关损耗来自于那几个部分的寄生电容产生的。

在传统的非连续模式反激DCM)的停滞时间内,寄生电容将会跟VDC周围的主要电感产生振荡。

寄生电容上的电压会随振荡而变。

相关文档
最新文档