2012年高考理科数学(山东卷)
2012年高考数学(理科)山东卷

2012年高考数学(理科)山东卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数x满足z(2-i)=11+7i(i为虚数单位),则z为( )A.3+5iB.3-5iC.-3+5iD.-3-5i2.已知全集∪={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CUA)∪B为( )A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}3.设a>0 a≠1 ,则“函数f(x)= a x在R上是减函数 ”,是“函数g(x)=(2-a) x3在R上是增函数”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为( )A.7B.9C.10D.155.设变量x,y满足约束条件$\equ3{x+2y≥2}{2x+y≤4}{4x-y≥-1}$,则目标函数z=3x-y的取值范围是( )A.[<<-\frac{3}{2}>>,6]B.[<<-\frac{3}{2}>>,-1]C.[-1,6]D.[-6,<<\frac{3}{2}>>]6.执行下面的程序图,如果输入a=4,那么输出的n的值为( )A.2B.3C.4D.57.若< >,< >,则sinθ=( )A.<<\frac{3}{5}>>B.<<\frac{4}{5}>>C.<<\frac{\sqrt{7}}{4}>>D.<<\frac{3}{4}>>8.定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2) 2,当-1≤x<3时,f(x)=x。
2012年山东省高考数学试题(附答案和解释)(理科Word版)

2012年山东省高考数学试题(附答案和解释)(理科Word版)2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I卷和第II卷两部分,共4页。
满分150分。
考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。
注意事项: 1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。
2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:锥体的体积公式:V= Sh,其中S是锥体的底面积,h是锥体的高。
如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)•P(B)。
第I卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 若复数x满足z(2-i)=11+7i(i为虚数单位),则z为 A 3+5i B 3-5i C -3+5i D -3-5i 解析: .答案选A。
另解:设,则根据复数相等可知,解得,于是。
2 已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA) B为 A {1,2,4} B {2,3,4} C {0,2,4} D {0,2,3,4} 解析:。
答案选C。
3 设a>0 a≠1 ,则“函数f(x)= ax在R上是减函数”,是“函数g(x)=(2-a) 在R上是增函数”的 A 充分不必要条件 B 必要不充分条件 C 充分必要条件 D 既不充分也不必要条件解析:p:“函数f(x)= ax在R上是减函数”等价于;q:“函数g(x)=(2-a) 在R 上是增函数”等价于,即且a≠1,故p是q成立的充分不必要条件. 答案选A。
2012年高考真题——理科数学(山东卷)解析版

2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,务必将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高.如果事件,A B 互斥,那么()()()P A B P A P B +=+;如果事件,A B 独立,那么()()()P A B P A P B ⋅=⋅.第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z 满足(2)117z i i -=+(i 为虚数单位),则z 为(A )35i + (B )35i - (C )35i -+ (D )35i -- 【解析】i ii i i i ii z 5352515)2)(2()2)(711(2711+=+=+-++=-+=。
故选A 。
【答案】A(2)已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C A B 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C. 【答案】C(3)设0a >且1a ≠,则“函数()xf x a =在R 上是减函数 ”,是“函数3()(2)g x a x =-在R上是增函数”的(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件【解析】若函数x a x f =)(在R 上为减函数,则有10<<a 。
2012年山东卷(理科数学)

2012年普通高等学校招生全国统一考试理科数学(山东卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.若复数z 满足(2)117z i i -=+(i 为虚数单位),则z 为A.35i +B.35i -C.35i -+D.35i -- 2.已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U C A B =U A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4} 3.设0a >,1a ≠,则“函数()x f x a =在R 上是减函数”,是“函数3()(2)g x a x =-在R 上是增函数”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为 A .7 B .9 C .10 D .155.设变量x ,y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是A.3[,6]2-B.3[,1]2--C.[16]-,D.3[6]2-,6.执行下面的程序图,如果输入4a =,那么输出的n 的值为A .2B .3C .4D .57.若[,]42ππθ∈,sin 2θ=sin θ=A.35B.45C.4D.348.定义在R 上的函数()f x 满足(6)()f x f x +=,当31x -≤<-时,2()(2)f x x =-+ ,当13x -≤<时,()f x x =,则(1)(2)(3)(2012)f f f f ++++=L A.335 B.338 C.1678 D.20129.函数cos622x x xy -=-的图像大致为10.已知椭圆C:22221x y a b+=(0a b >>)双曲线221x y -=的渐近线与圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为A.22182x y += B.221126x y += C.221164x y += D.221205x y += 11.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为 A .232 B .252 C .472 D .48412.设函数1()f x x=,2()g x ax bx =+(a ,b R ∈,0a ≠),若()y f x =的图像与()y g x =图像有且仅有两个不同的公共点11(,)A x y ,22(,)A x y ,则下列判断正确的是A.当0a <时,120x x +<,120y y +>B.当0a <时,120x x +>,120y y +>C.当0a >时,120x x +<,120y y +<D.当0a >时,120x x +>,120y y +> 二、填空题:本大题共4小题,每小题4分,共16分.13.若不等式42kx -≤的解集为{}13x x ≤≤,则实数k = .14.如图,正方体1111ABCD A B C D -的棱长为1,E ,F 分别为线段1AA ,1B C 上的点,则三棱锥1D EDF -的体积 _.15.设0a >.若曲线y =x a =,0y =所围成封闭图形的面积为a ,则a = 16.如图,在平面直角坐标系xoy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动。
2012年高考理科数学山东卷(含详细答案)

数学试卷 第1页(共39页) 数学试卷 第2页(共39页)数学试卷 第3页(共39页)绝密★启用前2012年普通高等学校招生全国统一考试(山东卷)数学(理科)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页.满分150分.考试用时120分钟.考试结束后,务必将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡上和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高.如果事件A ,B 互斥,那么()()()P A B P A P B +=+;如果事件A ,B 独立,那么()()()P AB P A P B =.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z 满足(2i)117i z -=+(i 为虚数单位),则z 为( )A. 35i +B. 35i -C. 35i -+D. 35i --2. 已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为 ( )A. {1,2,4}B. {2,3,4}C. {0,2,4}D. {0,2,3,4}3. 设0a >且1a ≠,则“函数()x f x a =在R 上是减函数”,是“函数3()(2)g x a x =-在R 上是增函数”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4. 采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( )A. 7B. 9C. 10D. 15 5. 已知变量x ,y 满足约束条件22,24,41,x y x y x y +⎧⎪+⎨⎪--⎩≥≤≥则目标函数3z x y =-的取值范围是 ( )A. 3[,6]2- B. 3[,1]2-- C. [1,6]-D. 3[6,]2-6. 执行下面的程序图,如果输入4a =,那么输出的n 的值为( )A. 2B. 3C. 4D. 57. 若ππ[,]42θ∈,sin 2θ=sin θ= ( )A.35B. 45C.D.348. 定义在R 上的函数()f x 满足(6)()f x f x +=.当31x --≤<时,2()(2)f x x =-+;当13x -≤<时,()f x x =.则(1)(2)(3)(2012)f f f f +++⋅⋅⋅=( )A. 335B. 338C. 1 678D. 2 012 9. 函数cos622x xxy -=-的图象大致为( )ABD10. 已知椭圆2222:1(0)x y C a b a b +=>>.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为 ( )A. 22182x y +=B. 221126x y +=C. 221164x y +=D.221205x y += 11. 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为( )A. 232B. 252C. 472D. 48412. 设函数1()f x x=,2()(,,0)g x ax bx a b a =+∈≠R ,若()y f x =的图象与()y g x =图象有且仅有两个不同的公共点11(,)A x y ,22(,)B x y ,则下列判断正确的是( )A. 当0a <时,120x x +<,120y y +>B. 当0a <时,120x x +>,120y y +<C. 当0a >时,120x x +<,120yy +<D. 当0a >时,120x x +>,120y y +>姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------数学试卷 第4页(共39页)数学试卷 第5页(共39页)数学试卷 第6页(共39页)第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13. 若不等式|4|2kx -≤的解集为{|13}x x ≤≤,则实数k =_________.14. 如图,正方体1111ABCD A B C D -的棱长为1,E ,F 分别为线段1AA ,1B C 上的点,则三棱锥1D EDF -的体积为_________.15. 设0a >.若曲线y 与直线x a =,0y =所围成封闭图形的面积为2a ,则a =_________.16. 如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为_________.三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)已知向量(sin ,1)x =m,cos ,cos2)(0)3Ax x A =>n ,函数()f x =⋅m n 的最大值为6.(Ⅰ)求A ;(Ⅱ)将函数()y f x =的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5π[0,]24上的值域.18.(本小题满分12分)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB CD ∥,60DAB ∠=,FC ⊥平面ABCD ,AE BD ⊥,CB CD CF ==. (Ⅰ)求证:BD ⊥平面AED ; (Ⅱ)求二面角F BD C --的余弦值.19.(本小题满分12分)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X 的分布列及数学期望EX .20.(本小题满分12分)在等差数列{}n a 中,34584a a a ++=,973a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中落入区间2(9,9)m m 内的项的个数记为m b ,求数列{}m b 的前m 项和m S .21.(本小题满分13分)在平面直角坐标系xOy 中,F 是抛物线2:2(0)C x py p =>的焦点,M 是抛物线C 上位于第一象限内的任意一点,过M ,F ,O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34. (Ⅰ)求抛物线C 的方程;(Ⅱ)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由;(Ⅲ)若点M,直线1:4l y kx =+与抛物线C 有两个不同的交点A ,B ,l 与圆Q 有两个不同的交点D ,E ,求当122k ≤≤时,22|AB||DE|+的最小值.22.(本小题满分13分) 已知函数ln ()e xx kf x +=(k 为常数,e 2.71828=⋅⋅⋅是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2()()()g x x x f x '=+,其中()f x '为()f x 的导函数.证明:对任意0x >,2()1e g x -<+.{0,2,4}A B=A B.又可知,0,a>并不单调递减,故而“函数3 / 13【解析】由所给的不等式组可知所表示的可行域如图所示,5 / 1312412C 264=数学试卷 第16页(共39页)不妨设12x x <,结合图形可知,当0a >时如右图,(2OP=-∠=PCD2, OP=-,即(27 / 133cos==m n A的图像向左平移60,CBCD CB DAB-∠3CDcos(180=60,3BD==,故AD AE A3BD=,建立如图所示的空间直角坐标系,数学试卷第22页(共39页)9 / 13,向量(0,0,1)n =为平面设向量(,,m x y=0,0m BD m FB ⎧=⎪⎨=⎪⎩ 1,则x =,则(3,1m =为平面BDF 的一个法向量.1,5m n m n m n〈〉===,而二面角F BD C --的余弦值为5(Ⅱ)建立如图所示的空间直角坐标系,确定法向量(0,0,1)n =和(3,1m =12311127C 4343336⎛⎫+= ⎪⎝⎭, 121113111121.(1),(2)C ,433643124339P X P X ⎛⎫⎛⎫======= ⎪ ⎪⎝⎭⎝⎭ 22123121121321C (4),(5),4333439433P X P X ⎛⎫⎛⎫======= ⎪ ⎪⎝⎭⎝⎭, 0 1 234数学试卷 第28页(共39页)210919m +=,可求公差11 / 1322818k k -=+数学试卷第34页(共39页)13 / 13。
年山东高考数学试题及答案(理科)

2012年山东高考数学试卷及答案(理科)本试卷分第I卷和第II卷两部分,共4页。
满分150分。
考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。
注意事项:1.答题前,考生务必用直径0.5毫M黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II卷必须用0.5毫M黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:锥体的体积公式:V=Sh,其中S是锥体的底面积,h是锥体的高。
如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P (A)·P(B)。
第I卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 若复数x满足z(2-i)=11+7i(i为虚数单位),则z为A 3+5iB 3-5iC -3+5iD -3-5i解读:.答案选A。
另解:设,则根据复数相等可知,解得,于是。
2 已知全集={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA)B为A {1,2,4}B {2,3,4}C {0,2,4}D {0,2,3,4}解读:。
答案选C。
3 设a>0 a≠1 ,则“函数f(x)= a x在R上是减函数”,是“函数g(x)=(2-a) 在R上是增函数”的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件解读:p:“函数f(x)= a x在R上是减函数”等价于;q:“函数g(x)=(2-a) 在R上是增函数”等价于,即且a≠1,故p是q成立的充分不必要条件. 答案选A。
12年高考真题——理科数学(山东卷)

2012年普通高等学校招生全国统一考试数学试卷(山东卷)参考公式:⑴锥体的体积公式:V Sh =,其中S 是锥体的底面积,h 是锥体的高;⑵若事件,A B 互斥,则()()()P A B P A P B +=+;若事件,A B 独立,则()()()P A B P A P B ⋅=⋅。
一.选择题:本大题共12小题,每小题5分,满分60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数z 满足()2117z i i -=+(i 为虚数单位),则z 为( )(A )35i + (B )35i - (C )35i -+ (D )35i --2.已知全集{}0,1,2,3,4U =,集合{}1,2,3A =,{}2,4B =,则U A B ð为( )(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,43.设0a >且1a ≠,则“函数()x f x a =在R 上是减函数 ”,是“函数()()32g x a x =-在R 上是增函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件4.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( )(A )7 (B )9 (C )10 (D )155.已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是( ) (A )[]32,6-(B )[]32,1-- (C )[]1,6- (D ) []6,32-6.执行下面的程序图,如果输入4a =,那么输出的n 的值为( ) (A )2 (B )3 (C )4 (D )57.若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2=8θ,则sin θ=( )(A )35 (B )45(C (D )348.定义在R 上的函数()f x 满足()()6f x f x +=,当31x -≤<-时,()()22f x x =-+,当13x -≤<时,()f x x =。
[VIP专享]2012山东高考理科数学试题及答案
![[VIP专享]2012山东高考理科数学试题及答案](https://img.taocdn.com/s3/m/e239e189a8114431b90dd8cc.png)
绝密★启用并使用完毕前2012年普通高等学校招生全国统一考试(山东卷)理 科 数 学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各科目指定区域内相应位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案.解答题应写出文字说明、证明过程或演算步骤.参考公式:椎体的体积公式:V =Sh ,其中S 是椎体的底面积,h 是椎体的高.31如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B );如果事件A 、B 独立,那么P (AB )=P (A )•P (B ).第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z 满足z (2-i )=11+7i (i 为虚数单位),则z 为(A )3+5i (B )3-5i (C )-3+5i (D )-3-5i (2) 已知全集=,集合A =, B =,则为 {}4,3,2,1,0{}3,2,1{}2,4()B A C U (A ) (B ) (C ) (D ){}4,2,1{}4,3,2{}4,2,0{}4,3,2,0(3)设a >0且a ≠1, 则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(4) 采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为(A ) 7 (B )9 (C )10 (D )15(5)实数x ,y 满足约束条件,则目标函数的取值范围是⎪⎩⎪⎨⎧+--+2 ≥21 ≥44≤ 2y x y x y x y x z -=3(A )[,6] (B )[]23-123--,(C )[] (D )[] 61,-236,-(6)执行右面的程序框图,如果输入a =4.那么输出的n 的值为(A ) 2 (B ) 3 (C ) 4 (D ) 5(7)若θ∈[],sin 2θ=,则sin θ=24ππ,873(A ) (B ) 5354(C ) (D ) 4743(8)定义在R 上的函数f (x )满足f (x +6)=f (x ).当-3≤x <-1时,f (x )= -(x +2)2.当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+ … +f (2012)=(A )335 (B ) 338 (C )1678 (D ) 2012(9)函数的图像大致为x x x cos y --=226 (A ) (B ) (C ) (D )(10)已知椭圆C :(a >b >0)的离心率为.双曲线的渐近线与椭圆12222=+b y a x 23122=-y x 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为 (A ) (B ) (C ) (D )12822=+y x 161222=+y x 141622=+x x 152022=+y x (11)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法种数为(A ) 232 (B )252 (C )472 (D )484(12)设函数f (x )=,g (x )=ax 2+bx (a ,b ∈R ,a ≠0).若y =f (x )的图象与y =g (x )的图象有且仅有x 1两个不同的公共点A (x 1 ,y 1)B (x 2 ,y 2),则下列判断正确的是(A )当a <0时,x 1+x 2<0,y 1+y 2>0 (B )当a <0时,x 1+x 2>0,y 1+y 2<0 (C )当a >0时,x 1+x 2<0,y 1+y 2<0 (D )当a >0时,x 1+x 2>0,y 1+y 2>0第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)若不等式≤2的解集为{x |1≤x ≤3},则实数k =_________.4-kx (14)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为_____________.(15)设a >0.若曲线与直线x =a ,y =0所围成封闭图形的面积为a 2,x y =则a =____________.(16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0 ,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为_____________.OP 三、解答题:本大题共6小题,共74分.(17)(本小题满分12分) 已知向量m =(sin x ,1),n =()(A >0),函数的最大值x cos A x cos A 223,n m x f ⋅=)(为6.)(x f y =(Ⅰ)求A .(Ⅱ)将函数的图象向左平移个单位,再将所得图象上各点的横坐标短)(x f y =12π为原来的倍,纵坐标不变,得到函数的图象.求在[]上的值域.21)(x g y =)(x g 245,0π (18)(本小题满分12分)在如图所示的几何体中,四边形ABCD 是等腰梯形, AB ∥CD ,∠DAB =,FC ⊥平面ABCD ,AE ⊥BD ,︒60CB =CD =CF .(Ⅰ).求证: BD ⊥平面AED .(Ⅱ)求二面角F -BD -C 的余弦值. (19)(本小题满分12分)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为,命中得1分,没命中得430分.向乙靶射击两次,每次命中的概率为,每命中一次得2分,没命中得0分.该射手32每次射击的结果相互独立.假设该射手完成以上三次射击.(Ⅰ)求该射手恰好命中一次的概率;(Ⅱ)求该射手的总得分X 的分布列及数学期望EX.A 1E A B C C 1D D 1B 1FEF A C D(20)(本小题满分12分)在等差数列中,a 3+a 4+a 5=84,a 9=73..{}n a (Ⅰ)求数列的通项公式.{}n a (Ⅱ)对任意,将数列中落入区间内的项的个数记为b m ,求数列+∈N m {}n a )9,9(2m m 的前m 项和S m .{}m b (21)(本小题满分13分)在平面直角坐标系xOy 中,F 是抛物线C : 的焦点,M 是抛物线C 上)0(22<p py x =位于第一象限内的任意一点,过M ,F ,O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为.43(Ⅰ)求抛物线C 方程;(Ⅱ)是否存在点M ,使得直线MQ 与抛物线C 相切与点M ?若存在,求出点M 的坐标;若不存在,说明理由;(Ⅲ)若点M 的横坐标为,直线l : 与抛物线C 有两个不同的交点A ,B ,l 241+=kx y 与圆Q 有两个不同的交点D ,E ,求当≤k ≤2时,的最小值.2122DE AB + (22)(本小题满分13分)已知函数(k 为常数,e=2.71828…是自然对数的底数),曲线xk x x f e ln )(+=在点(1,f (1))处的切线与x 轴平行.)(x f y =(Ⅰ)求k 的值.(Ⅱ)求的单调区间.)(x f (Ⅲ)设g (x )=(x 2+x )f '(x ),其中f '(x )为f (x )的导函数.证明:对任意x >0,.2e 1)(-+<x g。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I卷和第II卷两部分,共4页。
满分150分。
考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。
注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:锥体的体积公式:V=13Sh,其中S是锥体的底面积,h是锥体的高。
如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)·P (B)。
第I卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数x满足z(2-i)=11+7i(i为虚数单位),则z为A.3+5i B.3-5i C.-3+5i D.-3-5i2.已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA) B为A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}3.设a>0 a≠1 ,则“函数f(x)= a x在R上是减函数”,是“函数g(x)=(2-a) 3x在R上是增函数”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为A.7 B.9 C.10 D.156.执行下面的程序图,如果输入a=4,那么输出的n 的值为 A .2 B .3C .4D .57.若42ππθ⎡⎤∈⎢⎥⎣⎦,, sin 2θ,则sin θ=A .35 B .45C D .348.定义在R 上的函数f (x )满足f (x+6)=f (x ),当-3≤x <-1时,f (x )=-(x+2)2,当-1≤x <3时,f (x )=x 。
则f (1)+f (2)+f (3)+…+f (2012)=A .335B .338C .1678D .2012 9.函数xx xy --=226cos 的图像大致为10.已知椭圆C :)0(12222>>=+b a by a x 的离心率为23,双曲线x ²-y ²=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆c 的方程为11.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为 A .232 B .252 C .472 D .484 12.设函数f (x )=x1,g (x )=ax 2+bx (0,,≠∈a R b a )若y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点A (x 1,y 1),B(x 2,y 2),则下列判断正确的是A.当a<0时,x 1+x 2<0,y 1+y 2>0B. 当a<0时, x 1+x 2>0, y 1+y 2<0C.当a>0时,x 1+x 2<0, y 1+y 2<0D. 当a>0时,x 1+x 2>0, y 1+y 2>0 第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分。
13.若不等式2|4|≤-kx 的解集为}31|{≤≤x x ,则实数k=__________。
14.如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,E,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为____________。
15.设a >0.若曲线x y =与直线x =a ,y=0所围成封闭图形的面积为a ,则a=______。
16.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动。
当圆滚动到圆心位于(2,1)时,的坐标为______________。
三、解答题:本大题共6小题,共74分。
17.(本小题满分12分)已知向量m=(sinx ,1),n=)0)(2cos 2,cos 3(>A x Ax A ,函数f (x )=m ·n 的最大值为6.(Ⅰ)求A ;(Ⅱ)将函数y=f (x )的图象像左平移12π个单位,再将所得图象各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y=g (x )的图象。
求g (x )在]245,0[π上的值域。
18.(本小题满分12分)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB=60°,FC ⊥平面ABCD ,AE ⊥BD ,CB=CD=CF 。
(Ⅰ)求证:BD ⊥平面AED ;(Ⅱ)求二面角F-BD-C 的余弦值。
(19)(本小题满分12分)现有甲、乙两个靶。
某射手向甲靶射击一次,命中的概率为43,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为32,每命中一次得2分,没有命中得0分。
该射手每次射击的结果相互独立。
假设该射手完成以上三次射击。
(Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X 的分布列及数学期望EX20.(本小题满分12分)在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)对任意m ∈N ﹡,将数列{a n }中落入区间(9m ,92m )内的项的个数记为bm ,求数列{b m }的前m 项和S m 。
21.(本小题满分13分)在平面直角坐标系xOy 中,F 是抛物线C :x 2=2py (p >0)的焦点,M 是抛物线C 上位于第一象限内的任意一点,过M ,F ,O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34。
(Ⅰ)求抛物线C 的方程;(Ⅱ)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由;(Ⅲ)若点M ,直线l :y=kx+14与抛物线C 有两个不同的交点A ,B ,l 与圆Q 有两个不同的交点D ,E ,求当12≤k ≤2时,22||||DE AB +的最小值。
22. (本小题满分13分) 已知函数f(x) =xekx +ln (k 为常数,e=2.71828……是自然对数的底数),曲线y= f(x)在点(1,f(1))处的切线与x 轴平行。
(Ⅰ)求k 的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=(x 2+x) '()f x ,其中'()f x 为f(x)的导函数,证明:对任意x >0,21)(-+<e x g 。
答案参考解析一、选择题:本大题共12小题,每小题5分,共60分 1 . 解析:i ii i i i z 535)1114(7225)2)(711(2711+=++-=++=-+=.答案选A 。
另解:设),(R b a bi a z ∈+=,则i i a b b a i bi a 711)2(2)2)((+=-++=-+ 根据复数相等可知72,112=-=+a b b a ,解得5,3==b a ,于是i z 53+=。
2. 解析:}4,2,0{)(},4,0{==B A C A C U U 。
答案选C 。
3. 解析:p :“函数f(x)= a x 在R 上是减函数 ”等价于10<<a ;q :“函数g(x)=(2-a) 3x 在R 上是增函数”等价于02>-a ,即,20<<a 且a ≠1,故p 是q 成立的充分不必要条件. 答案选A 。
4. 解析:采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即30=l ,第k 组的号码为930)1(+-k ,令750930)1(451≤+-≤k ,而z k ∈,解得2516≤≤k ,则满足2516≤≤k 的整数k 有10个,故答案应选C 。
解析:作出可行域,直线03=-y x ,将直线平移至点)0,2(点)3,21(处有最小值,即623≤≤-z .答案应选A 。
6. 解析:312,140,00=+==+==q p n ;716,541,11=+==+==q p n ;15114,2145,22=+==+==q p n ,q p n >=,3。
答案应选B 。
7.解析:由42ππθ⎡⎤∈⎢⎥⎣⎦,可得],2[2ππθ∈,812sin 12cos 2-=--=θθ,4322cos 1sin =-=θθ,答案应选D 。
另解:由42ππθ⎡⎤∈⎢⎥⎣⎦,及sin 2θ可得434716776916761687312sin 1cos sin +=++=+=+=+=+θθθ,而当42ππθ⎡⎤∈⎢⎥⎣⎦,时θθcos sin >,结合选项即可得47cos ,43sin ==θθ.答案应选D 。
8.解析:2)2(,1)1(,0)0(,1)1(,0)2(,1)3(===-=-=--=-f f f f f f ,而函数的周期为6,3383335)2()1()210101(335)2012()2()1(=+=+++++-+-=+++f f f f f .答案应选B9.解析:函数x x x x f --=226cos )(,)(226cos )(x f xx f xx -=-=--为奇函数, 当0→x ,且0>x 时+∞→)(x f ;当0→x ,且0<x 时-∞→)(x f ;当+∞→x ,+∞→--x x 22,0)(→x f ;当-∞→x ,-∞→--x x 22,0)(→x f . 答案应选D 。
10.解析:双曲线x ²-y ²=1的渐近线方程为x y ±=,代入可得164,222222==+=x S b a b a x ,则)(42222b a b a +=,又由23=e 可得b a 2=,则245b b =,于是20,522==a b 。