山东省2012年春季高考数学试题

合集下载

2012全国高考山东卷数学及答案

2012全国高考山东卷数学及答案

2012年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为(A)3+5i (B)3-5i (C)-3+5i (D)-3-5i(2)已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为(A){1,2,4} (B){2,3,4} (C){0,2,4} (D){0,2,3,4}(3)函数1()ln(1)f x x =++ (A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-(4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是(A)众数 (B)平均数 (C)中位数 (D)标准差(5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真(6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是(A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3[6,]2- (7)执行右面的程序框图,如果输入a =4,那么输出的n 的值为(A)2 (B)3 (C)4 (D)5(8)函数2sin (09)63x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之和为(A)2 (B)0 (C)-1(D)1-(9)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为(A)内切 (B)相交 (C)外切 (D)相离(10)函数cos622x xx y -=-的图象大致为(11)已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 2x y = (B) 2x y = (C)28x y = (D)216x y = (12)设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是(A)12120,0x x y y +>+> (B)12120,0x x y y +>+<(C)12120,0x x y y +<+> (D)12120,0x x y y +<+<第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____.(14)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.(15)若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.(16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为____.三、解答题:本大题共6小题,共74分.(17)(本小题满分12分)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=. (Ⅰ)求证:,,a b c 成等比数列;(Ⅱ)若1,2a c ==,求△ABC 的面积S .(18)(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.(19) (本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥.(Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点,求证:DM ∥平面BEC .(20) (本小题满分12分)已知等差数列{}n a 的前5项和为105,且2052a a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S .(21) (本小题满分13分)如图,椭圆2222:1(0)x y M a b a b+=>>x a =±和y b =±所围成的矩形ABCD 的面积为8.(Ⅰ)求椭圆M 的标准方程;(Ⅱ) 设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||PQ ST 的最大值及取得最大值时m 的值.(22) (本小题满分13分) 已知函数ln ()(e xx k f x k +=为常数,e=2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.参考答案:一、选择题:(1)A (2)C (3)B (4)D (5)C (6)A (7)B (8)A (9)B (10)D (11)D (12)B(12)解:设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b =.这样,必须且只须(0)0F =或2()03F b =,因为(0)1F =,故必有2()03F b =由此得b =.不妨设12x x <,则223x b =.所以21()()()F x x x x =-,比较系数得1x -,故1x =120x x +=,由此知12121212110x x y y x x x x ++=+=<,故答案为B. 二、填空题 (13)16 以△1ADD 为底面,则易知三棱锥的高为1,故111111326V =⋅⋅⋅⋅=. (14)9 最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9. (15)14 当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意. (16)(2sin 2,1cos2)--三、解答题(17)(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=,sin sin()sin sin B A C A C +=,2sin sin sin B A C =,再由正弦定理可得:2b ac =,所以,,a b c 成等比数列.(II)若1,2a c ==,则22b ac ==, ∴2223cos 24a cb B ac +-==,sin C =,∴△ABC的面积11sin 1222S ac B ==⨯⨯=(18)(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =. (II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =. (19)(I)设BD 中点为O ,连接OC ,OE ,则由BC CD =知,CO BD ⊥,又已知CE BD ⊥,所以BD ⊥平面OCE .所以BD OE ⊥,即OE 是BD 的垂直平分线,所以BE DE =.(II)取AB 中点N ,连接,MN DN ,∵M 是AE 的中点,∴MN ∥BE ,∵△ABD 是等边三角形,∴DN AB ⊥.由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC AB ⊥, 所以ND ∥BC ,所以平面MND ∥平面BEC ,故DM ∥平面BEC .(20)(I)由已知得:111510105,92(4),a d a d a d +=⎧⎨+=+⎩ 解得17,7a d ==,所以通项公式为7(1)77n a n n =+-⋅=.(II)由277m n a n =≤,得217m n -≤,即217m m b -=. ∵211217497m k m k b b ++-==, ∴{}m b 是公比为49的等比数列, ∴7(149)7(491)14948m m m S -==--. (21)(I)22234c a b e a a -==⇒=……① 矩形ABCD 面积为8,即228a b ⋅=……②由①②解得:2,1a b ==,∴椭圆M 的标准方程是2214x y +=. (II)222244,58440,x y x mx m y x m ⎧+=⇒++-=⎨=+⎩, 设1122(,),(,)P x y Q x y ,则21212844,55m x x m x x -+=-=,由226420(44)0m m ∆=-->得m <.||PQ =当l 过A 点时,1m =,当l 过C 点时,1m =-.①当1m <-时,有(1,1),(2,2),||)S m T m ST m ---+=+,||||PQ ST =其中3t m =+,由此知当134t =,即45,(1)33t m ==-∈-时,||||PQ ST .②由对称性,可知若1m <53m =时,||||PQ ST .③当11m -≤≤时,||ST =||||PQ ST =,由此知,当0m =时,||||PQ ST .综上可知,当53m =±和0时,||||PQ ST (22)(I)1ln ()e xx k x f x --'=, 由已知,1(1)0ek f -'==,∴1k =. (II)由(I)知,1ln 1()e xx x f x --'=. 设1()ln 1k x x x =--,则211()0k x x x '=--<,即()k x 在(0,)+∞上是减函数, 由(1)0k =知,当01x <<时()0k x >,从而()0f x '>, 当1x >时()0k x <,从而()0f x '<. 综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞.(III)由(II)可知,当1x ≥时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x <<时成立.当01x <<时,e x >1,且()0g x >,∴1ln ()1ln e x x x x g x x x x --=<--. 设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+, 当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<, 所以当2e x -=时,()F x 取得最大值22()1e F e --=+. 所以2()()1e g x F x -<≤+.综上,对任意0x >,2()1e g x -<+.。

2012年普通高等学校招生全国统一考试(山东卷)数学试题 (文科) 解析版

2012年普通高等学校招生全国统一考试(山东卷)数学试题 (文科) 解析版

2012年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为(A)3+5i (B)3-5i (C)-3+5i (D)-3-5i 【解析】i i i i i i i i z 5352515)2)(2()2)(711(2711+=+=+-++=-+=.故选A.【答案】A (2)已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则B AC U )(为(A){1,2,4}(B){2,3,4}(C){0,2,4}(D){0,2,3,4}【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C.【答案】C(3)函数1()ln(1)f x x =++(A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]-(D)(1,2]-【解析】要使函数有意义则有⎪⎩⎪⎨⎧≥-≠+>+040)1ln(012x x x ,即⎪⎩⎪⎨⎧≤≤-≠->2201x x x ,即01<<-x 或20≤<x ,选B.【答案】B(4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是(A)众数(B)平均数(C)中位数(D)标准差【解析】设A 样本的数据为变量为X ,B 样本的数据为变量为Y ,则满足2+=X Y ,根据方差公式可得DX X D DY =+=)2(,所以方差相同,标准差也相同,选D.【答案】D(5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真(B)q ⌝为假(C)p q ∧为假(D)p q ∨为真【解析】函数x y 2sin =的周期为ππ=22,所以命题p 为假;函数x y cos =的对称轴为Z k k x ∈=,π,所以命题q 为假,所以q p ∧为假,选C.【答案】C(6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是(A)3[,6]2-(B)3[,1]2--(C)[1,6]-(D)3[6,]2-【解析】做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)0,2(E 时,直线z x y -=3的截距最小,此时z 最大为63=-=y x z ,当直线经过C 点时,直线截距最大,此时z 最小,由⎩⎨⎧=+-=-4214y x y x ,解得⎪⎩⎪⎨⎧==321y x ,此时233233-=-=-=y x z ,所以y x z -=3的取值范围是]6,23[-,选A.【答案】A(7)执行右面的程序框图,如果输入a =4,那么输出的n 的值为(A)2(B)3(C)4(D)5【解析】当4=a 时,第一次1,3,140====n Q P ,第二次2,7,441====n Q P ,第三次3,15,1642====n Q P ,此时Q P <不满足,输出3=n ,选B.【答案】B(8)函数2sin (09)63x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之和为(A)2-(B)0(C)-1(D)1--【解析】因为90≤≤x ,所以6960ππ≤≤x ,369363πππππ-≤-≤-x ,即67363ππππ≤-≤-x ,所以当336πππ-=-x 时,最小值为3)3sin(2-=-π,当236πππ=-x 时,最大值为22sin 2=π,所以最大值与最小值之和为32-,选A.【答案】A(9)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为(A)内切(B)相交(C)外切(D)相离【解析】两圆的圆心分别为)0,2(-,)1,2(,半径分别为2=r ,3=R 两圆的圆心距离为17)10()22(22=-+--,则r R r R +<<-17,所以两圆相交,选B.【答案】B(10)函数cos622x xx y -=-的图象大致为【解析】函数为奇函数,所以图象关于原点对称,排除A,令0=y 得06cos =x ,所以ππk x +=26,ππ612k x +=,函数零点有无穷多个,排除C,且y 轴右侧第一个零点为)0,12(π,又函数x x y --=22为增函数,当120π<<x 时,022>-=-x x y ,06cos >x ,所以函数0226cos >-=-x x x y ,排除B ,选D.【答案】D(11)已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A)23x y =(B)23x y =(C)28x y =(D)216x y=【解析】抛物线的焦点)2,0(p ,双曲线的渐近线为x a b y ±=,不妨取x a b y =,即0=-ay bx ,焦点到渐近线的距离为2222=+⨯b a p a ,即c b a ap 4422=+=,所以4p a c =双曲线的离心率为2=a c ,所以24==p a c ,所以8=p ,所以抛物线方程为y x 162=,选D.【答案】D(12)设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是(A)12120,0x x y y +>+>(B)12120,0x x y y +>+<(C)12120,0x x y y +<+>(D)12120,0x x y y +<+<【解析】方法一:在同一坐标系中分别画出两个函数的图象,要想满足条件,则有如图,做出点A 关于原点的对称点C,则C 点坐标为),(11y x --,由图象知,,2121y y x x >-<-即0,02121<+>+y y x x ,故答案选B.方法二:设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b =.这样,必须且只须(0)0F =或2()03F b =,因为(0)1F =,故必有2()03F b =由此得b =.不妨设12x x <,则223x b ==.所以21()()(F x x x x =--,比较系数得1x -=,故1x =.120x x +=>,由此知12121212110x x y y x x x x ++=+=<,故答案为B.【答案】B第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____.【解析】以△1ADD 为底面,则易知三棱锥的高为1,故111111326V =⋅⋅⋅⋅=.【答案】61(14)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.【解析】最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9.【答案】9(15)若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.【解析】当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意.【答案】14(16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为____.【解析】因为圆心移动的距离为2,所以劣弧2=PA ,即圆心角2=∠PCA,,则22π-=∠PCA ,所以2cos )22sin(-=-=πPB ,2sin 22cos(=-=πCB ,所以2sin 22-=-=CB x p ,2cos 11-=+=PB y p ,所以)2cos 1,2sin 2(--=OP .另解:根据题意可知滚动制圆心为(2,1)时的圆的参数方程为⎩⎨⎧+=+=θθsin 1cos 2y x ,且223,2-==∠πθPCD ,则点P 的坐标为⎪⎩⎪⎨⎧-=-+=-=-+=2cos 1)223sin(12sin 2)223cos(2ππy x ,即)2cos 1,2sin 2(--=OP .【答案】)2cos 1,2sin 2(--三、解答题:本大题共6小题,共74分.(17)(本小题满分12分)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=.(Ⅰ)求证:,,a b c 成等比数列;(Ⅱ)若1,2a c ==,求△ABC 的面积S .【答案】(17)(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=,sin sin()sin sin B A C A C +=,2sin sin sin B A C =,再由正弦定理可得:2b ac =,所以,,a b c 成等比数列.(II)若1,2a c ==,则22b ac ==,∴2223cos 24a cb B ac +-==,sin C =∴△ABC 的面积11sin 1222S ac B ==⨯⨯⨯.(18)(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.【答案】(18)(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =.(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =.(19)(本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥.(Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点,求证:DM ∥平面BEC .【答案】(19)(I)设BD 中点为O ,连接OC ,OE ,则由BC CD =知,CO BD ⊥,又已知CE BD ⊥,所以BD ⊥平面OCE .所以BD OE ⊥,即OE 是BD 的垂直平分线,所以BE DE =.(II)取AB 中点N ,连接,MN DN ,∵M 是AE 的中点,∴MN ∥BE ,∵△ABD 是等边三角形,∴DN AB ⊥.由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC AB ⊥,所以ND ∥BC ,所以平面MND ∥平面BEC ,故DM ∥平面BEC .(20)(本小题满分12分)已知等差数列{}n a 的前5项和为105,且2052a a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S .【答案】(I)由已知得:111510105,92(4),a d a d a d +=⎧⎨+=+⎩解得17,7a d ==,所以通项公式为7(1)77n a n n =+-⋅=.(II)由277m n a n =≤,得217m n -≤,即217m m b -=.∵211217497m k m k b b ++-==,∴{}m b 是公比为49的等比数列,∴7(149)7(491)14948m m m S -==--.(21)(本小题满分13分)如图,椭圆2222:1(0)x y M a b a b+=>>,直线x a =±和y b =±所围成的矩形ABCD 的面积为8.(Ⅰ)求椭圆M 的标准方程;(Ⅱ)设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||PQ ST 的最大值及取得最大值时m 的值.【答案】(21)(I)22234c a b e a a -===……①矩形ABCD 面积为8,即228a b ⋅=……②由①②解得:2,1a b ==,∴椭圆M 的标准方程是2214x y +=.(II)222244,58440,x y x mx m y x m ⎧+=⇒++-=⎨=+⎩,设1122(,),(,)P x y Q x y ,则21212844,55m xx m x x -+=-=,由226420(44)0m m ∆=-->得m <<.||PQ=.当l 过A 点时,1m =,当l 过C 点时,1m =-.①当1m <<-时,有(1,1),(2,2),||)S m T m ST m ---+=+,||||PQ ST ==其中3t m =+,由此知当134t =,即45,(1)33t m ==-∈-时,||||PQ ST.②由对称性,可知若1m <<53m =时,||||PQ ST.③当11m -≤≤时,||ST =||||PQ ST =,由此知,当0m =时,||||PQ ST.综上可知,当53m =±和0时,||||PQ ST.(22)(本小题满分13分)已知函数ln ()(e xx k f x k +=为常数,e=2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.【答案】(I)1ln ()e xx k x f x --'=,由已知,1(1)0e k f -'==,∴1k =.(II)由(I)知,1ln 1()e xx x f x --'=.设1()ln 1k x x x=--,则,即()k x 在(0,)+∞上是减函数,由(1)0k =知,当01x <<时()0k x >,从而()0f x '>,当1x >时()0k x <,从而()0f x '<.综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞.(III)由(II)可知,当1x ≥时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x <<时成立.当01x <<时,e x >1,且()0g x >,∴1ln ()1ln e xx x x g x x x x --=<--.设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+,当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<,所以当2e x -=时,()F x 取得最大值22()1e F e --=+.所以2()()1e g x F x -<≤+.综上,对任意0x >,2()1e g x -<+.。

2012年山东高考数学试题及答案(理科)

2012年山东高考数学试题及答案(理科)

2012年山东高考数学试题及答案(理科)本试卷分第I卷和第II卷两部分,共4页。

满分150分。

考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。

注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。

2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:锥体的体积公式:V=Sh,其中S是锥体的底面积,h是锥体的高。

如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)·P(B)。

第I卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1 若复数x满足z(2-i)=11+7i(i为虚数单位),则z为A 3+5iB 3-5iC -3+5iD -3-5i解析:.答案选A。

另解:设,则根据复数相等可知,解得,于是。

2 已知全集={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA)B为A {1,2,4}B {2,3,4}C {0,2,4}D {0,2,3,4}解析:。

答案选C。

3 设a>0 a≠1 ,则“函数f(x)= a x在R上是减函数”,是“函数g(x)=(2-a) 在R上是增函数”的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件解析:p:“函数f(x)= a x在R上是减函数”等价于;q:“函数g(x)=(2-a) 在R上是增函数”等价于,即且a≠1,故p是q成立的充分不必要条件. 答案选A。

2012高考真题山东卷理科数学含答案

2012高考真题山东卷理科数学含答案

2012年普通高等学校招生全国统一考试(山东卷)理科数学参考公式: 锥体的体积公式:V=13Sh ,其中S 是锥体的底面积,h 是锥体的高。

如果事件A ,B 互斥,那么P (A+B )=P (A )+P(B);如果事件A,B 独立,那么P (AB )=P (A )·P (B )。

第I 卷(共60分) 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1 若复数x 满足z(2-i)=11+7i(i 为虚数单位),则z 为 A 3+5i B 3-5i C -3+5i D -3-5i2 已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA ) B 为 A {1,2,4} B {2,3,4} C {0,2,4} D {0,2,3,4}3 设a >0 a ≠1 ,则“函数f(x)= a x 在R 上是减函数 ”,是“函数g(x)=(2-a) 3x 在R 上是增函数”的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件 (4)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为(A )7 (B ) 9 (C ) 10 (D )15答案应选A 。

(6)执行下面的程序图,如果输入a=4,那么输出的n 的值为(A )2(B )3(C )4(D )5(7)若42ππθ⎡⎤∈⎢⎥⎣⎦,, sin 2=8θ,则sin θ=(A )35(B )45(C )4(D )34(8)定义在R 上的函数f (x )满足f (x+6)=f (x ),当-3≤x <-1时,f (x )=-(x+2)2,当-1≤x <3时,f (x )=x 。

2012年山东高考文科数学试题及答案

2012年山东高考文科数学试题及答案

2012年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为 (A)3+5i (B)3-5i (C)-3+5i (D)-3-5i(2)已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为 (A){1,2,4} (B){2,3,4} (C){0,2,4} (D){0,2,3,4} (3)函数1()ln(1)f x x =++(A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-(4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是 (A)众数 (B)平均数 (C)中位数 (D)标准差 (5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真(6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是(A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3[6,]2-(7)执行右面的程序框图,如果输入a =4,那么输出的n 的值为 (A)2 (B)3 (C)4 (D)5 (8)函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为(A)2- (B)0 (C)-1(D)1--(9)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为(A)内切 (B)相交 (C)外切 (D)相离 (10)函数cos 622xxx y -=-的图象大致为(11)已知双曲线1C :22221(0,0)x y a b ab-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 23x y=(B) 23x y=(C)28x y = (D)216x y=(12)设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是(A)12120,0x x y y +>+> (B)12120,0x x y y +>+<(C)12120,0x x y y +<+> (D)12120,0x x y y +<+<第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____.(14)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.,[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.(15)若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.(16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP的坐标为____.三、解答题:本大题共6小题,共74分. (17)(本小题满分12分)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=. (Ⅰ)求证:,,a b c 成等比数列; (Ⅱ)若1,2a c ==,求△ABC 的面积S .(18)(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2. (Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.(19) (本小题满分12分)如图,几何体E ABC D -是四棱锥,△ABD 为正三角形,,C B C D E C B D =⊥. (Ⅰ)求证:BE DE =;(Ⅱ)若∠120BC D =︒,M 为线段AE 的中点, 求证:D M ∥平面BEC .(20) (本小题满分12分)已知等差数列{}n a 的前5项和为105,且2052a a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S .(21) (本小题满分13分)如图,椭圆2222:1(0)x y M a b ab+=>>2,直线x a =±和y b =±所围成的矩形ABCD 的面积为8.(Ⅰ)求椭圆M 的标准方程;(Ⅱ) 设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||P Q ST 的最大值及取得最大值时m 的值.(22) (本小题满分13分)已知函数ln ()(exx k f x k+=为常数,e=2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.参考答案:一、选择题:(1)A (2)C (3)B (4)D (5)C (6)A (7)B (8)A (9)B (10)D (11)D (12)B(12)解:设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b =.这样,必须且只须(0)0F =或2()03F b =,因为(0)1F =,故必有2()03F b =由此得b =不妨设12x x <,则223x b ==.所以21()()2)F x x x =-,比较系数得1x -=,故1x =-120x x +=,由此知12121212110x x y y x x x x ++=+=<,故答案为B.二、填空题 (13)16以△1ADD 为底面,则易知三棱锥的高为1,故111111326V =⋅⋅⋅⋅=.(14)9 最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9. (15)14当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =.若01a <<,则124,aa m-==,故11,416a m ==,检验知符合题意.(16)(2sin 2,1cos 2)-- 三、解答题 (17)(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=, sin sin()sin sin B A C A C +=, 2sin sin sin B A C =,再由正弦定理可得:2b ac =, 所以,,a b c 成等比数列.(II)若1,2a c ==,则22b ac ==, ∴2223cos 24a c bB ac+-==,sin 4C ==∴△ABC的面积11sin 122244S ac B ==⨯⨯⨯=.(18)(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =.(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =.(19)(I)设BD 中点为O ,连接OC ,OE ,则由B C C D =知,C O BD ⊥,又已知C E BD ⊥,所以BD ⊥平面OCE .所以BD O E ⊥,即OE 是BD 的垂直平分线, 所以BE DE =.(II)取AB 中点N ,连接,M N D N , ∵M 是AE 的中点,∴M N ∥BE ,∵△ABD 是等边三角形,∴D N AB ⊥.由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC AB ⊥, 所以ND ∥BC ,所以平面MND ∥平面BEC ,故DM ∥平面BEC . (20)(I)由已知得:111510105,92(4),a d a d a d +=⎧⎨+=+⎩解得17,7a d ==,所以通项公式为7(1)77n a n n =+-⋅=. (II)由277m n a n =≤,得217m n -≤,即217m m b -=. ∵211217497m k m kb b ++-==,∴{}m b 是公比为49的等比数列,∴7(149)7(491)14948mmm S -==--.(21)(I)222324c a b e aa-==⇒=……①矩形ABCD 面积为8,即228a b ⋅=……② 由①②解得:2,1a b ==, ∴椭圆M 的标准方程是2214xy +=.(II)222244,58440,x y x m x m y x m ⎧+=⇒++-=⎨=+⎩,设1122(,),(,)P x y Q x y ,则21212844,55m x x m x x -+=-=, 由226420(44)0m m ∆=-->得m <.||PQ =当l 过A 点时,1m =,当l 过C 点时,1m =-.①当1m <-时,有(1,1),(2,2),||)S m T m ST m ---+=+,||||PQ ST =其中3t m =+,由此知当134t=,即45,(1)33t m ==-∈-时,||||P Q ST.②由对称性,可知若1m <<53m =时,||||P Q ST.③当11m -≤≤时,||ST =||||PQ ST =,由此知,当0m =时,||||P Q ST取得最大值.综上可知,当53m =±和0时,||||P Q ST(22)(I)1ln ()exx k xf x --'=,由已知,1(1)0e kf -'==,∴1k =.(II)由(I)知,1ln 1()exx xf x --'=.设1()ln 1k x x x=--,则211()0k x xx'=--<,即()k x 在(0,)+∞上是减函数,由(1)0k =知,当01x <<时()0k x >,从而()0f x '>, 当1x >时()0k x <,从而()0f x '<.综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞.(III)由(II)可知,当1x ≥时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x <<时成立. 当01x <<时,e x >1,且()0g x >,∴1ln ()1ln exx x xg x x x x--=<--.设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+, 当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<, 所以当2e x -=时,()F x 取得最大值22()1e F e --=+.所以2()()1e g x F x -<≤+.综上,对任意0x >,2()1e g x -<+.。

2012年山东省高考文科数学试卷含答案(免费)

2012年山东省高考文科数学试卷含答案(免费)

2012年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为 (A)3+5i (B)3-5i (C)-3+5i (D)-3-5i(2)已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为 (A){1,2,4} (B){2,3,4} (C){0,2,4} (D){0,2,3,4} (3)函数1()ln(1)f x x =++(A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-(4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是(A)众数 (B)平均数 (C)中位数 (D)标准差 (5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真(6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是(A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3[6,]2-(7)执行右面的程序框图,如果输入a =4,那么输出的n 的值为 (A)2 (B)3 (C)4 (D)5 (8)函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为(A)2- (B)0 (C)-1(D)1--(9)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为(A)内切 (B)相交 (C)外切 (D)相离 (10)函数cos 622xxx y -=-的图象大致为(11)已知双曲线1C :22221(0,0)x y a b ab-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 23x y=(B) 23x y=(C)28x y = (D)216x y =(12)设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是 (A)12120,0x x y y +>+> (B)12120,0x x y y +>+<(C)12120,0x x y y +<+> (D)12120,0x x y y +<+<第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____.(14)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.(15)若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.(16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP的坐标为____. 三、解答题:本大题共6小题,共74分. (17)(本小题满分12分)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=. (Ⅰ)求证:,,a b c 成等比数列; (Ⅱ)若1,2a c ==,求△ABC 的面积S .(18)(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.(19) (本小题满分12分)如图,几何体E ABC D -是四棱锥,△ABD 为正三角形,,C B C D E C B D=⊥.(Ⅰ)求证:BE DE =;(Ⅱ)若∠120BC D =︒,M 为线段AE 的中点, 求证:D M ∥平面BEC .(20) (本小题满分12分)已知等差数列{}n a 的前5项和为105,且2052a a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S .(21) (本小题满分13分)如图,椭圆2222:1(0)x y M a b ab+=>>2,直线x a =±和y b =±所围成的矩形ABCD 的面积为8.(Ⅰ)求椭圆M 的标准方程;(Ⅱ) 设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||P Q ST 的最大值及取得最大值时m 的值.(22) (本小题满分13分)已知函数ln ()(exx k f x k+=为常数,e=2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.参考答案:一、选择题:(1)A (2)C (3)B (4)D (5)C (6)A (7)B (8)A (9)B (10)D (11)D (12)B(12)解:设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b=.这样,必须且只须(0)0F =或2()03F b =,因为(0)1F =,故必有2()03F b =由此得b =.不妨设12x x <,则223x b ==.所以21()()(2)F x x x =-,比较系数得1x -=,故1x =-.120x x +=>,由此知12121212110x x y y x x x x ++=+=<,故答案为B.二、填空题 (13)16以△1ADD 为底面,则易知三棱锥的高为1,故111111326V =⋅⋅⋅⋅=.(14)9 最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9. (15)14当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =为减函数,不合题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意.(16)(2sin 2,1cos 2)-- 三、解答题 (17)(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=, sin sin()sin sin B A C A C +=, 2sin sin sin B A C =,再由正弦定理可得:2b ac =, 所以,,a b c 成等比数列.(II)若1,2a c ==,则22b ac ==, ∴2223cos 24a c bB ac+-==,sin 4C ==,∴△ABC的面积11sin 122244S ac B ==⨯⨯⨯=.(18)(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =.(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =.(19)(I)设BD 中点为O ,连接OC ,OE ,则由B C C D =知,C O BD ⊥,又已知C E BD ⊥,所以BD ⊥平面OCE . 所以BD O E ⊥,即OE 是BD 的垂直平分线, 所以BE DE =.(II)取AB 中点N ,连接,M N D N , ∵M 是AE 的中点,∴M N ∥BE , ∵△ABD 是等边三角形,∴D N AB ⊥.由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC AB ⊥, 所以ND ∥BC ,所以平面MND ∥平面BEC ,故DM ∥平面BEC . (20)(I)由已知得:111510105,92(4),a d a d a d +=⎧⎨+=+⎩解得17,7a d ==,所以通项公式为7(1)77n a n n =+-⋅=. (II)由277m n a n =≤,得217m n -≤, 即217m m b -=. ∵211217497m k m kb b ++-==,∴{}m b 是公比为49的等比数列, ∴7(149)7(491)14948mmm S -==--.(21)(I)222324c a b e aa-==⇒=……①矩形ABCD 面积为8,即228a b ⋅=……② 由①②解得:2,1a b ==,∴椭圆M 的标准方程是2214xy +=.(II)222244,58440,x y x m x m y x m ⎧+=⇒++-=⎨=+⎩, 设1122(,),(,)P x y Q x y ,则21212844,55m x x m x x -+=-=,由226420(44)0m m ∆=-->得m <.||PQ ==.当l 过A 点时,1m =,当l 过C 点时,1m =-.①当1m <-时,有(1,1),(2,2),||)S m T m ST m ---+=+,||||PQ ST ==其中3t m =+,由此知当134t=,即45,(1)33t m ==-∈-时,||||P Q ST .②由对称性,可知若1m <<53m =时,||||P Q ST .③当11m -≤≤时,||ST =||||PQ ST =,由此知,当0m =时,||||P Q ST .综上可知,当53m =±和0时,||||P Q ST .(22)(I)1ln ()exx k xf x --'=,由已知,1(1)0e kf -'==,∴1k =.(II)由(I)知,1ln 1()exx xf x --'=.设1()ln 1k x x x=--,则211()0k x xx'=--<,即()k x 在(0,)+∞上是减函数,由(1)0k =知,当01x <<时()0k x >,从而()0f x '>, 当1x >时()0k x <,从而()0f x '<.综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞.(III)由(II)可知,当1x ≥时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x <<时成立.当01x <<时,e x >1,且()0g x >,∴1ln ()1ln exx x xg x x x x--=<--.设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+, 当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<, 所以当2e x -=时,()F x 取得最大值22()1e F e --=+. 所以2()()1e g x F x -<≤+.综上,对任意0x >,2()1e g x -<+.。

2012-2019山东春季高考数学真题

2012-2019山东春季高考数学真题

山东省2019年普通高校招生(春季)考试数学试题1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120分,考试时间120分钟。

考生清在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01。

卷一(选择题共60分)一、选择题(本大题20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出.并填涂在答题卡上)1.已知集合M={0,1},N={1,2},则M ∪N 等于()A. {1}B. {0,2}C. {0,1,2}D.∅ 2. 若实数a ,b 满足ab>0,a+b>0,则下列选项正确的是()A. a>0,b>0B. a>0,b<0C. a<0,b>0D. a<0,b<03.已知指数函数y=a x ,对数函数y=log b xA. 0<a<b<1B. 0<a<1<bC.0<b<1<aD. a<0<1<b4.已知函数f(x)=x 3+x ,若f(a)=2,则f(-a)的值是()A. -2B. 2C. -10D. 10 5.若等差数列{a n }的前7项和为70,则a 1+a 7等于()A. 5B. 10C. 15D. 206.如图所示,已知菱形ABCD 的边长是2,且∠DAB =60°,则AB AC ⋅u u u r u u u r的值是()A. 4B. 4+C. 6D.4-y第3题图B第6题图7.对于任意角α,β,“α=β”是“sin α=sin β”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件 8.如图所示,直线l ⊥OP ,则直线l 的方程是() A. 3x -2y=0 B. 3x+2y -12=0 C. 2x -3y+5=0D. 2x+3y -13=0 9.在(1+x )n 的二项展开式中,若所有项的系数之和为64,则第3项是()A. 15x 3B. 20x 3C. 15x 2D. 20x 210. 在Rt V ABC 中,∠ABC =90°,AB=3,BC=4,M 是线段AC 上的动点. 设点M 到BC 的距离为x ,V MBC 的面积为y ,则y 关于x 的函数是()A. y=4x ,x∈(0,4]B. y=2x ,x∈(0,3]C. y=4x ,x∈(0,)+∞D. y=2x ,x∈(0,)+∞ 11. 现把甲、乙等6位同学排成一排,若甲同学不能排在前两位,且乙同学必须排在甲同学前面(相邻或不相邻均可),则不同排法的种树是()A. 360B. 336C. 312D. 240 12.设集合M={-2,0,2,4},则下列命题为真命题的是() A. ,a M ∀∈a 是正数 B. ,b M ∀∈b 是自然数 C. ,c M ∃∈c 是奇数 D.,d M ∃∈ d 是有理数 13. 已知sinα=12,则cos2α的值是() A.89 B. 89- C. 79 D.79- 14. 已知y=f(x)在R 上是减函数,若f(|a |+1)<f(2),则实数a 的取值范围是()A. (-∞,1)B. (-∞,1)∪(1,+∞)C. (-1,1)D.(-∞,-1)∪(1,+∞) 15. 已知O 为坐标原点,点M 在x 轴的正半轴上,若直线MA 与圆x 2+y 2=2相切于点A ,且|AO|=|AM|,则点M 的横坐标是() A. 2B.C.D. 4A. 平行B. 相交C. 异面D.重合17. 如图所示,若x,y满足线性约束条件2 01x yxy-+⎧⎪⎨⎪⎩≥≤≥,则线性目标函数z=2x-y取得最小值时的最优解是()A. (0,1)B. (0,2)C. (-1,1)D.(-1,2)18. 箱子中放有6张黑色卡片和4张白色卡片,从中任取一张,恰好取得黑色卡片的概率是()A. 16B. 13C. 25D.3519. 已知抛物线的顶点在坐标原点,对称轴为坐标轴,若该抛物线经过点M(-2,4),则其标准方程是()A. y2=-8xB. y2=-8x 或x2=yC. x2=yD. y2=8x 或x2=-y20. 已知V ABC的内角A,B,C的对边分别是a,b,c,若a=6,sinA=2cosBsinC,向量m =(,3)a b, 向量n=(-cosA,sinB),且m∥n,则V ABC的面积是()A. 183B. 93C. 33D.3卷二(非选择题共60分)二、填空题(本大题5个小题,每小题4分,共20分。

2012年普通高等学校招生全国统一考试(山东卷)文科数学及答案

2012年普通高等学校招生全国统一考试(山东卷)文科数学及答案

2012年普通高等学校招生全国统一考试(山东卷)数 学(供文科考生使用)锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高.如果事件,A B 互斥,那么()()()P A B P A P B +=+.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数z 满足()2117z i i -=+(i 为虚数单位),则z 为( )A.35i +B.35i -C.35i -+D.35i -- 2.已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则(C U A )B 为( )A.{}1,2,4B.{}2,3,4C.{}0,2,4D.{}0,2,3,43.函数()()1ln 1f x x =++( ) A.[)(]2,00,2- B.()(]1,00,2- C.[]2,2-D.(]1,2-4.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据.则,A B 两样本的下列数字特征对应相同的是( )A.众数B.平均数C.中位数D.标准差5.设命题:p 函数sin 2y x =的最小正周期为π2;命题:q 函数cos y x =的图象关于直线π2x =对称.则下列判断正确的是( )A.p 为真B.q ⌝为假C.p q ∧为假D.p q ∨为真 6.设变量,x y 满足约束条件2224,41x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是( )A.3[,6]2-B.3[,1]2--C.[1,6]-D.3[6,]2-7.执行如图的程序框图,如果输入4a =,那么输出的n 的值为( )A.2B.3C.4D.58.函数ππ2sin()(09)63x y x =-≤≤的最大值与最小值之和为( )A.2B.0C.1-D.1-- 9.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A.内切B.相交C.外切D.相离10.函数cos622x xxy -=-的图象大致为( )11.已知双曲线()22122:10,0x y C a b a b-=>>的离心率为2,若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为( )A.2x y =B.2x y =C.28x y =D.216x y =12.设函数()()21,f x g x x bx x==-+,若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点()()1122,,,A x y B x y ,则下列判断正确的是( )A.12120,0x x y y +>+>B.12120,0x x y y +>+<C.12120,0x x y y +<+>D.12120,0x x y y +<+< 二、填空题(本大题共4小题,每小题4分,共16分) 13.如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上一点,则三棱锥1A DED -的体积为________14.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[]20.5,26.5.样本数据的分组为[)[)[)[)[)20.5,21.5,21.5,22.5,22.5,23.5,23.5,24.5,24.5,25.5,[]25.5,26.5.已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为________15.若函数()()0,1x f x a a a =>≠在[]1,2-上的最大值为4,最小值为m ,且函数()(14g x m =-[)0,+∞上是增函数,则a =________16.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在()0,1,此时圆上一点P 的位置在()0,0,圆在x 轴上沿正向滚动,当圆滚动到圆心位于()2,1时,OP的坐标为________三、解答题(本大题共6小题,共74分.解答题应写出文字说明,证明过程或演算步骤.)17.(本小题12分)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知()s i n t a n t a n t a n t a n B A CA C +=. (1)求证:,,a b c 成等比数列;(2)若1,2a c ==,求ABC ∆的面积S .18.(本小题12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.DCB A平均气温/︒CC 1D 1B 1A 1E D CBA19.(本小题12分)如图,几何体E ABCD -是四棱锥,ABD ∆为正三角形,,CB CD EC BD =⊥(1)求证:BE DE =;(2)若120,BCD M ∠=︒为线段AE 的中点,求证:DM 平面BEC .20.(本小题12分)已知等差数列{}n a 的前5项和为105,且1052a a =,(1)求数列{}n a 的通项公式;(2)对任意m N *∈,将数列{}n a 中不大于27m 的项的个数记为m b ,求数列{}n b 的前m 项和m S .21.(本小题13分)如图,椭圆()2222:10x y M a b a b+=>>直线x a =±和y b =±所围成的矩形ABCD 的面积为8.(1)求椭圆M 的标准方程;(2)设直线():l y x m m R =+∈与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||PQ ST 的最大值及取得最大值时m 的值.22.(本小题13分)已知函数()ln xx kf x e +=(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数),曲线()yf x =在点()()1,1f 处的切线与x 轴平行.(1)求k 的值;(2)求()f x 的单调区间;(3)设()()'g x xf x =,其中()'f x 为()f x 的导函数.证明:对任意()20,1x g x e -><+.E D C B A一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省2012年春季高考数学试题
一、选择题
1.已知全集U={1,2,3},集合M={1,2},则C u M 等于( )A. {1} B.{3} C.{1,2} D.{1,2,3}
2.若a,b 均为实数,且a>b ,则下列关系正确的是( )A.-b>-a B. a 2>b 2
C.b a >
D.|a|>|b| 3.已知函数y=f(x)的定义域是不等式组⎩⎨
⎧<≥+0
2-x 0
1x 的解集,则函数y=f(x)的图象可以是( )
4.已知1和4的等比中项是log 3x,则实数x 的值是( )A.2或21 B.3或31 C.4或41 D.9或9
1
5.已知函数y=f(x)(x ∈R)是偶函数,且在区间[0,+∞)上是增函数,则下列关系正确的是( ) A. f(-1)>f(2)>f(-3) B. f(2)>f(-1)>f(-3) C. f(-3)>f(2)> f(-1) D. f(-3)> (-1)>f(2)
6.已知角α的终边经过点P(-1,3),则sin α的值是( )A.31- B.103 C.1010- D. 10103
7.如图所示,已知P,Q 是线段AB 的两个三等分点,O 是线段Ab 外的一点,设等于
则,OP ,==( ) A.b a 3131+ B. b a
3
231+ C. b a 3132+ D. b a 3232+ 8.如果¬p 是真命题,p ∨q 也是真命题,那么下列说法正确的是( )
A.p,q 都是真命题
B. p 是真命题,q 是假命题
C. p,q 都是假命题
D. p 是假命题,q 是真命题
9.若直线ax-2y-3=0与直线x+4y+1=0互相垂直,则实数a 的值是( )A.8 B.-8 C. 2
1 D.-2
1
10.已知以坐标原点为顶点的抛物线,其焦点在x 轴正半轴上,且焦点到准线的距离是3,则抛物线的标准方程是( )
A.y 2=6x
B. y 2=-6x
C.y 2=3x
D.y 2
=-3x
11.已知二次函数f(x)=x2+(m+1)x+m-1的图象经过原点,则f(x)<0de x 的取值集合是( ) A.(0,2) B.(-2,0) C.(-∞,0)∪(2,+∞) D.(-∞,-2)∪(0,+∞)
12.已知lga+lgb=0(其中a ≠1, b ≠1),则函数f(x)=a x 与g(x)=b x
的图象( )
A.关于坐标原点对称
B. 关于x 轴对称
C. 关于y 轴对称
D. 关于直线y=x 对称
13.椭圆1892
2=+y x 的离心率是( ) A.31 B.317 C. 42 D.3
22 14.编排一张由4个语言类节目和2个舞蹈类节目组成的演出节目单,若要使2个舞蹈类节目不相邻,则不同排法的种数是( ) A.120 B.240 C.360 D.480 15.若M , N 表示两个集合,则M ∩N=M 是M ⊆N 的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不是充分条件也不是必要条件
16.若α,β为任意实数,则下列等式恒成立的是( )A.5α×5β=5αβ B. 5α+5β=5α+β C. (5α)β=5α+β D. βαβα
-=55
5
17.已知二次函数y=x 2
-4x+3 图象的顶点是A ,对称轴是直线l ,对数函数y=log 2x 的图象与x 轴相交于点B,与直线l 相交于点C ,则△ABC 的面积是( ) A.1 B.2 C.3 D.4
18. 已知平行四边形OABC ,=(4,2),OC =(2,6),则与夹角的余弦值是( ) A 2
2. B.-2
2 C.5
5 D.-5
5
19.函数f(x)=sinx+3cos(π-x)的单调递增区间是( ) A.Z k k k ∈++-],26
,265[ππ
ππ B. Z k k k ∈++-
],265,
26
[ππππ
C. Z k k k ∈++-],23
,232[ππ
ππ D.
Z k k k ∈++-
],23
2,
23[ππ
ππ
20.若(a+b)n
展开式的第4项与第7项得系数相等,则此展开式共有( )A.8项 B.9项 C.10项 D.11项
21.如图所示,若图中阴影部分所表示的区域是线性目标函数z=x+3y 的可行域,则z 的最小值是( ) A.2 B.3 C.4 D.15
22.从5名男生和2名女生中任选3人参加某项公益活动,其中至少有1 名女生的概率是( ) A.5
3 B.7
5
C.21
10 D.42
17
23.已知空间四边形ABCD 中,E,F,G,H 分别是边AB,BC,CD,DA 的中点.给出下列四个命题:① AC 与BD 是相交直线;② AB ∥DC ; ③ 四边形EFGH 是平行四边形;④ EH ∥平面BCD . 其中真命题的个数是( ) A.4 B.3 C.2 D. 1
24.已知椭圆120
2522=+y x = 1 的左焦点是F 1,右焦点是F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|PF 1|:|PF 2|等于( ) A.3:2 B.2:3 C.9:1 D.1:9
25.已知函数f(x)= 3sin(ωx+3
2π)(x ∈R , ω>0)的图象与x 轴的交点的横坐标构成一个公差为2π的等差数列,若将
f(x)的图象向左平移|a|个单位后,所得到的图象关于坐标原点对称,则实数a 的值可以是( )A. 2
π B.3
π C. 4
π D.6
π
二、填空题
26 .已知函数f(x)=⎩⎨
⎧-∈-∈-)
0,3[,]
3,0[,1x x x x ,则f(0)等于
27.已知cos α=5
4-,且α是第二象限角,则tan α等于
28. 已知圆锥的底面半径为1 ,高为3 ,则该圆锥的体积是
29. 圆(x-1)2+(y+1)2
=4上的点到直线3x+4y-14=0的距离的最
大值是
30. 为了了解某中学男生的身体发育情况,对随机抽取的100名男生的身高进行了测量(结果精确到1cm ),并绘制了如图所
示的频率分布直方图,由图可知男生身高超过172cm 的频率是 三、解答题
31.已知函数1
)(2+=x x
x f
(1)求证:函数f(x)是奇函数
(2)若a>b>1,试比较f(a)和f(b)的大小
32. 为减少沙尘暴对城市环境的影响,某市政府决定在城市外围构筑一道新的防护林,计划从2011年起每年都植树20000棵。

2011底检查发现防护林内损失了1000棵树,假设以后每一年损失的树都比上一年多300棵,照此计算: (1)2020年这一年将损失多少棵树?
(2)到2020年年底,该防护林内共存活多少棵树?(不考虑其他因素影响) 33.(本小题11 分)如图所示,已知正四棱锥S-ABCD , E , F 分别是侧棱SA , SC 的中点.
求证:(1)EF ∥平面ABCD (2)EF ⊥平面SBD
34.如图所示,甲、乙两船同时从港口O 处出发,甲船以25 海里/小时的速度向
东行驶,乙船以15 海里/小时的速度沿着北偏西30°的方向行驶,2小时后,甲船到达A 处,乙船到达B 处。

(1)甲、乙两船间的距离AB 是多少海里?
(2)此时乙船位于甲船北偏西多少度的方向上?
35 .如图所示,已知双曲线的中心在坐标原点O ,焦点分别是F 1(-2,0 ),F 2(2 ,0),且双曲线经过点P (2,3)。

(1)求双曲线的标准方程;(2)设点A 是双曲线 的右顶点,若直线l 平行于直线AP ,且l 与双曲 线相交于M , N 两点,|+|=4,试求直线 l 的方程。

相关文档
最新文档