北京北京汇文中学高三数学等比数列测试题doc

合集下载

北京市东城区汇文中学2022~2023学年第一学期高三期中数学试卷及答案

北京市东城区汇文中学2022~2023学年第一学期高三期中数学试卷及答案

北京汇文中学教育集团2022-2023学年度第一学期期中考试 高三年级 数学学科本试卷共5页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

一、 选择题(本大题共12小题,每小题4分,共48分) 1. 已知集合{}11A x x =-<<,{}02B x x =≤≤,则AB =( ).A .{}01x x ≤<B .{}12x x -<< C .{}12x x -<≤ D .{}02x x ≤≤ 2. 已知a R ∈,则“2a >”是“22a a >”的( ).A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 3.在复平面内,复数i(2i)z =+对应的点的坐标为A. (1,2)B.(1,2)-C. (2,1)D.(2,1)- 4.已知命题:p (0,)a ∀∈+∞,12a a+>,则p ⌝是 A. (0,)a ∃∈+∞,12a a +> B. (0,)a ∃∉+∞,12a a +> C. (0,)a ∃∈+∞,12a a +≤ D. (0,)a ∃∉+∞,12a a+≤5.下列函数中,是奇函数且在其定义域上为增函数的是A.sin y x =B.||y x x =C.tan y x =D.1y x x=- 6.将函数sin 2y x =的图像向右平移π6个单位,得到函数()f x 的图像,则下列说法正确的是 A .π()sin(2)6f x x =- B. π3x =-是函数的()f x 图像的一条对称轴C. ()f x 在ππ[,]63-上是减函数 D. ()f x 在π5π[,]1212-上是增函数7. 已知,,a b c R ∈,那么下列命题中正确的是( ). A .若a b >,则22ac bc > B .若a bc c>,则a b > C .若a b >且0ab <,则11a b> D .若22a b >,则11a b <8. 已知等比数列{}n a 中,11a =,且58258a a a a +=+,那么5S 的值是( ).A .15B .31C .63D .649. 在ABC ∆中,M 是BC 的中点,1AM =,点P 在AM 上且满足2AP PM =,则)(PC PB AP +⋅等于( ).A .43- B. 43 C. 49- D. 49高10. 定义:角θ与ϕ都是任意角,若满足2πθϕ+=,则称θ与ϕ “广义互余”.已知1sin 4=α,下列角β中,可能与角α“广义互余”的是( ). A .15sin 4β=B .1cos()4πβ+=C .15tan 5β=D .15tan 15β=11. 唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河”,诗中隐含着一个有趣的数学问题“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在地为点(2,3)B -,若将军从点(2,0)A 处出发,河岸线所在直线方程为3x y +=,则“将军饮马”的最短总路程为( ). A 26B 29 C.31D 3412. 在等差数列{}n a 中,19a =-,51a =-. 记12n n T a a a =(1,2,)n =,则数列{}n T ( ). A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项 D .无最大项,无最小项二、 填空题(本大题共6小题,每小题5分,共30分)13.已知n S 是数列{}n a 的前n 项和. 若2n S n =,则2a =_________. 14. 已知1a >,则4+1a a -的最小值为_________. 15. 若直线y a =与函数3()3f x x x =-的图象有相异的三个公共点,则a 的取值范围是 .16. 已知平面内的点()2,0A ,(),B x y ,()1,3C,若四边形OABC (O 为坐标原点)是平行四边形,则向量OB 的模为 . 17. 已知函数2ln ()xf x x x=-,给出下列四个结论: 函数()f x 是奇函数;函数()f x 在(,0)-∞和(0,)+∞上都单调;当0x >时,函数()0f x >恒成立; 当0x <时,函数()f x 有一个零点.其中所有正确结论的序号是____________ .18.某生物种群数量Q 与时间t 的关系近似地符合10e ()e 9tt Q t =+. 给出下列四个结论:① 该生物种群的数量不会超过10;② ②该生物种群数量的增长速度先逐渐变大后逐渐变小; ③该生物种群数量的增长速度与种群数量成正比; ③ 该生物种群数量的增长速度最大的时间0(2,3)t ∈. 依据上述关系式,其中所有正确结论的序号是________.三、解答题(本大题共5小题,共72分)19.(本小题共14分)已知等差数列{}n a 满足142n na a n ++=+.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n n b a -是公比为3的等比数列,且13b =,求数列{}n b 的前n 项和n S .20.(本小题共14分)设△ABC 的内角A B C ,,的对边分别为a b c ,,,且sin 3cos a B b A =.(Ⅰ)求角A 的大小;(Ⅱ)再从以下三组条件中选择一组条件作为已知条件,使三角形存在且唯一确定,并求△ABC 的面积.第③ 组条件: 19,5a c ==; 第②组条件: 1cos 423C c ==,; 第③组条件: AB 边上的高3h = ,3a =.21.(本题满分14分)如图,四棱锥P ABCD -的底面ABCD 为正方形,侧面PAD ⊥底面ABCD .PAD △为等腰直角三角形,且PA AD ⊥.E ,F 分别为底边AB 和侧棱PC 的中点.(1)求证:EF ∥平面PAD ; (2)求二面角E PD C --的余弦值.22.(本小题共15分)设函数2()(3),f x x x x a a =-+∈R .(Ⅰ)当9a =-时,求函数()f x 的单调增区间;(Ⅱ)若函数()f x 在区间(1,2)上为减函数,求a 的取值范围;(Ⅲ)若函数()f x 在区间(0,2)内存在两个极值点12,x x ,且满足1212()()()()f x f x f x f x ->+,请直接写出a 的取值范围.23.(本小题15分)设正整数3n ≥,集合{}12( )1 2 n k A x x x x k n ==⋅⋅⋅∈=⋅⋅⋅R ,,,,,,,,a a ,对于集合A 中的任意元素12( )n x x x =⋅⋅⋅,,,a 和12( )n y y y =⋅⋅⋅,,,b ,及实数λ,定义:当且仅当(1,2,,)i i x y i n ==时=a b ;1122( )n n x y x y x y +=++⋅⋅⋅+,,,a b ;12( )n x x x λλλλ=⋅⋅⋅,,,a .若A 的子集{}123B =,,a a a 满足:当且仅当1230λλλ===时,112233(0 0 0)λλλ++=⋅⋅⋅,,,a a a ,则称B 为A 的完美子集.(Ⅰ)当3n =时,已知集合1={(1,0,0),(0,1,0),(0,0,1)}B ,2={(1,2,3),(2,3,4),(4,5,6)}B ,分别判断这两个集合是否为A 的完美子集,并说明理由;(Ⅱ)当3n =时,已知集合{}(21) ( 21) (1 2)B m m m m m m m m m =---,,,,,,,,.若B 不是A 的完美子集,求m 的值;(Ⅲ)已知集合{}123,,B A =⊆a a a ,其中12( )(1 2 3)i i i in x x x i =⋅⋅⋅=,,,,,a ,若1232ii i i i x x x x >++对任意1 2 3i =,,都成立,判断B 是否一定为A 的完美子集. 若是,请说明理由;若不是,请给出反例.答案选择题 CABCB DCBDA BB 填空题 13.2 14. 5 15. 16. 32 17.18.①②④解答题 19.(本小题共14分)解:(Ⅰ)因为142n n a a n ++=+,所以当1n =时,216a a +=. ① -------------------------------------------1分 当2n =时,3210a a +=, ②-------------------------------------------2分 ②—①得314a a -=.因为{}n a 为等差数列,设公差为d ,所以3124d a a =-=,则2d =, -----------------------------------------4分 由①可得126a d +=,所以12a =,----------------------------------------6分 所以1(1)2(1,2,)n a a n d n n =+-==.-----------------------------------7分经检验2n a n =符合题意,所以通项2n a n =.其它解法:因为{}n a 为等差数列,设公差为d ,则1(1)n a a n d =+-,11n a a nd +=+,---2分 所以112(21)n n a a a n d ++=+-, 由已知可得12(21)42a n d n +-=+,因为122(42)a d d n --=-对于n +∀∈N 成立,-----------------------3分 所以2d =,12a =, ----------------------------------------6分 所以1(1)2(1,2,)n a a n d n n =+-==.-----------------------------------7分(Ⅱ)因为{}n n b a - 是公比为3的等比数列,又知13b =,所以11111()3=(32)3=3n n n n n b a b a ----=-⨯-⨯,-----------------------9分 所以11332n n n n b a n --=+=+, 所以0121(3333)+2(123)n n S n -=++++++++132(1)132n n n -+=+- ------------------------------------------------13分 1(31)(1)2n n n =-++. ---------------------------------------------------------14分 20.(本小题共14分) 解:(Ⅰ)由正弦定理sin sin a bA B=及sin cos a B A =得sin sin cos A B B A , ------------------------------------------------------2分因为()0,πB ∈,所以sin 0B ≠ --------------------------------------------------------3分所以sin A A =, ----------------------------------------------------------4分所以tan A = ----------------------------------------------------------5分 因为()0,πA ∈, ----------------------------------------------------------6分 所以π3A =. ----------------------------------------------------------7分 (Ⅱ)选②: ---------------------------------------------------8分 法一:因为1cos 3C =,()0,πC ∈,所以sin C .----------------------------------------9分由正弦定理sin sin a c A C=得sin sin c Aa C ===.--------------------10分由πA B C ++=得()11sin sin sin cos cos sin 32B A C A C A C =+=+=+.-12分所以11sin 22ABC S ac B ∆==⨯=分法二:因为1cos 3C =,()0,πC ∈,所以sin C . -------------------------------------9分由正弦定理sin sin a c A C=得sin sin 3c A a C ===.-------------------10分由余弦定理2222cos c a b ab C =+-得23227b =+-,即250b --=,解得b =(舍负)所以b =. ------------------------------------12分所以11sin 22ABC S bc A ∆==⨯⨯=分 法三:所以1cos 3C =,()0,πC ∈,所以sin C .由正弦定理sin sin a c A C=得sin sin c Aa C ===.由余弦定理2222cos a b c bc A =+-得22732b =+-,即250b -+=,解得b =由2221cos 023a b c C ab +-==>,得2225b c a >-=所以b =.所以11sin 222ABC S bc A ∆==⨯⨯=选③:-------------------------------------------------------------------------------------8分法一:因为π3A =,AB边上的高h = 作CD AB ⊥,垂足为D,则CD =,在Rt ∆CAD 中有sin h A b=,所以2sin hb A==. --------------------------------------------------------------10分由余弦定理2222cos a b c bc A =+-得2942c c =+-,即2250c c --=,解得1c =(舍负)所以1c =. ------------------------------12分所以(11122ABCSch ==⨯=. ---------------------------------14分 法二:过C 作CD 垂直直线AB 于D,则CD h ==,所以2sin CD b A==, ------------------------------------------------------------10分所以1cos 212AD b A ==⨯=. 因为3a =,由勾股定理得BD ===---------------------12分 因为a b >,所以A B >,即60B <,所以AB AD BD =+,所以(11122ABC S ch ∆==⨯. ----------------------------14分21. (本小题共14分) ⑴略. 22.(本小题共15分)解:(Ⅰ)当9a =-时,2()(39)f x x x x =--,2()3693(1)(3)f x x x x x '=--=+-,------------------------------------------2分'(f x 的情况如下:所以,函数()f x 的增区间为(,1]-∞-和[3,)+∞﹒--------------------------------4分 (Ⅱ)由2()(3)f x x x x a =-+得2()36f x x x a '=-+,因为()f x 在区间(1,2)上为减函数,所以()0f x '≤在(1,2)内恒成立,-----------------------------------------------------6分 因为22()363(1)3f x x x a x a '=-+=-+-,所以(1,2)x ∈时,'()(3,)f x a a ∈-,-----------------------------------------------8分 所以(,0]a ∈-∞.---------------------------------------------------------------------------9分 或者:()0f x '≤,即236,(1,2)a x x x ≤-+∈恒成立, (1,2)x ∈时,22363(1)3(0,3)x x x -+=--+∈(Ⅲ)所以a 的取值范围为9(0,)4﹒----------------------------------------------------------15分 23.(本小题共15分) 解:(Ⅰ)1B 是完美集;-------------------------------------------1分设112233(0 0 0)λλλ++=,,a a a , 即1230λλλ===. 所以1B 是完美集.------------------------------------------2分2B 不是完美集.------------------------------------------3分设112233(0 0 0)λλλ++=,,a a a , 即12312312324023503460λλλλλλλλλ++=⎧⎪++=⎨⎪++=⎩.,, 令3=1λ,则12=2=3λλ-,. 所以2B 不是完美集.------------------------------------------5分(Ⅱ)因为B 不是完美集,所以存在123()(0 0 0)λλλ≠,,,,,使得112233(0 0 0)λλλ++=,,a a a , 即123123123202(1)0(1)(1)20m m m m m m m m m λλλλλλλλλ++=⎧⎪++-=⎨⎪-+-+=⎩,,.------------------------------------------6分因为{}(21) ( 21) (1 2)B m m m m m m m m m =---,,,,,,,,, 由集合的互异性得,0m ≠且1m ≠-. ------------------------------------------8分 所以12320λλλ++=,3122λλλ=--,12()(0 0)λλ≠,,. 所以1212(2)(1)0(31)(1)0m m m m λλλλ-+++=⎧⎨--+--=⎩.,所以1(41)0m λ-+=. 所以14m =或10λ=. 检验: 当14m =时,存在1235,7,3λλλ==-=-使得112233(0 0 0)λλλ++=,,a a a . 当10λ=时,因为1m ≠-,所以230,0λλ==,舍. 所以14m =.------------------------------------------10分 (Ⅲ)B 一定是完美集.------------------------------------------11分假设存在不全为0的实数123,,λλλ满足112233(0 0 0)λλλ++=⋅⋅⋅,,,a a a , 不妨设123λλλ≥≥,则10λ≠(否则与假设矛盾). 由1112213310x x x λλλ++=,得3211213111x x x λλλλ=--. 所以32112131213111x x x x x λλλλ≤+≤+.与111121312x x x x >++,即112131x x x >+矛盾. 所以假设不成立. 所以10λ=. 所以230λλ==. 所以B 一定是完美集.------------------------------------------15分。

2023北京重点校高三(上)期末数学汇编:等比数列

2023北京重点校高三(上)期末数学汇编:等比数列

2023北京重点校高三(上)期末数学汇编等比数列一、单选题 1.(2023秋·北京房山·高三统考期末)已知数列{}n a 满足12n n a a +=,且12a =,则数列{}n a 的前四项和4S 的值为( ) A .1516B .1516−C .154D .154−二、填空题2.(2023秋·北京昌平·高三统考期末)已知数列{}n a 中,()*112,20N n n a a a n +=−=∈,则数列{}n a 的通项公式为__________.3.(2023秋·北京石景山·高三统考期末)等比数列{}n a 中,14a ,22a ,3a 成等差数列,若11a =,则公比q = __________.三、解答题4.(2023秋·北京通州·高三统考期末)约数,又称因数.它的定义如下:若整数a 除以整数m ()0m ≠除得的商正好是整数而没有余数,我们就称a 为m 的倍数,称m 为a 的约数.设正整数a 共有k 个正约数,即为121,,,,k k a a a a −⋅⋅⋅()12k a a a <<⋅⋅⋅<.(1)当4k =时,若正整数a 的k 个正约数构成等比数列,请写出一个a 的值; (2)当4k ≥时,若21321,,,k k a a a a a −−−⋅⋅⋅构成等比数列,求正整数a ; (3)记12231k k A a a a a a a −=++⋅⋅⋅+,求证:2A a <. 四、双空题5.(2023秋·北京丰台·高三统考期末)在等差数列{}n a 中,公差d 不为0,19a =,且145,,a a a 成等比数列,则d =___________;当n =___________时,数列{}n a 的前n 项和n S 有最大值.6.(2023秋·北京西城·高三统考期末)已知{}n a 是等差数列,15a =,且2342,4,6a a a +++成等比数列,则6a =______________;{}n a 的前n 项和n S =______________.参考答案1.C【分析】由题意{}n a 是首项为2、公比为12的等比数列,利用等比数列前n 项和公式求4S 的值. 【详解】由题设{}n a 是首项为2、公比为12的等比数列,即212n n a −=,所以4412(1)1521412S ⨯−==−. 故选:C 2.2n n a =【分析】判断数列为等比数列,根据等比数列的通项公式可求得答案.【详解】数列{}n a 中,()*112,20N n n a a a n +=−=∈则0n a ≠,否则与12a =矛盾, 故12n na a +=,即数列{}n a 为首项为2,公比为2的等比数列, 所以2n n a =, 故答案为:2n n a = 3.2【分析】由等差中项的性质以及等比数列的通项列方程即可求解. 【详解】因为14a ,22a ,3a 成等差数列, 所以23144a a a =+,可得211144a q q a a =+,因为10a ≠,所以244q q =+, 解得:2q,故答案为:2. 4.(1)8.(2)12k a a −=()4k ≥. (3)证明见解析.【分析】(1)根据题意即可写出a 的一个值; (2)由题意可知11a =,k a a =,12k a a a −=,23k aa a −=,结合21321,,,k k a a a a a a −−−⋅⋅⋅−构成等比数列,可推出3a 是完全平方数,继而可得232a a =,由此可知21321,,,k k a a a a a a −−−⋅⋅⋅−为212222221,,,k k a a a a a −−−−⋅⋅⋅−,即可求得a ;采用放缩法以及裂项求和的方法,即可证明结论.【详解】(1)当4k =时正整数a 的4个正约数构成等比数列, 比如1,2,4,8为8的所有正约数,即8a =. (2)由题意可知11a =,k a a =,12k a a a −=,23k aa a −=,因为4k ≥,依题意可知3212112k k k k a a a aa a a a −−−−−=−−,所以3222123a a a a a a aa a a a −−=−−,化简可得()()2232231a a a a −=−,所以232321a a a a a ⎛⎫−= ⎪−⎝⎭,因为*3N a ∈,所以*3221N a a a a −∈−, 因此可知3a 是完全平方数.由于2a 是整数a 的最小非1因子,3a 是a 的因子,且32a a >,所以232a a =,所以21321,,,k k a a a a a a −−−⋅⋅⋅−为212222221,,,k k a a a a a −−−−⋅⋅⋅−, 所以12k a a −=,()4k ≥.(3)证明:由题意知1211,,,,k k i k i a a a a a a a a a −+−==⋅⋅⋅=⋅⋅⋅,()1i k ≤≤,所以22212112k k k k a a a A a a a a a a −−−=++⋅⋅⋅+, 因为121121************,,k k k k k k k ka a a a a a a a a a a a a a a a −−−−−−≤=−⋅⋅⋅≤=−, 所以22221211212112111k k k k k k k k a a a A a a a a a a a a a a a a a −−−−−−⎛⎫=++⋅⋅⋅+=++⋅⋅⋅+ ⎪⎝⎭ 2212231111111111k k k a a a a a a a a a a −⎛⎫⎛⎫≤−+−+⋅⋅⋅+−=− ⎪ ⎪⎝⎭⎝⎭,因为11a =,k a a =,所以1111ka a −<, 所以22111kA a a a a ⎛⎫≤−< ⎪⎝⎭, 即2A a <.【点睛】关键点点睛:在第二问的解答中,在得到232321a a a a a ⎛⎫−= ⎪−⎝⎭后,要能根据*3N a ∈,推得*3221N a a a a −∈−,继而得出232a a =,这是解决问题的关键.第三问的证明中,难点在于要能注意到和的方法进行化简进而证明结论. 5. 2− 5【分析】根据等比数列得到2415a a a =,解得2d =−,再计算510a =>,610a =−<,得到答案.【详解】145,,a a a 成等比数列,故2415a a a =,即()()293994d d +=⨯+,解得2d =−或0d =(舍).()921112n a n n =−−=−,190a =>,510a =>,610a =−<,故5n =时,n S 有最大值. 故答案为:2−;5 6. -5 26n n −+【分析】(1)设出等差数列的公差,根据2342,4,6a a a +++成等比数列,列出式子,将234,,a a a 均用1,a d 代替,解出d ,即可求6a 的值;(2)由上一空求得的d ,根据等差数列前n 项和公式代入即可求出答案. 【详解】解:由题知{}n a 是等差数列, 不妨记公差为d ,因为2342,4,6a a a +++成等比数列,15a =, 所以()()()2342462a a a +=++, 即()()()2293117d d d +=++, 解得:2d =−,故6155105a a d =+=−=−; 由于15a =,2d =−, 所以()21162n n n d S a n n n −+=−+=. 故答案为:-5;26n n −+。

2023-2024学年北京东城区汇文中学高三(上)期中数学试题及答案

2023-2024学年北京东城区汇文中学高三(上)期中数学试题及答案

北京汇文中学教育集团2023-2024学年度第一学期期中考试高三年级 数学学科本试卷共6页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.一、选择题(每题4分,共40分)1. 已知集合{}260A x x x =--≤,{}||1B y y x ==+,则AB =( )A. [1,2]B. [1,3]C. [0,2]D. [0,3] 2. 下列命题中,正确的是( )A .12i -的虚部是2B .|12|i -=C .12i -的共轭复数是12i --D .12i -在复平面内对应的点在第二象限3.已知点(6,8)P -是角α终边上一点,则sin()(2πα+= )A .35B .35- C .45 D .45-4. 已知l ,m 表示两条不同的直线,α表示平面,则下列说法正确的是( ) A .若//l m ,m α⊂,则//l α B .若//l α,m α⊂,则//l m C .若l m ⊥,m α⊂,则l α⊥ D . 若l α⊥,m α⊂,则l m ⊥5.在△ABC 中,点D 在边AB 上,2BD DA =.记CA m =,CD n =.则CB =( ) A. 32m n - B. 23m n -+ C. 32m n + D. 23m n +6.函数2()22cos f x x x =-在区间[0,]2π上的最大值为( )A .12B 1-C .1D 7. 在数列{}n a 中,已知2n a n n λ=+,*N n ∈,则“12a a <”是“{}n a 是单调递增数列”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件8.已知函数sin()y A x ωϕ=+的部分图象如图所示,将该函数的图象向左平移(0)t t >个单位长度,得到函数()y f x =的图象.若函数()y f x =为奇函数,则t 的最小值是( )A .12πB .6πC .4πD .3π9.布达佩斯的伊帕姆维泽蒂博物馆收藏的达⋅芬奇方砖,在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达⋅芬奇方砖形成图2的组合,这个组合表达了图3所示的几何体.如图3中每个正方体的棱长为1,则点A 到平面QGC 的距离为( )图1 图2 图3A.2B.2C.1D.10.设函数2(1)2,1()|2|,1x a x a x f x a x x ⎧-++<=⎨-≥⎩,给出下列四个结论:①当0a <时,函数()f x 有三个极值点; ②当01a <<时,函数()f x 有三个极值点; ③R,2a x ∀∈=是函数()f x 的极小值点; ④1R,2a a x +∀∈=不是函数()f x 的极大值点. 其中,所有正确结论的序号是( ) A. ①② B. ②③ C. ①④ D. ②④ 二、填空题(每题5分,共25分)11.首项为1的等比数列{}n a 中,12342,,a a a 成等差数列,则公比q =_______.12.若函数1()2()2x x f x a =-⋅为偶函数,则a =________,()f x 的最小值为_______.13.已知正四棱锥S ABCD -,底面边长为2 ,体积为3,则这个四棱锥的侧棱长为_______. 14.已知数列{}n a 满足122122111n n n n a a n a a a +-==+=+,,,*N n ∈.则集合{|20}m m a ≤中元素的个数为________.15.已知12,e e 是空间单位向量,1212e e ⋅=,若空间向量b 满足12b e ⋅=,252b e ⋅=,且对于任意,R x y ∈,12010200()()1(,R)b xe ye b x e y e x y -+≥-+=∈,则00x y += ,b = .三、解答题(本大题共6小题,共85分. 解答应写出文字说明,证明过程或演算步骤)16.(13分)△ABC 中,222b c a +=+. (Ⅰ)求A ∠的大小;(Ⅱ)以下三组条件中恰有一组条件使得三角形存在且唯一确定,请选出该组条件, 并求△ABC 的面积.条件①:sin 2B =,b =;条件②:cos 3B =,a = 条件③:1a =,b =.注:条件选择错误,第(2)问得0分.在17. (14分)如图,已知PAB ⊥平面平面,四边形是矩形,PA AB =,点,分别是,的中点.(Ⅰ)若点为线段中点,求证:∥平面; (Ⅱ)求证:AF ⊥平面PBC .18. (15分)已知函数()ln f x x x =.(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求()f x 的单调区间;(Ⅲ)若对于任意1[,]x e e∈,都有()1f x ax ≤-,求实数a 的取值范围.ABCD ABCD E F BC PB M AD PMAEF19. (14分)如图,在棱长为2的正方体1111ABCD A B C D -中,E 为棱BC 的中点,F为棱CD 上一点.(Ⅰ)求直线1AC 与平面11A EC 所成角的正弦值; (Ⅱ)求二面角11A A C E --的正弦值;(Ⅲ)是否存在点F ,使1D F //平面11A EC ?若存在,求出DF 的长度;若不存在,请说明理由.20. (14分)已知函数()(2)ln x f x x e x x =--+. (Ⅰ)求证:函数()f x 在区间[1,)+∞上为单调递增函数;(Ⅱ)若函数()f x 在1[,1]4上的最大值在区间(,1)m m +内,求整数m 的值.21. (15分)已知数列12:,,,n n A a a a .如果数列12:,,,n n B b b b 满足1n b a =,11k k k k b a a b --=+-,其中2,3,,k n =,则称n B 为n A 的“衍生数列”.(Ⅰ)若数列41234:,,,A a a a a 的“衍生数列”是4:5,2,7,2B -,求4A ;(Ⅱ)若n 为偶数,且n A 的“衍生数列”是n B ,证明:n B 的“衍生数列”是n A ;(Ⅲ)若n 为奇数,且n A 的“衍生数列”是n B ,n B 的“衍生数列”是n C ,….依次将数列n A ,n B ,n C ,…的第(1,2,,)i i n =项取出,构成数列:,,,i i i i a b c Ω.求证:i Ω是等差数列.【参考答案】一、选择题:BBADB CCBAD二、填空题11. 212. -1,214.2415.16.(1)由余弦定理2222cosa b c bc A=+-,又222b c a+=+,可得2cosbc A=,所以cos2A=,又因为()0,Aπ∈,所以6Aπ=(2)选择条件②由(1)知,6Aπ=,根据条件②中cos3B=,()0,Bπ∈,所以B∠也是唯一确定的,从而可得C∠也是唯一确定的,再由a=,b c也是唯一确定的,故选择条件②.因为cos3B=,()0,Bπ∈,所以1sin3B=.由正弦定理sin sina bA B=,可得1sin31sin32Bb aA===,所以()11sin sin sin cos cos sin23236C A B A B A B=+=+=⨯+⨯=所以三角形面积1sin29S ab C+==17.(Ⅰ)证明:连结BM 交AE 于N ,连结PM ,FN . 因为四边形ABCD 是矩形, 所以//AD BC ,且=AD BC , 又M ,E 分别为AD ,A 的中点,所以四边形AMEB 是平行四边形, 所以N 为BM 的中点, 又因为M 是PB 的中点,所以PM ∥FN ,因为PM ⊄平面AEF ,NF ⊂平面AEF ,所以PM ∥平面AEF . (Ⅱ)证明:,ABCD BC AB ⊥在矩形中BC AB PAB ABCD PAB ABCD AB BC ABCD ⊥⎧⎪⊥⎪⎨⋂=⎪⎪⊂⎩面面面面面 BC PAB ∴⊥面因为AF ⊂平面PAB ,所以BC AF ⊥. 因为PA AB =,点M 是PB 的中点, 所以PB AF ⊥ 又因为BCPB B =,所以AF ⊥平面PBC .18.解:(Ⅰ)因为函数f(x)=xlnx , 所以f ′(x)=lnx +x ⋅1x=lnx +1, f′(1)=ln1+1=1. 又因为f(1)=0,所以曲线y =f(x)在点(1,f(1))处的切线方程为y =x −1.(Ⅱ)函数f(x)=xlnx 定义域为(0,+∞), 由(Ⅰ)可知,f′(x)=lnx +1. 令f′(x)=0,解得x =1e.f(x)与f′(x)在区间(0,+∞)上的情况如下:故f(x)的增区间为(e ,+∞),减区间为(0,1e ).(Ⅲ)当1e⩽x ⩽e 时,“f(x)≤ax −1”等价于“a ≥lnx +1x”恒成立, 令g(x)=lnx +1x ,x ∈[1e ,e], g′(x)=1x−1x 2=x−1x 2,x ∈[1e,e].当x ∈[1e ,1)时,gˈ(x)<0,所以g(x)在区间[1e ,1)单调递减.当x ∈(1,e]时,gˈ(x)>0,所以g(x)在区间(1,e]单调递增. 而g(1e )=−lne +e =e −1>1.5,g (e )=1+1e <1.5, 所以g(x)在区间[1e ,e]上的最大值为g(1e)=e −1.所以当a ≥e −1时,对于任意x ∈[1e,e],都有f(x)≤ax −1. 19.(1) 以 A 为原点, AB,AD,AA 1分别为 x,y,z 轴,建立如图空间直角坐标系,则 A(0,0,0), A 1(0,0,2), B(2,0,0), C(2,2,0), D(0,2,0), C 1(2,2,2), D 1(0,2,2),E(2,1,0)1111(2,2,2),(2,2,0),(0,1,2)AC AC EC ===设平面11A C E 的一个法向量为(,,)m x y z =1110m A C m EC ⎧⋅=⎪⎨⋅=⎪⎩ 不妨设y =2,则x =−2,z =−1, (2,2,1)m =--设直线 AC 1与平面 A 1EC 1所成角为 θ,则111sin |cos ,|3,m AC m AC m AC θ⋅=<>===⨯. (2)由正方体可得,平面 AA 1C 1的一个法向量为 DB →=(2,−2,0), 则cos ,33DB m DB m DB m⋅<>===⨯⋅ . 因为二面角 A −A 1C 1−E 为锐二面角,所以二面角 A −A 1C 1−E 的正弦值为 √1−cos 2 ⟨DB →,m →⟩=13.(3)存在,设F 点的坐标为(t,2,0),所以FD 1⃗⃗⃗⃗⃗⃗⃗ =(−t,0,2) 平面 A 1EC 1的一个法向量为 m →=(−2,2,−1), 因为FD 1⃗⃗⃗⃗⃗⃗⃗ ⊥m →,所以m ⃗⃗ ∙FD 1⃗⃗⃗⃗⃗⃗⃗ =0,t =1因为 D 1F ⊄平面 A 1EC 1,所以 D 1F//平面 A 1EC 1.此时DF =120.解:(1)x ∈[1,+∞),f ′(x )=e x +(x −2)e x −1+1x =(x −1)(e x −1x ) 当x ≥1时x −1≥0,e x ≥e,1x ≤1,e x >1x ∴f ′(x )≥0,f (x )单调递增 (2)f′(x)=(x −1)e x −1+1x =(x −1)(e x −1x). 令ℎ(x)=e x −1x ,则ℎ′(x)=e x +1x 2>0,所以ℎ(x)在[14,1]上单调递增,因为ℎ(12)=e 12−2<0,ℎ(1)=e −1>0,所以存在x 0∈(12,1),使得ℎ(x 0)=0,即e x 0=1x 0,即lnx 0=−x 0,故当x ∈[14,x 0)时,ℎ(x)<0,当x ∈(x 0,1]时,ℎ(x)>0, 又当x ∈[14,1]时,x −1≤0(等号仅在x =1时成立),所以当x ∈[14,x 0)时,f′(x)>0,当x ∈(x 0,1]时,f′(x)≤0(等号仅在x =1时成立), 所以f(x)在[14,x 0)上单调递增,在(x 0,1]上单调递减, 则f(x)max =g(x 0)=(x 0−2)e x 0−x 0+lnx 0=(x 0−2)⋅1x 0−x 0−x 0=1−2x 0−2x 0,令G(x)=1−2x −2x ,x ∈(12,1),则G′(x)=2x2−2=2(1−x 2)x2>0(x ∈(12,1)),所以G(x)在(12,1)上单调递增,则G(x)>G(12)=−4,G(x)<G(1)=−3, 所以−4<f(x)max <−3,所以m =−4.21.(Ⅰ)解:4:2,1,4,5A . ………3分(Ⅱ)证法一:证明:由已知,111()n b a a a =--,212121()n b a a b a a a =+-=+-.因此,猜想1(1)()i i i n b a a a =+--. ………………4分 ① 当1i =时,111()n b a a a =--,猜想成立; ② 假设*()i k k =∈N 时,1(1)()k k k n b a a a =+--. 当1i k =+时,11k k k k b a a b ++=+-11[(1)()]k k k k n a a a a a +=+-+-- 11(1)()k k k k n a a a a a +=+----111(1)()k k n a a a ++=+--故当1i k =+时猜想也成立.由 ①、② 可知,对于任意正整数i ,有1(1)()i i i n b a a a =+--. ………………7分 设数列n B 的“衍生数列”为n C ,则由以上结论可知111(1)()(1)()(1)()i i i i i n i n n c b b b a a a b b =+--=+--+--,其中1,2,3,,i n =.由于n 为偶数,所以11(1)()n n n n b a a a a =+--=,所以 11(1)()(1)()iii i n n i c a a a a a a =+--+--=,其中1,2,3,,i n =.因此,数列n C 即是数列n A . ………………9分 证法二:因为 1n b a =,1212b b a a +=+, 2323b b a a +=+,……11n n n n b b a a --+=+,由于n 为偶数,将上述n 个等式中的第2,4,6,,n 这2n个式子都乘以1-,相加得11223112231()()()()()()n n n n n b b b b b b b a a a a a a a ---+++--+=-+++--+即1n b a -=-,1n b a =. ………………7分由于1n a b =,11(2,3,,)i i i i a b b a i n --=+-=,根据“衍生数列”的定义知,数列n A 是n B 的“衍生数列”. ………………9分 (Ⅲ)证法一:证明:设数列n X ,n Y ,n Z 中后者是前者的“衍生数列”.欲证i Ω成等差数列,只需证明,,i i i x y z 成等差数列,即只要证明2(1,2,3,,)i i i y x z i n =+=即可. ……10分由(Ⅱ)中结论可知 1(1)()i i i n y x x x =+--,1(1)()i i i n z y y y =+--11(1)()(1)()i i i n n x x x y y =+--+--11(1)()(1)[(1)()]i i n i n n n n x x x x x x x =+--+----- 11(1)()(1)()i i i n n x x x x x =+--+--12(1)()i i n x x x =+--,所以,122(1)()2i i i i n i x z x x x y +=+--=,即,,i i i x y z 成等差数列, 所以i Ω是等差数列. ………………13分 证法二:因为 11(2,3,4,,)i i i i b a a b i n --=+-=,所以 11()(2,3,4,,)i i i i b a b a i n ---=--=. 所以欲证i Ω成等差数列,只需证明1Ω成等差数列即可. ………………10分对于数列n A 及其“衍生数列”n B ,因为 1n b a =, 1212b b a a +=+,2323b b a a +=+,……11n n n n b b a a --+=+,由于n 为奇数,将上述n 个等式中的第2,4,6,,1n -这12n -个式子都乘以1-, 相加得 11223112231()()()()()()n n n n n b b b b b b b a a a a a a a ---+++-++=-+++-++ 即112n n n n b a a a a a =-+=-. 设数列n B 的“衍生数列”为n C ,因为 1n b a =,112n n c b a a ==-,所以 1112b a c =+, 即111,,a b c 成等差数列. 同理可证,111111,,;,,,b c d c d e 也成等差数列. 即 1Ω是等差数列.所以 i Ω成等差数列. ………………13分。

北京市汇文中学2023届高三校模数学试题

北京市汇文中学2023届高三校模数学试题

一、单选题二、多选题1. 命题,成立的一个充分不必要条件是( )A.B.C.D.2.已知,则A.B.C.D.3. 设函数为定义在R 上的奇函数,当时,(为常数),则A .3B .1C.D.4. 如图所示,边长为2的正三角形ABC 中,若(),(),则关于的说法正确的是()A .当时,取到最大值B .当或1时,取到最小值C .,使得D .,为定值5. 函数,则( )A .若,则为奇函数B .若,则为偶函数C .若,则为偶函数D .若,则为奇函数6. 复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7. 某工厂的一、二、三车间在11月份共生产了3600双皮靴,在出厂前检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 成等差数列,则二车间生产的产品数为( )A .800B .1000C .1200D .15008. 若,则A.B.C.D.9. 已知奇函数的定义域为,,对于任意的正数,都有,且时,都有,则( )A.B.函数在内单调递增C .对于任意都有D.不等式的解集为10.若图像上存在两点,关于原点对称,则点对称为函数的“友情点对”(点对与视为同一个“友情点对”).若,且,,,则( )A.有无数个“友情点对”B.恰有个“友情点对”北京市汇文中学2023届高三校模数学试题北京市汇文中学2023届高三校模数学试题三、填空题四、解答题C.D.11. 已知椭圆与直线没有公共点,且椭圆C 上至少有一个点到直线l 的距离为,则a ,b 可能的取值情况为( )A.B.C.D.12. 已知,函数,下列选项正确的有( )A.若的最小正周期,则B .当时,函数的图象向右平移个单位长度后得到的图象C .若在区间上单调递增,则的取值范围是D .若在区间上只有一个零点,则的取值范围是13.已知的展开式中的常数项为13,则实数a 的值为_______________,展开式中的各项系数之和为_________.14. 直线与抛物线相交于A ,B 两点,且A 在第一象限,F是抛物线的焦点,则______.15.已知实数满足且,则的最小值为________.16. 矮化密植是指应用生物或栽培措施使果树生长树冠紧凑的方法,它与常规的矮小栽培相比有许多优势,如采用这种矮化果树可以建立比常规果园定植密度更高的果园,不仅能提高土壤及光能利用率,还能够获得更多的早期经济效益.某乡镇计划引进A ,B 两种矮化果树,已知A 种矮化果树种植成功率为,成功后每公顷收益7.5万元;B 种矮化果树种植成功率为,成功后每公顷收益9万元.假设种植不成功时,种植A ,B 两种矮化果树每公顷均损失1.5万元,每公顷是否种植成功相互独立.(1)甲种植户试种两种矮化果树各1公顷,总收益为X 万元,求X 的分布列及数学期望;(2)乙种植户有良田6公顷,本计划全部种植A ,但是甲劝说乙应该种植两种矮化果树各3公顷,请按照总收益的角度分析一下,乙应选择哪一种方案?17. 已知函数.(Ⅰ)若,且是偶函数,求的值;(Ⅱ)若在上有意义,求实数的取值范围;(Ⅲ)若,且,求实数的取值范围.18.已知函数其中a >0.(1)求函数f(x)的单调区间;(2)若函数f (x )在区间(-2,0)内恰有两个零点,求a 的取值范围;(3)当a=1时,设函数f (x )在区间[t,t+3]上的最大值为M (t ),最小值为m (t ),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值.19.如图所示的几何体中,,,都是等腰直角三角形,,且,.(1)求证:平面;(2)若为线段的中点,求二面角的余弦值.20. 在①;②,与都是等比数列;③,这三个条件中任选一个,补充在下面的问题中,并作答.已知数列的前n项和为,且______.(1)求数列的通项公式;(2)若,求数列的前n项和.注:如果选择多个条件分别作答,则按所作第一个解答计分.21. 设椭圆的左、右焦点分别为、,上顶点为,在轴负半轴上有一点,满足为线段的中点,且.(1)求椭圆的离心率;(2)若过三点的圆与直线:相切,求椭圆的方程;(3)在(1)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得以为邻边的平行四边形是菱形?如果存在,求出的取值范围;如果不存在,说明理由.。

北京市汇文中学2023届高三校模数学试题

北京市汇文中学2023届高三校模数学试题

一、单选题二、多选题1. 若存在两个正数,使得不等式成立,其中, 为自然对数的底数,则实数的取值范围为( )A.B.C.D.2.设等差数列的前n项和为,若,,则( )A .60B .80C .90D .1003. 若,,,,则( )A.B.C.D.4.( )A.B.C.D.5. 命题对任意,,则命题的否定是( )A .当时,B .存在,使得C .存在,使得D .当时,6. 在中,,若,,,且,,则有( )A .B .C.D.7. 在中,角的对边分别是,若,则=( )A.B.C.D.8.已知双曲线的离心率为.则C 的渐近线方程为( )A.B.C.D.9. 如图,四棱锥的底面为正方形,底面ABCD ,,点E 是棱PB 的中点,过A ,D ,E 三点的平面与平面PBC 的交线为l ,则()A .直线l 与平面PAD 有一个交点B.C .直线PA 与l所成角的余弦值为D .平面截四棱锥所得的上下两个几何体的体积之比为北京市汇文中学2023届高三校模数学试题三、填空题四、解答题10.已知,若不等式在上恒成立,则a 的值可以为( )A.B.C .1D.11. 对于正整数是小于或等于的正整数中与互质的数的数目.函数以其首名研究者欧拉命名,称为欧拉函数,例如,则( )A.B.数列为等比数列C .数列不单调D .数列的前项和恒小于412. 下列不等关系中正确的是( )A.B.C.D.13. 记S n 为等比数列{a n }的前n 项和.若,则S 4=___________.14.设函数关于的方程有四个实根,,,,则的最小值为___________.15. 直线与曲线有四个交点,则的取值范围是 .16. 如图,在三棱锥O -ABC 中,OA ,OB ,OC 两两互相垂直,OA =OB ,且D ,E ,F 分别为AC ,BC ,AB的中点.(1)求证:平面AOB ;(2)求证:AB ⊥平面OCF .17. 学生视力不良问题突出,是教育部发布的我国首份《中国义务教育质量监测报告》中指出的众多现状之一.习近平总书记作出重要指示,要求全社会都要行动起来,共同呵护好孩子的眼睛,让他们拥有一个光明的未来.为了落实总书记指示,掌握基层情况,某单位调查了某校学生的视力情况,随机抽取了该校100名学生(男生50人,女生50人),统计了他们的视力情况,结果如下:不近视近视男生2525女生2030(1)是否有的把握认为近视与性别有关?附:,其中.2.072 2.7063.841 5.024 6.6357.87910.8280.150.100.050.0250.0100.0050.001(2)如果用这100名学生中男生和女生近视的频率分别代替该校男生和女生近视的概率,且每名学生是否近视相互独立.现从该校学生中随机抽取4人(2男2女),设随机变量表示4人中近视的人数,试求的分布列及数学期望.18. 已知函数.(1)求函数在上的单调区间;(2)若,,求的值.19. 已知等差数列的前n项和为,且满足,.(1)求数列的通项公式;(2)若数列满足,求数列的前项和.20. 如图,在中,,点在边上,.(1)求的长;(2)若的面积为,求的长.21. 如图,在四棱锥中,底面为正方形,侧面是正三角形,平面平面,是的中点.(1)证明:平面;(2)求二面角的正弦值.。

北京市东城区汇文中学2025届数学高三上期末经典试题含解析

北京市东城区汇文中学2025届数学高三上期末经典试题含解析

北京市东城区汇文中学2025届数学高三上期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .32B .323C .16D .1632.已知函数()sin()(0,)2f x x πωϕωϕ=+><的最小正周期为(),f x π的图象向左平移6π个单位长度后关于y 轴对称,则()6f x π-的单调递增区间为( )A .5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦B .,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦C .5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦ D .,63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦3.已知ABC ∆的内角,,A B C 的对边分别是,,,a b c 且444222222a b c a b c a b+++=+,若c 为最大边,则a b c +的取值范围是( ) A .231⎛ ⎝⎭,B .(3C .231⎛ ⎝⎦,D .3]4.已知函数()ln f x x ax b =++的图象在点(1,)a b +处的切线方程是32y x =-,则a b -=( ) A .2B .3C .-2D .-35.函数1()1xxe f x e+=-(其中e 是自然对数的底数)的大致图像为( )A .B .C .D .6.设M 是ABC ∆边BC 上任意一点,N 为AM 的中点,若AN AB AC λμ=+,则λμ+的值为( ) A .1B .12C .13D .147.某个小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m 3)的频率分布直方图如图所示,则小区内用水量超过15 m 3的住户的户数为( )A .10B .50C .60D .1408.给出50个数 1,2,4,7,11,,其规律是:第1个数是1,第2个数比第1个数大 1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推,要计算这50个数的和.现已给出了该问题算法的程序框图如图,请在图中判断框中的①处和执行框中的②处填上合适的语句,使之能完成该题算法功能( )A .i 50≤;p p i =+B .i 50<;p p i =+C .i 50≤;p p 1=+D .i 50<;p p 1=+9.已知正方体1111ABCD A B C D -的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体1111ABCD A B C D -被平面α截得的截面面积为( )A .36B .26C .5D .53410.在平面直角坐标系中,若不等式组44021005220x y x y x y -+≤⎧⎪+-≤⎨⎪-+≥⎩所表示的平面区域内存在点()00,x y ,使不等式0010x my ++≤成立,则实数m 的取值范围为( ) A .5(,]2-∞-B .1(,]2-∞-C .[4,)+∞D .(,4]-∞-11.已知函数2()4ln f x ax ax x =--,则()f x 在(1,4)上不单调的一个充分不必要条件可以是( )A .12a >-B .1016a <<C .116a >或102a -<< D .116a >12.若向量(1,5),(2,1)a b ==-,则(2)a a b ⋅+=( ) A .30B .31C .32D .33二、填空题:本题共4小题,每小题5分,共20分。

北京市汇文中学2025届高三年级第二次四校联考数学试题

北京市汇文中学2025届高三年级第二次四校联考数学试题

北京市汇文中学2025届高三年级第二次四校联考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数y =2x sin2x 的图象可能是 A . B .C .D .2.已知定义在R 上的偶函数()f x ,当0x ≥时,22()2xx x f x e +=-,设2(ln 2),(2),(ln )2a f b f c f ===,则( )A .b a c >>B .b a c >=C .a c b =>D .c a b >>3.设集合A ={y |y =2x ﹣1,x ∈R },B ={x |﹣2≤x ≤3,x ∈Z },则A ∩B =( )A .(﹣1,3]B .[﹣1,3]C .{0,1,2,3}D .{﹣1,0,1,2,3}4.一个几何体的三视图如图所示,则该几何体的表面积为( )A .48122+B .60122+C .72122+D .845.下列命题是真命题的是( )A .若平面α,β,γ,满足αγ⊥,βγ⊥,则//αβ;B .命题p :x R ∀∈,211x -≤,则p ⌝:0x R ∃∈,2011x -≤;C .“命题p q ∨为真”是“命题p q ∧为真”的充分不必要条件;D .命题“若()110x x e -+=,则0x =”的逆否命题为:“若0x ≠,则()110xx e -+≠”. 6.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A .48B .72C .90D .96 7.设()f x x =,点()00O ,,()01A ,,()()n A n f n ,,*n N ∈,设n n AOA θ∠=对一切*n N ∈都有不等式22223122222sin sin sin sin 123n nθθθθ+++⋅⋅⋅⋅⋅⋅+ 222t t <--成立,则正整数t 的最小值为( ) A .3 B .4 C .5 D .68.在很多地铁的车厢里,顶部的扶手是一根漂亮的弯管,如下图所示.将弯管形状近似地看成是圆弧,已知弯管向外的最大突出(图中CD )有15cm ,跨接了6个坐位的宽度(AB ),每个座位宽度为43cm ,估计弯管的长度,下面的结果中最接近真实值的是( )A .250cmB .260cmC .295cmD .305cm9.集合{}2|30A x x x =-≤,(){}|lg 2B x y x ==-,则A B ⋂=( ) A .{}|02x x ≤< B .{}|13x x ≤< C .{}|23x x <≤ D .{}|02x x <≤10.点O 为ABC ∆的三条中线的交点,且OA OB ⊥,2AB =,则AC BC ⋅的值为( )A .4B .8C .6D .1211.某四棱锥的三视图如图所示,则该四棱锥的表面积为( )A .8B .83C .822+D .842+12.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:2n =及3n =时,如图: 记n S 为每个序列中最后一列数之和,则6S 为( )A .147B .294C .882D .1764 二、填空题:本题共4小题,每小题5分,共20分。

北京市汇文中学2025届高三适应性调研考试数学试题含解析

北京市汇文中学2025届高三适应性调研考试数学试题含解析

北京市汇文中学2025届高三适应性调研考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数z 满足()12(i i z +=为虚数单位),则z 的虚部为( ) A .i B .i -C .1-D .12.已知13ω>,函数()sin 23f x x πω⎛⎫=- ⎪⎝⎭在区间(,2)ππ内没有最值,给出下列四个结论:①()f x 在(,2)ππ上单调递增; ②511,1224ω⎡⎤∈⎢⎥⎣⎦ ③()f x 在[0,]π上没有零点; ④()f x 在[0,]π上只有一个零点. 其中所有正确结论的编号是( ) A .②④B .①③C .②③D .①②④3.已知函数())33x x f x x -=+-,不等式()2(50f f x ++对x ∈R 恒成立,则a 的取值范围为( ) A .[2,)-+∞B .(,2]-∞-C .5,2⎡⎫-+∞⎪⎢⎣⎭D .5,2⎛⎤-∞- ⎥⎝⎦4.已知抛物线C :24y x =,过焦点F 的直线l 与抛物线C 交于A ,B 两点(A 在x 轴上方),且满足3AF BF =,则直线l 的斜率为( )A .1BC .2D .35.如图,在底面边长为1,高为2的正四棱柱1111ABCD A B C D -中,点P 是平面1111D C B A 内一点,则三棱锥P BCD -的正视图与侧视图的面积之和为( )A .2B .3C .4D .56.如图所示,为了测量A 、B 两座岛屿间的距离,小船从初始位置C 出发,已知A 在C 的北偏西45︒的方向上,B 在C 的北偏东15︒的方向上,现在船往东开2百海里到达E 处,此时测得B 在E 的北偏西30的方向上,再开回C 处,由C 向西开26百海里到达D 处,测得A 在D 的北偏东22.5︒的方向上,则A 、B 两座岛屿间的距离为( )A .3B .32C .4D .427.设双曲线221x y a b+=的一条渐近线为2y x =-,且一个焦点与抛物线24x y =的焦点相同,则此双曲线的方程为( ) A .225514x y -= B .225514y x -= C .225514y x -= D .225514x y -= 8.若AB 为过椭圆22116925x y +=中心的弦,1F 为椭圆的焦点,则△1F AB 面积的最大值为( )A .20B .30C .50D .609.下列命题为真命题的个数是( )(其中π,e 为无理数) 32e >;②2ln 3π<;③3ln 3e<. A .0B .1C .2D .310.为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有( ) A .12种B .24种C .36种D .48种11.2-31ii =+( ) A .15-22i B .15--22iC .15+22i D .15-+22i 12.若a >b >0,0<c <1,则 A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等比数列选择题1.在数列{}n a 中,12a =,对任意的,m n N *∈,m n m n a a a +=⋅,若1262n a a a ++⋅⋅⋅+=,则n =( )A .3B .4C .5D .62.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .2 3.设{a n }是等比数列,若a 1 + a 2 + a 3 =1,a 2 + a 3 + a 4 =2,则 a 6 + a 7 + a 8 =( ) A .6 B .16 C .32 D .64 4.若1,a ,4成等比数列,则a =( )A .1B .2±C .2D .2-5.已知数列{}n a 满足:11a =,*1()2nn n a a n N a +=∈+.则 10a =( ) A .11021B .11022 C .11023D .110246.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( ) A .-3+(n +1)×2n B .3+(n +1)×2n C .1+(n +1)×2nD .1+(n -1)×2n7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里B .86里C .90里D .96里8.在等比数列{}n a 中,11a =,427a =,则352a a +=( ) A .45B .54C .99D .819.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为( ) A .12B .18C .24D .3210.等比数列{}n a 的前n 项积为n T ,且满足11a >,10210310a a ->,102103101a a -<-,则使得1n T >成立的最大自然数n 的值为( )A .102B .203C .204D .20511.题目文件丢失!12.在数列{}n a 中,32a =,12n n a a +=,则5a =( ) A .32B .16C .8D .413.已知等比数列{}n a 中,n S 是其前n 项和,且5312a a a +=,则42S S =( ) A .76B .32C .2132D .1414.已知等比数列{}n a 的前5项积为32,112a <<,则35124a a a ++的取值范围为( ) A .73,2⎡⎫⎪⎢⎣⎭B .()3,+∞C .73,2⎛⎫ ⎪⎝⎭D .[)3,+∞15.已知等比数列{}n a 的前n 项和的乘积记为n T ,若29512T T ==,则n T 的最大值为( ) A .152B .142C .132D .12216.正项等比数列{}n a 满足2237610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .817.等比数列{}n a 中,1234a a a ++=,4568a a a ++=,则789a a a ++等于( ) A .16B .32C .64D .12818.设b R ∈,数列{}n a 的前n 项和3nn S b =+,则( ) A .{}n a 是等比数列B .{}n a 是等差数列C .当1b ≠-时,{}n a 是等比数列D .当1b =-时,{}n a 是等比数列19.等比数列{}n a 中各项均为正数,n S 是其前n 项和,且满足312283S a a =+,416a =,则6S =( )A .32B .63C .123D .12620.已知等比数列{}n a 的前n 项和为n S ,若213a a =,且数列{}13n S a -也为等比数列,则n a 的表达式为( )A .12nn a ⎛⎫= ⎪⎝⎭B .112n n a +⎛⎫= ⎪⎝⎭C .23nn a ⎛⎫= ⎪⎝⎭D .123n n a +⎛⎫= ⎪⎝⎭二、多选题21.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列22.已知等差数列{}n a ,其前n 项的和为n S ,则下列结论正确的是( ) A .数列|n S n ⎧⎫⎨⎬⎩⎭为等差数列 B .数列{}2na 为等比数列C .若,()m n a n a m m n ==≠,则0m n a +=D .若,()m n S n S m m n ==≠,则0m n S += 23.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=⋅=∈,则下列结论正确的是( )A .101a <<B.11b <<C .22n n S T <D .22n n S T ≥24.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,135111214a a a ++=,则( ) A .{}n a 必是递减数列 B .5314S =C .公比4q =或14D .14a =或1425.已知数列{}n a 的前n 项和为n S ,1+14,()n n a S a n N *==∈,数列12(1)n n n n a +⎧⎫+⎨⎬+⎩⎭的前n 项和为n T ,n *∈N ,则下列选项正确的是( ) A .24a =B .2nn S =C .38n T ≥D .12n T <26.关于递增等比数列{}n a ,下列说法不正确的是( )A .当101a q >⎧⎨>⎩B .10a >C .1q >D .11nn a a +< 27.在公比为q 等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若521127,==a a a ,则下列说法正确的是( ) A .3q = B .数列{}2n S +是等比数列 C .5121S =D .()222lg lg lg 3n n n a a a n -+=+≥28.已知数列{a n },11a =,25a =,在平面四边形ABCD 中,对角线AC 与BD 交于点E ,且2AE EC =,当n ≥2时,恒有()()1123n n n n BD a a BA a a BC -+=-+-,则( ) A .数列{a n }为等差数列 B .1233BE BA BC =+ C .数列{a n }为等比数列D .14nn n a a +-=29.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件1201920201,1a a a >>,20192020101a a -<-,下列结论正确的是( )A .S 2019<S 2020B .2019202010a a -<C .T 2020是数列{}n T 中的最大值D .数列{}n T 无最大值30.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n S n +为等比数列B .数列{}n a 的通项公式为121n n a -=-C .数列{}1n a +为等比数列D .数列{}2n S 的前n 项和为2224n n n +---31.已知数列{}n a 的首项为4,且满足()*12(1)0n n n a na n N ++-=∈,则( )A .n a n ⎧⎫⎨⎬⎩⎭为等差数列 B .{}n a 为递增数列C .{}n a 的前n 项和1(1)24n n S n +=-⋅+D .12n n a +⎧⎫⎨⎬⎩⎭的前n 项和22n n n T +=32.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设2132n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S > C .若14q =-,则n n T S > D .若34q =-,则n n T S > 33.设数列{}n x ,若存在常数a ,对任意正数r ,总存在正整数N ,当n N ≥,有n x a r -<,则数列{}n x 为收敛数列.下列关于收敛数列正确的有( )A .等差数列不可能是收敛数列B .若等比数列{}n x 是收敛数列,则公比(]1,1q ∈-C .若数列{}n x 满足sin cos 22n x n n ππ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,则{}n x 是收敛数列 D .设公差不为0的等差数列{}n x 的前n 项和为()0n n S S ≠,则数列1n S ⎧⎫⎨⎬⎩⎭一定是收敛数列34.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,数列(){}nf a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的四个函数中,是“保等比数列函数”的为( )A .()2f x x =B .()2xf x =C .()f x =D .()ln f x x =35.对于数列{}n a ,若存在正整数()2k k ≥,使得1k k a a -<,1k k a a +<,则称k a 是数列{}n a 的“谷值”,k 是数列{}n a 的“谷值点”,在数列{}n a 中,若98n a n n =+-,下面哪些数不能作为数列{}n a 的“谷值点”?( ) A .3B .2C .7D .5【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.C 【分析】令1m =,可得112+=⋅=n n n a a a a ,可得数列{}n a 为等比数列,利用等比数列前n 项和公式,求解即可. 【详解】因为对任意的,m n N *∈,都有m n m n a a a +=⋅,所以令1m =,则112+=⋅=n n n a a a a , 因为10a ≠,所以0n a ≠,即12n na a +=, 所以数列{}n a 是以2为首项,2为公比的等比数列,所以2(12)6212n -=-,解得n =5,故选:C 2.B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.故选:B. 3.C 【分析】根据等比数列的通项公式求出公比2q ,再根据等比数列的通项公式可求得结果.【详解】设等比数列{}n a 的公比为q ,则234123()2a a a a a a q ++=++=,又1231a a a ++=,所以2q,所以55678123()1232a a a a a a q ++=++⋅=⨯=.故选:C . 4.B 【分析】根据等比中项性质可得24a =,直接求解即可. 【详解】由等比中项性质可得:2144a =⨯=,所以2a =±, 故选:B 5.C 【分析】根据数列的递推关系,利用取倒数法进行转化得1121n na a +=+ ,构造11n a ⎧⎫+⎨⎬⎩⎭为等比数列,求解出通项,进而求出10a . 【详解】 因为12n n n a a a +=+,所以两边取倒数得12121n n n n a a a a ++==+,则111121n n a a +⎛⎫+=+ ⎪⎝⎭, 所以数列11n a ⎧⎫+⎨⎬⎩⎭为等比数列,则11111122n nn a a -⎛⎫+=+⋅= ⎪⎝⎭,所以121n n a =-,故101011211023a ==-. 故选:C 【点睛】方法点睛:对于形如()11n n a pa q p +=+≠型,通常可构造等比数列{}n a x +(其中1qx p =-)来进行求解. 6.D 【分析】利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】设等比数列{a n }的公比为q ,易知q ≠1,所以由题设得()()3136161711631a q S q a q S q ⎧-⎪==-⎪⎨-⎪==⎪-⎩, 两式相除得1+q 3=9,解得q =2, 进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,两式作差得-T n =1+2+22+…+2n -1-n ×2n =1212n---n ×2n =-1+(1-n )×2n , 故T n =1+(n -1)×2n . 故选:D. 【点睛】本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 7.D 【分析】由题意得每天行走的路程成等比数列{}n a 、且公比为12,由条件和等比数列的前项和公式求出1a ,由等比数列的通项公式求出答案即可. 【详解】由题意可知此人每天走的步数构成12为公比的等比数列, 由题意和等比数列的求和公式可得611[1()]2378112a -=-, 解得1192a =,∴此人第二天走1192962⨯=里, ∴第二天走了96里,故选:D . 8.C 【分析】利用等比数列的通项与基本性质,列方程求解即可 【详解】设数列{}n a 的公比为q ,因为341a a q =,所以3q =,所以24352299a a q q +=+=.故选C 9.C 【分析】将已知条件整理为()()22121328a q q q -+=,可得()22183221q q a q +=-,进而可得()4427612249633221q a a a q q q q +=+=-,分子分母同时除以4q ,利用二次函数的性质即可求出最值. 【详解】因为{}n a 是等比数列,543264328a a a a +--=,所以432111164328a q a q a q a q +--=,()()2221232328a q q q q q ⎡⎤+-+=⎣⎦,即()()22121328a q q q -+=,所以()22183221q q a q +=-,()()465424761111221248242496963323212121q a a a q a q a q q q a q q a q q q +=+=+=⨯==---, 令210t q =>,则()222421211t t t q q-=-=--+, 所以211t q==,即1q =时2421q q -最大为1,此时242421q q -最小为24, 所以7696a a +的最小值为24, 故选:C 【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化. 10.C 【分析】由题意可得1021031a a >,1021031,1a a ><,利用等比数列的性质即可求解. 【详解】由10210310a a ->,即1021031a a >,则有21021a q ⨯>,即0q >。

相关文档
最新文档