如何有效利用主成分分析进行综合评价

合集下载

主成分分析用于多指标评价的方法研究主成分评价

主成分分析用于多指标评价的方法研究主成分评价

主成分分析用于多指标评价的方法研究主成分评价一、本文概述本文旨在探讨主成分分析(PCA)在多指标评价中的应用及其方法研究。

主成分分析作为一种广泛使用的统计分析工具,其主要目的是通过降维技术,将多个相关变量转化为少数几个独立的综合指标,即主成分,以便更好地揭示数据的内在结构和规律。

在多指标评价体系中,由于指标间可能存在的信息重叠和相关性,直接分析往往难以得出清晰的结论。

因此,利用主成分分析进行降维处理,提取出关键的主成分,对于简化评价过程、提高评价效率和准确性具有重要意义。

本文首先介绍主成分分析的基本原理和步骤,包括数据标准化、计算协方差矩阵、求解特征值和特征向量、确定主成分个数以及计算主成分得分等。

然后,结合具体案例,详细阐述主成分分析在多指标评价中的应用过程,包括评价指标的选择、数据的预处理、主成分的计算和解释等。

对主成分分析方法的优缺点进行讨论,并提出相应的改进建议,以期为多指标评价领域的研究和实践提供参考和借鉴。

通过本文的研究,旨在加深对主成分分析在多指标评价中应用的理解,提高评价方法的科学性和实用性,为相关领域的研究和实践提供有益的启示和帮助。

二、主成分分析的基本原理和方法主成分分析(Principal Component Analysis,PCA)是一种广泛应用于多变量数据分析的统计方法。

其基本原理是通过正交变换将原始数据转换为一系列线性不相关的变量,即主成分。

这些主成分按照其解释的原始数据方差的大小进行排序,第一个主成分解释的方差最大,之后的主成分依次递减。

通过这种方式,主成分分析可以在不损失过多信息的前提下,降低数据的维度,从而简化复杂的多变量系统。

数据标准化:需要对原始数据进行标准化处理,以消除量纲和数量级的影响。

标准化后的数据均值为0,标准差为1。

计算协方差矩阵:然后,计算标准化后的数据的协方差矩阵,以捕捉变量之间的相关性。

计算特征值和特征向量:接下来,求解协方差矩阵的特征值和特征向量。

利用主成分分析法对我国各地区普通高等教育的发展水平进行综合评价。

利用主成分分析法对我国各地区普通高等教育的发展水平进行综合评价。

第3题. 利用主成分分析法对我国各地区普通高等教育的发展水平进行综合评价。

近年来,我国普通高等教育得到了迅速发展,为国家培养了大批人才。

但由于我国各地区经济发展水平不均衡,加之高等院校原有布局使各地区高等教育发展的起点不一致,因而各地区普通高等教育的发展水平存在一定的差异,不同的地区具有不同的特点。

对我国各地区普通高等教育的发展状况进行聚类分析,明确各类地区普通高等教育发展状况的差异与特点,有利于管理和决策部门从宏观上把握我国普通高等教育的整体发展现状,分类制定相关政策,更好的指导和规划我国高教事业的整体健康发展。

遵循可比性原则,从高等教育的五个方面选取十项评价指标,具体见下图图1. 高等教育的十项评价指标指标的原始数据取自《中国统计年鉴,1995》和《中国教育统计年鉴,1995》除以各地区相应的人口数得到十项指标值,具体数值见下表见表6,其中:1x 为每百万人口高等院校数;2x 为每十万人口高等院校毕业生数;3x 为每十万人口高等院校招生数;4x 为每十万人口高等院校在校生数;5x 为每十万人口高等院校教职工数;6x 为每十万人口高等院校专职教师数;7x 为高级职称占专职教师的比例;8x 为平均每所高等院校的在校生数;9x 为国家财政预算内普通高教经费占国内生产总值的比重;10x 为生均教育经费。

建模与求解:一构造原始数据矩阵X=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1021x x x二使矩阵X标准化(程序见附录1)Z= 4.3685 3.9057 4.0909 4.1392 4.5401 4.5748 2.4120 0.39541.98622.6869 2.3854 2.4187 2.0965 1.9157 0.8299 1.13461.0221 1.4520 1.5048 1.3575 0.9509 1.0406 1.4024 1.09910.0952 0.2331 0.1895 0.2072 0.1326 0.1823 0.0558 0.53750.2342 0.3453 0.3790 0.3951 0.0988 0.1823 0.7080 0.72190.3918 0.3133 0.2898 0.2270 0.1495 0.1823 0.5775 -0.2813-0.0717 -0.0556 -0.0111 -0.0169 -0.0536 -0.0533 0.8638 0.2482 -0.1829 0.0086 -0.0223 -0.0136 -0.0649 -0.0701 0.4691 0.7675 -0.2756 -0.0396 0 -0.0466 -0.1383 -0.1374 0.2405 1.0602 -0.5166 -0.4405 -0.2564 -0.3168 -0.3696 -0.3899 0.7418 1.0264 -0.6371 -0.4245 -0.4124 -0.4091 -0.3696 -0.4067 0.4234 1.2987 -0.6279 -0.1358 -0.3344 -0.3959 -0.3922 -0.4235 0.4793 1.3884 -0.4981 -0.3924 -0.3567 -0.3663 -0.3414 -0.3562 -0.3371 0.4664 -0.4703 -0.3924 -0.3678 -0.3531 -0.3696 -0.3899 0.4979 0.4005 -0.3590 -0.3924 -0.2564 -0.3201 -0.3414 -0.3562 -0.0305 -0.03090.0396 -0.3122 -0.2341 -0.1191 -0.0705 -0.0196 -0.7098 -0.5435-0.1922 -0.2160 -0.2564 -0.2740 -0.3584 -0.3562 -0.1881 -0.4775 -0.3683 -0.2160 -0.3233 -0.2740 -0.2850 -0.2889 -0.7606 0.2939 -0.4054 -0.3764 -0.3121 -0.3729 -0.3696 -0.4067 -0.0509 -0.1155 -0.6093 -0.5047 -0.5239 -0.5113 -0.4543 -0.4572 0.4590 0.1806 -0.5444 -0.4886 -0.6019 -0.5640 -0.4656 -0.4740 -0.2660 -0.6889 -0.4425 -0.3764 -0.3455 -0.3531 -0.3358 -0.4067 -0.2220 0.2262 -0.5074 -0.5367 -0.4793 -0.4487 -0.4486 -0.4909 -0.4709 -0.0630 -0.3776 -0.3764 -0.5128 -0.4289 -0.3471 -0.3057 -0.4184 -0.59080.4103 -0.6490 -0.5462 -0.5410 -0.2906 -0.2384 -3.0524 -2.6580-0.6464 -0.5528 -0.5350 -0.5640 -0.4656 -0.5077 -0.2897 -0.0681 -0.6001 -0.6169 -0.5685 -0.5673 -0.4938 -0.5077 0.3065 -0.39800.1322 -0.2962 -0.3567 -0.3070 -0.2793 -0.2216 -1.2569 -1.4908-0.5630 -0.6971 -0.6911 -0.6860 -0.5051 -0.5245 -0.3388 -1.54320.2157 -0.4565 -0.5350 -0.4948 -0.3584 -0.2889 -2.0750 -2.2960三构造矩阵相关系数矩阵R(程序见附录2)R= 1.0000 0.9434 0.9528 0.9591 0.9746 0.9798 0.4065 0.06630.9434 1.0000 0.9946 0.9946 0.9743 0.9702 0.6136 0.35000.9528 0.9946 1.0000 0.9987 0.9831 0.9807 0.6261 0.34450.9591 0.9946 0.9987 1.0000 0.9878 0.9856 0.6096 0.32560.9746 0.9743 0.9831 0.9878 1.0000 0.9986 0.5599 0.24110.9798 0.9702 0.9807 0.9856 0.9986 1.0000 0.5500 0.22220.4065 0.6136 0.6261 0.6096 0.5599 0.5500 1.0000 0.77890.0663 0.3500 0.3445 0.3256 0.2411 0.2222 0.7789 1.00000.8680 0.8039 0.8231 0.8276 0.8590 0.8691 0.3655 0.11220.6609 0.5998 0.6171 0.6124 0.6174 0.6164 0.1510 0.0482四求出R的特征值和累积贡献率(程序见附录3)λ1= 7.5022贡献率τ1=λ1/10=75.0216%λ2= 1.577累积贡献率τ1+τ2=90.7915%λ3= 0.5362累积贡献率τ1+τ2+τ3=96.1536%λ4= 0.2064累积贡献率τ1+τ2+τ3+τ4=98.2174%可以看出,前两个特征根的累计贡献率就达到90%以上,主成分分析效果很好。

主成分分析在大学生综合素质评价和管理中的应用研究

主成分分析在大学生综合素质评价和管理中的应用研究

主 成 分 分析 在 大 学 生 综 合 素质 评 价 和 管理 中 的应 用 研 究
郭 婧
( 北 农 业 大 学 农 学 院 ,河 北 保 定 0 1 0 ) 河 7 0 1 摘 要 :应 用 主 成 分 分析 法 , 样 本 相 关 矩 阵 出发 , 随 机 抽 取 农 学 院 农 学 专 业 2 从 对 O名 学 生 的 业 务 能 力 、 德 表 现 、 品 实践 技 能 和 体 能等 项 指 标 进 行 分 析 , 据 调 查 指 标 的 累计 方 差 贡 献 率达 到 8 以上 , 出 了 4个 反 映 学 生 综 合 素 依 5 提 质 的 主成 分 及 其 主成 分 函 数 表达 式 。 通过 计 算 各 学 生 的 重 要 主 成 分 值 , 而 对 学 生 综 合 素质 进 行 评 价 , 结 果 与 进 其 学 生 毕 业 后 从 事 工 作 的 实 际表 型相 近 。表 明用 主成 分 分 析 法 对 学 生 综 合 素 质 评 价 , 传 统 按 学 习成 绩 和 表 现 打 分 比
排 序 评 价 更 具 科 学 性 和 实用 性 , 学 生 综 合 素 质 科 学评 价 提 供 理 论 参 考 。 为
关 键 词 :主 成 分 分 析 ; 生 ;综 合 素 质 ; 学评 价 学 科
中 图 分 类 号 :G 4 67 文 献 标 志 码 :A 文 章 编 号 :1 0 0 8—6 2 ( 0l ) 1—0 1 9 7 2 10 O 3一O 4
On t e p i i a o p n nta a y i n qu lt h r nc p lc m o e n l ss i a iy a s s m e nd m a a e e t o o l g t d n s s e s nta n g m n f c le e s u e t

主成分分析在煤矿安全评价中的应用

主成分分析在煤矿安全评价中的应用

主成分分析在煤矿安全评价中的应用1.建立指标体系主成分分析可以通过对煤矿安全相关指标的分析,确定一个综合评价指标体系。

对于煤矿安全评价来说,可以将各类指标分为物理指标(如瓦斯浓度、煤尘浓度等)、技术指标(如瓦斯抽放量、通风量等)、管理指标(如事故率、投入产出比等)等。

通过主成分分析,可以将这些指标综合,得到一个综合评价指标,用于对煤矿安全状况进行评价和比较。

2.确定主要风险因素主成分分析可以通过对煤矿安全指标的分析,确定主要的风险因素。

通过主成分分析,可以对各个指标之间的关联关系进行分析,找出其中具有高度相关性的指标,并将其归纳为主要风险因素。

这样可以帮助煤矿安全管理者更好地了解煤矿安全的脆弱性,有针对性地采取措施来降低风险。

3.评估煤矿安全状况主成分分析可以通过对一段时间内煤矿安全实际数据的分析,评估煤矿的安全状况。

通过主成分分析,可以从多个角度对煤矿安全进行综合评价,从而得到一个客观的安全状况评估结果。

这样可以帮助煤矿安全管理者更好地了解煤矿当前的安全状况,及时采取措施来改善安全状况。

4.风险预警和预测主成分分析还可以通过对历史数据的分析,建立预测模型,用于煤矿安全风险的预警和预测。

通过主成分分析,可以提取出影响煤矿安全风险的关键因素,并建立模型进行预测。

这样可以帮助煤矿安全管理者提前预判潜在的安全风险,并采取措施来避免或减轻事故的发生。

5.优化煤矿管理策略主成分分析可以通过对煤矿安全指标的分析,帮助煤矿安全管理者优化管理策略。

通过主成分分析,可以找到关键的影响因素,并确定其权重,从而更好地分配资源和制定管理策略。

这样可以帮助煤矿安全管理者制定科学有效的管理措施,以提高煤矿的安全水平。

综上所述,主成分分析在煤矿安全评价中具有广泛的应用价值。

通过主成分分析,可以建立综合评价指标体系、确定主要风险因素、评估煤矿安全状况、进行风险预警和预测、优化管理策略等,从而提高煤矿的安全水平。

主成分分析综合评价应该注意的问题

主成分分析综合评价应该注意的问题

主成分分析综合评价应该注意的问题众所周知,综合分析题在国家公务员考试与省级公务员考试中属于相对较难的题型,也是在考试中比较容易失分的题型,综合分析又分为4类题型:要素分析、词句理解、评价分析、比较分析。

接下来一起探讨一下评价分析题。

第一、认识评价分析【基准1】取值资料5提及“报复性看球”这一现象,恳请你根据取值资料4、5,对这一现象展开评析。

(15分后)要求:观点明确,分析透彻,条理清晰,不超过字。

【基准2】“取值资料3”中,郑女士指出:“京剧这个行当真的无法过分商业化,直播中多数人只看见京剧的皮毛和八卦而忽略了京剧艺术本身。

”恳请就她的观点谈谈你的观点。

(15分后)要求:观点明确,分析透彻,条理清晰,字数不超过字。

通过上面两道题,我们不难辨认出,题干中都就是建议学生对资料中发生的观点、现象展开分析,谈论观点、重新认识、看法,其实就是实地考察学生的评价能力。

答题建议中除了经常出现的常规建议之外还可以发生观点明晰这一建议,并且发生的频率比较低,这也属评价分析题的题干特征。

第二、学会评价分析的解题方法评价分析解题方法相比较词句认知来说,解题方法比较简单。

一共分成三步:分别就是抒发观点、论证观点、得出结论。

具体来说:1.表达观点(1)恰当:积极支持、赞成、恰当、认知、很关键等;(2)错误:片面、偏激、不科学、不支持、反对、存在……问题等;(3)部分恰当:不完全正确、须要实事求是对待、有利有弊;(4)不能判断:尚需观察、尚不能确定。

(备注:如果明确要求推论正误必须写下对或错)对观点(或社会现象)结合材料进行解释,材料中没有解释可以用自己的理解简单解释。

2.论证观点判断观点的理由:材料中的对表态有利的信息都是理由。

3.得出结论可针对观点(或社会现象)提出简单对策;可再次对观点进行肯定或总结。

第三、评价分析题完备的答题示范点1.执法部门的做法其出发点是好的,值得借鉴,但也存在问题,应进一步完善。

(表达观点)2.首先,广场晒谷可以化解农民晾干缺乏场地的问题,火车站边线偏远,农忙时节旅客较太少,农民晾干基本不能对旅客乘车和公共安全导致影响。

主成分分析法在学生成绩分析中的应用

主成分分析法在学生成绩分析中的应用

主成分分析法在学生成绩分析中的应用摘要:本文采用主成分方法研究了学校实行的学分绩的合理性,还给出了学科成绩方面的分析,并且发现一年级的排序和二、三年级的排序的成绩显著相关,说明一年级的成绩对后面的成绩有影响,对教学管理有一定指导意义。

关键词:平均学分绩 第一主成分法 学生成绩 学年如何科学地、可观地、全面地评价学生的综合成绩对学生和学校都特别重要。

目前,大多数院校统计学生综合成绩的普遍做法是学分绩,这种方法能够体现学时多,即学分高的课程的重要性,但各门课程给定的学分数是否合理,学分绩是否能全面反应原始数据的主要信息?我们知道主成分运用少数几个无关的指标来代替原来众多的相关指标,能全面地反应映原变量的信息量,用主成分得到的成绩排序来看学分绩的得到的学生成绩是否合理。

我们可以用学分绩和主成分两种方法研究一年级学生成绩排序和后续学年的排序是否相关?1.研究对象本文以天津工业大学电信专业05级99名为例,以三个学年成绩作为样本将每学年的各科成绩作为变量,以三学年成绩排序为研究对象,数据由天津工业大学教务科提供。

2.评价学生综合成绩的模型2.1平均学分绩模型天津工业大学实施以学分绩对学生进行学业评价的制度,每位学生的学分绩是按照下面的公式算出:(总和的)百分制成绩×学分÷总学分。

2.2主成分分析模型下面是主成分分析的步骤:设有n 个样本,每个样本有m 个数据,记为:11121213m m n m x x x a x x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭=(12,,...,m x x x ) (1) 对x 的列进行标准化变换: *()/ij ij j j x x x σ=- i=1,2,…,n;j=1,2,…,m其中111m 22*212m 1n13m x x 11,(),x x=x x x x n j ij j ij J i X X x X n n σ=⎛⎫ ⎪==- ⎪ ⎪⎝⎭∑得到标准化矩阵,仍记为 i i1i2x =x x ,1,...,T in i n =(,,...,x ) (2) 用计算机计算指标变量的相关系数矩阵: 111'21211m m n nm r r R r r x x n r r ⎛⎫ ⎪== ⎪ ⎪⎝⎭,其中11n ij ij ik r X X n =∑ j ,k=1,2,…,m (3) 用相关系数矩阵计算R 的特征值i λ。

用主成分分析模型构造综合评价指数

用主成分分析模型构造综合评价指数

用主成分分析模型构造中学考试综合评价指数[摘要] 在中学考试的综合评价中,使用较多的指标进行描述使分析复杂化,难以对众多指标的影响作出正确的判断,需要少量几个“综合评价指标”。

通过简单加权的合成方法,难以得到科学的结果。

主成分分析是一种多元统计方法,可以将众多指标简化浓缩为少量几个甚至一个综合评价指标,使简化的指标既能基本包括全部指标具有的信息,又使指标之间相互无关,较好地解决了这一课题。

[关键词] 考试评价;主成分分析;数学模型;计算步骤,指数构造方法一、问题的提出在中学考试评价中,通常使用各学科的“平均分”、“优秀率”、“及格率”和“低分率”等指标。

考虑到成绩的分布状况(“优秀率”与“及格率”之间的差距偏大,可能失去部分信息量),某些地区还使用了“良好率”指标。

这样,k 个学科的考试评价的p 项指标将多达k ╳p 个。

在对考试进行综合的评价时,使用较多的指标进行描述不仅会增加评价的工作量,而且会因评价指标间的相关性造成评价信息重叠,相互干扰,其结果使分析复杂化,难以对众多指标的影响作出正确的判断。

因此,需要少数几个甚至一个“综合评价指标”来代替众多的且相互之间具有相关关系的指标,同时又需要不失去原有指标具有的信息量,这是考试评价中具有现实意义的课题。

某些地区采用一种“降维”的方法,较成功地把k ╳p 维指标降为p 维指标,即在使用“总分平均分”的同时,用“科平均╳╳率”取代各科的“╳╳率”(计算方法见备注1)。

如何把p 维指标再合成为一个“综合评价指标”?采用一些简单加权的合成方法时,由于对各指标的影响不容易作出正确的定量化的判断,及权数产生的科学性等问题,往往难以得到令人信服的科学的结果。

主成分分析是一种多元统计方法,可以将众多指标简化浓缩为少数几个甚至一个综合评价指标,使简化的指标既能基本包括全部指标具有的信息,又使指标之间相互无关。

较好地解决了这一课题。

二、主成分分析的数学模型设有n 个样品,每个样品观测p 个指标(变量):X 1,X 2,…,X p , 得到原始数据矩阵:用数据矩阵X 的p 个列向量(即p 个指标向量)作线形组合(即综合指标向量)为:上述方程组要求:且系数αij 由下列原则决定:①、F i 与F j (i ≠j ,i ,j =1,…,p )不相关;②、F 1是X 1,X 2,…,X p 的一切线性组合(系数满足上述方程组)中方差最大的,F 2是与F 1不相关的X 1,X 2,…,X p 的一切线性组合中方差最大的,…,F p 是是与F 1,F 2,…,F p-1都不相关的X 1,X 2,…,X p 的一切线性组合中方差最大的。

主成分分析综合评价应该注意的问题

主成分分析综合评价应该注意的问题

主成分分析综合评价应该注意的问题随着科学技术与质量活动的日益深入,统计学在质量评价管理中发挥了重要作用,以及汇总多维数据,将它们归纳为有限数量的衡量变量。

在这些方法中,主成分分析(PCA)是最常用的一种,它可以有效地压缩原始数据,并将其转换为可以三维可视化的表示形式。

PCA 是一种有用的工具,可以帮助改进和提高质量管理的工作效率和效果。

然而,在使用PCA进行综合评价时,应该注意一些问题,以确保评估的准确性和可靠性。

首先,评估者必须正确地确定动因和衡量变量的范围,它们是确定主要因素和价值的关键因素。

其次,应检查衡量变量之间的相关性,以确定其评价影响和贡献程度。

此外,应评估数据的质量,以确保数据准确,并采取必要措施来纠正任何质量问题。

最后,当选择PCA时,应检查数据中的噪声水平,排除有害因素并正确校准结果。

除了上述注意事项之外,PCA还可以用来识别待评价对象的关键特征,以及识别重要关联的变量和因素。

识别这些特征可以帮助理解影响指标的因素,从而有效地实施绩效评估。

此外,评估者还可以利用PCA来比较受评价对象之间的差异性,以及对其影响因素的衡量。

最后,需要强调的是,PCA并不能像多元统计分析那样涵盖更多的变量,但它可以帮助识别出评价的关键结构,从而有助于绩效管理的有效实施。

基于上述原因,在使用PCA进行综合评价时,必须首先认真考虑上述注意事项,以确保有效的绩效评估结果。

总而言之,PCA在质量管理中发挥了重要作用,但在使用PCA进行综合评价时,必须注意确定衡量变量范围、检查衡量变量相关性、评估数据质量、检查数据中的噪声水平等因素,以确保评估结果的准确性和可靠性。

而且,识别PCA所测量的特征可以有效实施绩效评估,而PCA还可以帮助比较受评价对象之间的差异性,以及对其影响因素的衡量。

此外,在实施PCA前,还需要深入了解PCA的本质,以及PCA评价的局限性,并提前了解不同因素对结果的影响,以获得准确判断。

因此,只有掌握这些问题,才能使PCA对绩效评价产生有效效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何有效利用主成分分析进行综合评价摘要:由于主成分分析在多元统计分析中的降维作用,使之在社会、经济、医疗、生化等各领域运用越来越广泛,但由于传统主成分分析方法的局限性导致了一些问题的产生。

这些问题吸引了许多领域专家的关注,并具有针对性的提出了一些不同的改进方法。

本文介绍了主成分分析的基本和性质,并整理了近年来主成分分析在综合评价应用中遇到的普遍问题并整理验证了认同率较强的一些改进方法,以供大家研究学习。

关键词:主成分分析;综合评价;均值化1引言1.1研究的背景和意义随着生产力的不断进步,生产方式由外延式扩张转化为追求经济效益的内涵式发展,以致在生产过程中必须考虑经济效益的各个方面,如生产力水平、技术进步、资源占用等情况,并需要就综合各方面的因素进行综合评价。

评价是根据确定的目的来测定对象系统的属性,并将这种属性变为客观定量的计值或者主观效用行为,整个过程离不开评价者的参与,而综合评价作为评价的一种也需要评价者做出相应反应或指示,而很多综合评价过程易受到评价者的干预,使评价结果产生偏差。

主成分分析能将高维空间的问题转化到低维空间去处理【9】,使问题变得比较简单、直观,而且这些较少的综合指标之间互不相关,又能提供原有指标的绝大部分信息。

而且,伴随主成分分析的过程,将会自动生成各主成分的权重,这就在很大程度上抵制了在评价过程中人为因素的干扰,因此以主成分为基础的综合评价理论能够较好地保证评价结果的客观性,如实地反映实际问题。

主成分综合评价提供了科学而客观的评价方法,完善了综合评价理论体系,为管理和决策提供了客观依据,能在很大程度上减少了上述不良现象的产生。

所以在社会经济、管理、自然科学等众多领域的多指标体系中,如节约型社会指标体系、生态环境可持续型指标体系、和谐社会指标体系、投资环境指标体系等,主成分分析法常被应用于综合评价与监控【6】。

综上所述,对综合评价指标体系理论进行研究,既有理论上的必要性,更有实践中的迫切性。

1.2研究的发展史基于主成分分析的综合评价以主成分分析为理论基础, 以综合评价为主线,着眼于作出合理公正的综合评价。

以下从综合评价和主成分分析两个方面来讨论主成分综合评价的发展史。

1.2.1综合评价的发展史综合评价是伴随着人类文明的产生、发展而产生、发展的。

其基本思想是将反映研究对象数量特征的多个指标转化为一个综合指标,并据以对各个具体评价对象进行排序比较,从而做出好坏优劣的评价结论。

1888年,艾奇沃斯(Edgeworth)发表了论文《考试中的统计学》,提出了对考生中的不同部分应如何加权。

1913年,斯皮而曼(sPe~an)发表了《和与差的相关性》一文,讨论了不同加权的作用。

在20世纪30年代,瑟斯通(Thurstone)和利克特(Likert)又对定性记分方法的工作给予了新的推动。

20世纪60年代,美国学者查德(L • A • zadaen)模糊集合理论,为模糊综合评价法奠定了基础。

20世纪70 一80年代,是现代科学评价蓬勃兴起的年代。

在此期间,产生了多种应用广泛的评价方法,诸如ELECTRE法(1971 —1977, 1983)、多维偏好分析的线性规划法(LINMAP , 1973)、层次分析法(AHP , 1977)、数据包络分析法(DEA , 1978)、逼近于理想解的排序法(TOPSIS , 1981)等【7】。

1.2.2主成分分析的发展史主成分分析,首先是由英国的皮尔生(Kar卜Pearson)对非随机变量引入的,而后美国的数理统计学家赫特林(Harold.Hotelling)在1933年将此方法推广到随机向量的情形团【8】。

主成分分析的降维思想从一开始就很好地为综合评价提供了有力的理论和技术支持。

20世纪80~90年代,是现代科学评价在我国向纵深发展的年代,人们对包括主成分综合评价在内的评价理论、方法和应用开展了多方面的、卓有成效的研究,主要表现为:常规评价方法在国民经济、生产控制和社会生活中的广泛应用;多种评价方法的组合研究,综合应用及比较;新评价方法的研究和应用;评价方法的深入研究,如:评价属性集的设计、标准化变换、评价模型选择等等。

1.3主成分做综合评价的研究现状目前国内外关于综合评价的方法很多,在根据各指标间相关关系或各指标值的变异程度来确定权重系数的方法中,主成分分析法是应用尤为广泛。

在使用该方法的早期,大多都是按照传统的主成分分析法做综合评价的步骤来计算综合得分来对样品排序,即利用主成分F1, F2 , , , F m做线性组合,并以每个主成分F i的方差贡献率a i作为权重系数来构造一个综合评价函数:Y = dF i + a F 2 +, + a m F m然而,随着传统主成分分析方法在综合评价中的进一步应用,人们发现此方法时经不起实践检验的。

在实际应用中,经常发现运用此方法所得结果的解释往往与实际情况不符。

举了一个简单的例子,假定高考中考试科目有四门:数学(X 1)、语文(X 2)、外语(X 3)和物理(X 4),满分都是相同的150分。

考生的四门考试成绩必须综合成一个综合评价函数,一般取为总分44xi 。

但从统计学的角度来看,可能取为a xi *更为合理,这里X i *是X i 的标准化数值(x i *、i 1i 」X 2*、X 3*、X 4*有相同的均值和标准差)。

如果我们使用传统的主成分分析法,根据上述综 合评价函数F 的得分来对学生进行排名,那就酿成大错了。

就此,一些学者提出了一些改进的方法,其中具有代表性的方法有: Yan (1998)提出,当第一主成分的方差比较大时,即贡献率较大时,用它做综合评价指标。

如果觉得用一个主成分解释的方差不够大时,综合反映 X i ,X 2,,, X p 信息的能力不够,而用多个主成分构造综合评价函数又不合适时,可以像因子分析那样对主成分进行旋转。

Hou (2006)也提出,当用第一主成分进行综合评价达不到理想结果时, 可用分组主成分评价法。

即先用因子分析法将p 个变量分成k 组,然后分别对各组变量进行主成分分析, 只取每组的一主成分,求出各组第一主成分的得分C j (j=1,2, , ,k )以因子旋转后各因子的放差贡献率为权重Wj - J'Z 扎jjTk建立综合评价函数:Z =WjCj 。

最后根据各评价样本综合得分y 来对样品进行排序。

但j 吕其可行性也受到了一些学者的质疑 【4】。

由此可见,主成分综合评价法是一片有待进一步深耕细作的热土。

2关于主成分分析基本知识 2.1主成分分析设要进行主成分分析的原指标有 p 个,记作X 1,X 2,,, x p 。

现有n 个样品,相应的观测值为 x ik , i =1,2,, ,n,而 k =1,2,,, p 。

作标准化变换后,将X k 变换为X k *,即式中,Xk 及Sk 分别是x k 的均值及标准差,x k *的均值为0、标准差为1.Xk*Xk - Xk Sk,k =1,2,,, m.主成分分析的原理是:根据各样品原指标的观测值x ik或标准化变换后的观测值x ik*求出系数a ik(k=1,2,, ,p,j=1,2, , ,m,m <p),建立用标准化变换后的指标x k*表示综合指标Fj的方程Fj akjxk*,也可建立用k原指标X k表示综合指标Fj的方程Fj akjxk*。

k对系数a ik由下列原则决定:(1) 各个综合指标Fj彼此独立或不相关;(2) 各个综合指标Fj所反映的各个样品的总信息等于原来p个指标X k*所反映的各个样品的总信息,即p个Fj的方差入j之和等于p个X k*的方差之和也就是£対=P且入1》入2 ,》入P。

j称上述彼此独立或不相关又不损失或损失很少原有信息的各个综合指标。

y j为原指标的主成分.其中,第一综合指标F1的方差最大,吸收原来p个指标的总信息最多,称第一主成分;第二综合指标F2的方差次之,吸收原来p个指标的总信息次之,称为第二主成分;同理,F3 F 4, F p分别称为第三主成分、第四主成分”第p主成分。

【9】2.2主成分分析能否旋转2.2.1主成分分析与因子分析的联系与区别相当数量的应用文章对主成分分析与因子分析不加严格区分,因而对分析结果的解释非常模糊。

文献【1】认为主成分分析与因子分析两者之间有联系,但也存在着明显的区别。

从联系上看,主成分分析和因子分析都是将多个相关变量(指标)转化为少数几个不相关变量的一种多元统计分析方法。

其目的是使在高维空间中研究样本分布规律的问题,通过降维得到简化,并尽量保留原变量的信息量。

两者都有消除相关、降维的功能。

主成分分析是通过变量变换把注意力集中到具有最大变差的那些主成分上,而视变量不大的主成分为常数予以舍弃;因子分析是通过因子模型把注意力集中到少数不可观测的公共因子上,而舍弃特殊因子。

主成分个数与公共因子个数的选择准则通常是相同的。

主成分分析中主成分向量Y与原指标向量X的表达式为Y = L T X ,式中L =(l ij I p;而因子分析中的因子模型为X =AF 其中&为特殊因子,A =(a jj)p.m0,当D(g)=0时,可采用主成分分析法估计A阵,则a q二,j hj。

对主成分分析中的主成分与因子分析中的公共因子的含义均需进行明确解释,否则,会遇到应用上的困难。

虽然主成分分析法与因子分析法有着密切的联系,但从应用上更需关注的是它们之间的区别。

1、主成分分析的实质是P维空间的坐标旋转,并不改变样本数据结构,不能作为模型来描述;因子分析的实质是P维空间到M维空间的一种映射,需构造模型。

2、主成分的个数与原变量个数相等,而公因子的个数小于原变量的个数。

3、主成分分析是把主成分表示为原变量的线性组合,因子分析是把原变量表示为公共因子和特殊因子的线性组合。

4、主成分分析由可观测的变量X直接求的主成分Y,并可逆;因子分析只能通过可观测的原变量去估计不可观测的公共因子F,不能用X表示F。

5、主成分分析中的L阵是唯一的正交阵;因子分析中的A阵不唯一,也不一定是正交阵。

6、主成分分析主要应用在综合评价和指标筛选上;因子分析除这两个作用以外,还可以应用于对样本或变量的分类。

2.2.2能否对主成分实施旋转对于主成分能否进行旋转这一问题,很多研究学者认为,当主成分不能很好解释综合评价结果时,可以像因子分析那样进行正交旋转,从而使主成分得到更好的解释。

关于主成分能否旋转的问题,文献【1】【4】【5】【7】【8】均做了论证,发现这种方法是不可行的。

论证具体如下:主成分分析的实质是对原始指标变量进行线性变换,即 F =XA,其中A二a..ijp. p 显然A为正交矩阵,如果对主成分进行旋转,则有:X =FA T=FLL T A T=F?/?T其中L是正交矩阵。

相关文档
最新文档