主成分分析法概念及例题

合集下载

大学生数学建模——主成分分析方法页PPT文档

大学生数学建模——主成分分析方法页PPT文档

从以上的分析可以看出,主成分分析的
实质就是确定原来变量xj(j=1,2 ,…, p) 在诸主成分zi(i=1,2,…,m)上的荷载 lij ( i=1,2,…,m; j=1,2 ,…,p)。
从数学上容易知道,从数学上可以证明,
它们分别是的相关矩阵的m个较大的特征值所 对应的特征向量。
二、计算步骤
1540.29 926.35 1501.24 897.36 911.24 103.52 968.33 957.14 824.37 1255.42 1251.03 1246.47 814.21 1124.05 805.67 1313.11
216.39 291.52 225.25 196.37 226.51 217.09 181.38 194.04 188.09 211.55 220.91 242.16 193.46 228.44 175.23 236.29
65.601 1181.54 270.12 18.266 0.162 7.474 12.489
33.205 1436.12 354.26 17.486 11.805 1.892 17.534
16.607 1405.09 586.59 40.683 14.401 0.303 22.932
6 68.337 7 95.416 8 62.901 9 86.624 10 91.394 11 76.912 12 51.274 13 68.831 14 77.301 15 76.948 16 99.265 17 118.505 18 141.473 19 137.761 20 117.612 21 122.781
人) 295.34
x 6:经济 作物占农 作物面积 比例(%)
26.724
x 7:耕地 占土地面 积比率

主成分分析例题

主成分分析例题

主成分分析例题主成分分析(PrincipalComponentAnalysis,简称PCA)是一种常用的数据分析方法,它可以有效分析数据中的多元特征,将多维特征空间映射到低维空间,使得数据的特征可以更加清晰和深入地分析。

主成分分析方法经常用于多元数据的特征提取、因素分析以及因子结构研究,是多元数据分析中常用的统计分析方法之一。

下面介绍一个典型的主成分分析例题,其中涉及因子分析、因子结构分析以及多元统计分析方法等:一个某大学的护士教学实践中心,设有4个实验室,每实验室有自己的实验内容和服务对象,实验室类型主要有医学实验室、护理实验室、外科实验室以及诊断室。

某护士教学实践中心向500名护士学生收集了有关这4类实验室实验内容和服务对象的信息,以下为收集到的具体信息:(1)医学实验室:主要是负责护士学生的临床实习和医学教育,针对的对象为护理学生。

(2)护理实验室:主要的护理实验内容有护理实践、护理研究和护理技能培训,服务对象是护理学生、护理人员和护理专业的其他相关人群。

(3)外科实验室:主要的外科实验内容包括外科实践、外科技能培训及新型外科手术训练,服务对象是护理学生、护理人员和护理专业的其他相关人群。

(4)诊断实验室:主要是负责护士学生的护理诊断和护理诊断教学,服务对象是护理学生。

为了更加清楚地分析护士教学实践中心的护士学生对这4类实验室的实验内容和服务对象的看法,因此将采用主成分分析方法对这500名护士学生收集到的信息进行分析。

首先,通过SPSS对500名护士学生收集到的信息,进行因子分析,提取4个实验室相关的因子,并得出以下结果:表1.子质量统计|子 |差贡献率 |积方差贡献率 ||-----|-----------|--------------|| 1 | 0.717 | 0.717 || 2 | 0.122 | 0.839 || 3 | 0.056 | 0.895 || 4 | 0.004 | 0.899 |从表1中可以看出,前3个因子共计可以解释89.5%的方差,因此可以将前3个因子作为主成分进行处理。

主成分分析法(PCA)

主成分分析法(PCA)

前 k 个主成分的贡献率之和
∑λ
i =1
k
i
∑λ
j =1
n
j
称为主成分 λ1 , λ2 L λk 的累计贡献率,它表明 z1 , z2 ,L zk 解释 x1 , x2 L xn 的能力。 通常取较小的 k ,使得累计贡献达到一个较高的百分比(如 80%~90%)。此时,z1 , z2 ,L zk 可用来代替 x1, x2 L xn ,从而 达到降维的目的,而信息的损失却不多。
i
1 2 i i min w + C ∑ (ζ + + ζ − ) 2 i
2
m
受限于
y − ( w x + b) ≤ ε + ζ
i T i
i + i −
( w x + b) − y ≤ ε + ζ
T i i
和我们做分类的方法一样,建立拉格朗日函 数,然后取它的对偶问题(这里也可以使用 核函数),与分类一样,我们也会得到一些 支持向量,而回归线将用它们表示.
总方差中属于主成分 zi 的比例为
λi
∑λ
j =1
k
j
称为主成分 zi 的贡献率。 第一主成分 z1的贡献率最大,表明它解释原始变量 x1 , x2 ,L xn 的能力最强,而 z1 , z2 L zk 的解释能力依次递减。 主成分分析的目的就是为了减少变量的个数,因而一般是不 会使用所有 主成分的,忽略一些带有较小方差的主成分将 不会给总方差带来大的影响。
同时我们还得到
T T w1 ∑ w1 = αw1 w1 = α
为了使方差最大,选择具有最大特征值的特征向量 , 因此,第一个主成分 w1 是输入样本的协方差阵的 具有最大特征值对应的特征向量

主成分分析法

主成分分析法

四、主成份分析法旳环节
1)数据归一化处理:数据原则化(Z) 2)Βιβλιοθήκη 算有关系数矩阵R: 3)计算特征值;
特征值越大阐明主要程度越大。
4)计算主成份贡献率及方差旳合计贡献率; 5)计算主成份载荷与特征向量:
主成份旳负荷值大小反应了主成份因子对可测变量旳影响程 度;载荷值越大阐明此变量对主成份旳解释越多,及贡献越大。
• 因子分析 优点:第一它不是对原有变量旳取舍,而是根据原始变 量旳信息进行重新组合,找出影响变量旳共同因子,化简 数据;第二,它经过旋转使得因子变量更具有可解释性, 命名清楚性高。 缺陷 :在计算因子得分时,采用旳是最小二乘法,此法 有时可能会失效。
总之,主成份分析是因子分析旳一种特例。
谢 谢 观 看!
旋转后旳主成份因子载荷矩阵
景区满意度旋转前后成份矩阵图对比
5、碎石图分析
选用主成份旳个数,急转处是拟定主成份旳个数处。
景区满意度碎石图
八、与因子分析法旳区别
1、基本概念
➢ 主成份分析就是将多项指标转化为少数几项综合 指标,用综合指标来解释多变量旳方差- 协方差构 造。综合指标即为主成份。所得出旳少数几种主 成份,要尽量多地保存原始变量旳信息,且彼此 不有关。
注意:进行主成份旳变量之间必须要有有关性, 经过分析后变量之间独立。
二、主成份分析法基本原理
主成份分析就是设法将原来众多具有一定有关性 旳变量(如p个变量),重新组合成一组新旳相互无 关旳综合变量来替代原来变量。怎么处理?
一般数学上旳处理就是将原来p个变量作线性组合 作为新旳综合变量。怎样选择?
假如将选用旳第一种线性组合即第一种综合变量 记为F1,自然希望F1尽量多旳反应原来变量旳信 息。怎样反应?

主成分分析法案例

主成分分析法案例

主成分分析法案例主成分分析法(Principal Component Analysis, PCA)是一种常用的多变量统计分析方法,它可以帮助我们发现数据中的主要特征和结构,从而简化数据集并减少信息丢失。

在本文中,我们将通过一个实际案例来介绍主成分分析法的应用。

案例背景。

假设我们有一个包含多个变量的数据集,我们希望通过主成分分析法来找出其中的主要特征,并将数据进行降维,以便更好地理解和解释数据。

数据准备。

首先,我们需要对数据进行预处理,包括数据清洗、缺失值处理、标准化等操作。

在这个案例中,我们假设数据已经经过了预处理,并且符合主成分分析的基本要求。

主成分分析。

接下来,我们将利用主成分分析法来分析数据。

主成分分析的基本思想是通过线性变换将原始变量转化为一组线性无关的新变量,这些新变量被称为主成分,它们能够最大程度地保留原始数据的信息。

在进行主成分分析之前,我们需要计算数据的协方差矩阵,并对其进行特征值分解。

通过特征值分解,我们可以得到数据的主成分和对应的特征值,从而找出数据中的主要特征。

案例分析。

假设我们得到了数据的前三个主成分,我们可以通过观察主成分的载荷(loadings)来理解数据中的结构。

载荷可以帮助我们理解每个主成分与原始变量之间的关系,从而解释数据的特点和规律。

通过主成分分析,我们可以发现数据中的主要特征和结构,从而更好地理解数据。

同时,我们还可以利用主成分分析的结果进行数据的降维,从而简化数据集并减少信息丢失。

结论。

通过以上案例分析,我们可以看到主成分分析法在多变量数据分析中的重要作用。

通过主成分分析,我们可以发现数据中的主要特征和结构,从而简化数据集并减少信息丢失。

同时,主成分分析还可以帮助我们更好地理解和解释数据,为后续的分析和应用提供有力支持。

总结。

在本文中,我们通过一个实际案例介绍了主成分分析法的基本原理和应用。

主成分分析是一种常用的多变量统计分析方法,它可以帮助我们发现数据中的主要特征和结构,从而简化数据集并减少信息丢失。

主成分分析例题详解

主成分分析例题详解

主成分分析例题详解主成分分析(Principal Component Analysis,简称PCA)是一种常用的数据降维技术,用于发现数据中的主要模式和结构。

本文将通过一个例题详细介绍主成分分析的原理和应用。

1. 问题描述假设我们有一个包含10个变量的数据集,每个变量都与某个特定的因素相关。

我们希望通过主成分分析来降低数据的维度,并找出对总体方差贡献最大的主成分。

2. 数据预处理在进行主成分分析之前,我们需要对数据进行预处理。

首先,我们需要对数据进行标准化,使得每个变量具有相同的尺度。

这样可以避免某些变量的值对主成分分析结果造成过大的影响。

其次,我们计算数据的协方差矩阵。

协方差矩阵描述了各个变量之间的线性关系。

通过计算协方差矩阵,我们可以得到数据中的主要结构和模式。

3. 特征值分解在得到协方差矩阵之后,我们对其进行特征值分解。

特征值分解可以将协方差矩阵分解为特征值和特征向量的乘积。

特征值表示了每个特征向量对应的主成分解释的方差。

特征向量则表示了每个主成分的权重。

对于该例题,我们得到了10个特征值和10个特征向量。

我们可以通过排序特征值的大小,找出贡献最大的主成分。

4. 主成分的选择通常情况下,我们选择前k个特征值对应的特征向量作为主成分。

这样可以保留数据中大部分的结构和模式。

在该例题中,假设前3个特征值分别为λ1、λ2和λ3,并对应的特征向量分别为v1、v2和v3。

我们选择前3个特征值对应的特征向量作为主成分。

5. 降维和重构通过选择主成分,我们可以将数据从原先的10维降到3维。

其中,每个样本在新的3维空间中的坐标可以通过与主成分的内积计算得到。

此外,我们还可以通过主成分将数据从降维空间重新投影回原始空间。

这样可以保留主成分中所包含的结构和模式。

6. 结论通过主成分分析,我们成功地降低了数据的维度,并找到了对总体方差贡献最大的主成分。

这样的降维操作可以减少特征空间的维度,并提取出数据中的重要信息。

主成分分析报告PCA(含有详细推导过程以及案例分析报告matlab版)

主成分分析报告PCA(含有详细推导过程以及案例分析报告matlab版)

主成分分析法(PCA)在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。

由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。

如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。

I. 主成分分析法(PCA)模型(一)主成分分析的基本思想主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。

这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。

主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。

通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。

因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。

如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。

(二)主成分分析的数学模型对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=np n n p p x x x x x x x x x X212222111211()p x x x ,,21=其中:p j x x x x nj j j j ,2,1,21=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛= 主成分分析就是将p 个观测变量综合成为p 个新的变量(综合变量),即⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=ppp p p p p p p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 简写为:p jp j j j x x x F ααα+++= 2211p j ,,2,1 =要求模型满足以下条件:①j i F F ,互不相关(j i ≠,p j i ,,2,1, =)②1F 的方差大于2F 的方差大于3F 的方差,依次类推③.,2,1122221p k a a a kp k k ==+++于是,称1F 为第一主成分,2F 为第二主成分,依此类推,有第p 个主成分。

主成分分析实例和含义讲解

主成分分析实例和含义讲解

主成分分析实例和含义讲解1.数据标准化:对原始数据进行标准化处理,使得每个变量的均值为0,方差为1、这一步是为了将不同量级的变量进行比较。

2.计算协方差矩阵:根据标准化后的数据,计算协方差矩阵。

协方差矩阵反映了各个变量之间的线性关系。

3.特征值分解:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。

特征值表示了各个特征向量的重要程度。

4.选择主成分:根据特征值的大小,选择前k个特征向量作为主成分,k通常是根据主成分所解释的方差比例进行确定。

5.数据投影:将原始数据投影到选取的主成分上,得到降维后的数据。

主成分分析的含义可以从两个方面来解释。

一方面,主成分分析表示了原始数据在新坐标系下的投影,可以帮助我们理解数据的结构和变化。

通过选择前几个主成分,我们可以找到最能够代表原始数据的几个因素,从而实现数据的降维。

例如,在一个包含多个变量的数据集中,如果我们选择了前两个主成分,那么我们可以通过绘制数据在这两个主成分上的投影,来理解数据的分布和变化规律。

同时,主成分的累计方差贡献率可以帮助我们评估所选择的主成分对原始数据方差的解释程度,从而确定降维的精度。

另一方面,主成分分析还可以用于数据的预处理和异常值检测。

通过计算每个变量在主成分上的权重,我们可以判断每个变量对主成分的贡献大小。

如果一些变量的权重很小,那么可以考虑将其从数据集中剔除,从而减少数据的维度和复杂度。

此外,主成分分析还可以检测数据集中的异常值。

在降维的过程中,异常值对主成分的计算结果会产生较大的影响,因此可以通过比较各个主成分的方差贡献率,来识别可能存在的异常值。

总之,主成分分析是一种常用的数据降维方法,它能够帮助我们理解数据集的结构,并鉴别对数据变化影响最大的因素。

通过选择适当的主成分,我们可以实现数据的降维和可视化,并对异常值进行检测。

在实际应用中,主成分分析常常与其他数据挖掘和机器学习方法结合使用,从而发现数据的隐藏模式和关联规则,提高数据分析的效果和准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主成分分析法主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法[编辑]什么是主成分分析法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。

在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。

它是一个线性变换。

这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。

主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。

这是通过保留低阶主成分,忽略高阶主成分做到的。

这样低阶成分往往能够保留住数据的最重要方面。

但是,这也不是一定的,要视具体应用而定。

[编辑]主成分分析的基本思想在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。

这些涉及的因素一般称为指标,在多元统计分析中也称为变量。

因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。

在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。

主成分分析正是适应这一要求产生的,是解决这类题的理想工具。

同样,在科普效果评估的过程中也存在着这样的问题。

科普效果是很难具体量化的。

在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。

如上所述,主成分分析法正是解决这一问题的理想工具。

因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。

根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。

这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。

上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。

对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。

的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。

由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。

例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。

经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。

[编辑]主成分分析法的基本原理主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。

[编辑]主成分分析的主要作用概括起来说,主成分分析主要由以下几个方面的作用。

1.主成分分析能降低所研究的数据空间的维数。

即用研究m维的Y空间代替p维的X空间(m<p),而低维的Y空间代替高维的x空间所损失的信息很少。

即:使只有一个主成分Yl(即m=1)时,这个Y l仍是使用全部X变量(p个)得到的。

例如要计算Yl的均值也得使用全部x的均值。

在所选的前m个主成分中,如果某个Xi的系数全部近似于零的话,就可以把这个X i删除,这也是一种删除多余变量的方法。

2.有时可通过因子负荷aij的结论,弄清X变量间的某些关系。

3.多维数据的一种图形表示方法。

我们知道当维数大于3时便不能画出几何图形,多元统计研究的问题大都多于3个变量。

要把研究的问题用图形表示出来是不可能的。

然而,经过主成分分析后,我们可以选取前两个主成分或其中某两个主成分,根据主成分的得分,画出n个样品在二维平面上的分布况,由图形可直观地看出各样品在主分量中的地位,进而还可以对样本进行分类处理,可以由图形发现远离大多数样本点的离群点。

4.由主成分分析法构造回归模型。

即把各主成分作为新自变量代替原来自变量x做回归分析。

5.用主成分分析筛选回归变量。

回归变量的选择有着重的实际意义,为了使模型本身易于做结构分析、控制和预报,好从原始变量所构成的子集合中选择最佳变量,构成最佳变量集合。

用主成分分析筛选变量,可以用较少的计算量来选择量,获得选择最佳变量子集合的效果。

[编辑]主成分分析法的计算步骤1、原始指标数据的标准化采集p 维随机向量x = (x1,X2,...,X p)T)n 个样品x i = (x i1,x i2,...,x ip)T,i=1,2,…,n,n>p,构造样本阵,对样本阵元进行如下标准化变换:其中,得标准化阵Z。

2、对标准化阵Z 求相关系数矩阵其中,。

3、解样本相关矩阵R 的特征方程得p 个特征根,确定主成分按确定m 值,使信息的利用率达85%以上,对每个λj, j=1,2,...,m, 解方程组Rb= λj b得单位特征向量。

4、将标准化后的指标变量转换为主成分U1称为第一主成分,U2称为第二主成分,…,U p称为第p 主成分。

5 、对m 个主成分进行综合评价对m 个主成分进行加权求和,即得最终评价值,权数为每个主成分的方差贡献率。

[编辑]主成分分析法的应用分析[编辑]案例一:主成分分析法在啤酒风味评价分析中的应用[1]啤酒是个多指标风味食品, 为了全面了解啤酒的风味, 啤酒企业开发了大量的检测方法用于分析啤酒的指标, 但是面对大量的指标数据, 大多数企业又感到茫然,不知道如何利用这些大量的数据, 由上面的介绍可知,在这种情况下,主成分分析法能够派上用场。

近年来,科研人员为了获得对啤酒风味更好的理解, 多元统计技术的使用越来越多。

这主要有以下两方面的原因:①在啤酒领域里, 几乎没有一个问题能够使用单变量(单指标)就能反映事物的属性, 例如啤酒的好坏、一致性, 不能通过双乙酰一个指标说明问题;②另一个重要的原因就是, 近年来大量数学统计软件的不断出现和个人电脑的普及促进了多元统计分析技术的应用。

多元统计技术在啤酒风味研究中的一个重要任务就是找出啤酒风格和啤酒理化指标(风味成分指标也属于理化指标)之间的相关性。

例如可以用多元统计技术来找出啤酒的风味指标和啤酒风味的关系或不同啤酒的风味差异性。

经常使用的多元统计技术有聚类分析、判别分析、主成分分析和回归分析等。

其中主成分分析能够用于多指标产品, 主成分分析可以按照事物的相似性区分产品, 结果可用一维、二维或三维平面坐标图标示, 特别直观。

使用主成分分析法可以研究隐藏在不同变量背后的关系,而且根据这些变量能够获得主成分的背景解释。

鉴于主成分分析在啤酒风味质量应用中的强大作用, 本文简单介绍主成分分析的基本原理及其在啤酒一致性监控中的应用,以引起我国啤酒同行的广泛关注。

[编辑]1 材料与方法1.1 仪器HP 6890 毛细管气相色谱仪(美国安捷伦公司),FID 检测器, HP 7694E 顶空自动进样器, HP 气相色谱化学工作站。

1.2 分析方法1.2.1 样品制备啤酒于5 ℃冷藏, 量取 5 mL 酒液于20 mL 顶空瓶中, 添加2.0 g/L 正丁醇溶液0.10 mL, 加密封垫及铝盖密封,振荡混匀以供顶空气相色谱测定。

1.2.2 色谱条件毛细管色谱柱(DB- WAXETR 30 m×0.53 mm i.d,膜厚1.0 μm);柱温:起始温度为35 ℃, 以10 ℃/min 程序升温至150 ℃, 再以20 ℃/min 升温到180 ℃, 并继续恒温5 min;进样口温度150 ℃; 检测器温度200 ℃; 载气为高纯氮气, 流速为5 mL/min;氢气30 mL/min;空气400 mL/min;采用分流进样,分流比为1∶1。

[编辑]2 主成分分析法的基本原理2.1 主成分分析法在啤酒研究中应用的必要性这里通过一个例子说明, 主成分分析在啤酒研究中的必要性。

假如有6 个啤酒样品,分别标为A- F,每个啤酒样品用3 个指标来描述。

这些指标可以是仪器的分析数据、感官分析数据或两者都用。

为了便于讨论,假设这3 个指标分别为苦味值(BU)、DMS和酒精浓度。

为了解这6 个样品两两之间的相似性, 便于将这6 个样品进行分类,可以把这6 个样品画在三维空间中,见图1。

显然在这个简单的例子中, 这6 个样品倾向于形成两类, 即分别是A- C 和D- F。

通过所测的指标可以解释这种分类, 例如, 第一组(A- C)有较高的苦味值和较低的酒精浓度。

这个例子中只涉及到6 个样品和3 个指标。

但是实际上, 样品数量和指标数量都会很大, 例如, 有20 个指标, 这时, 样品不能在20 维的坐标系中画出。

为了解决多指标的样品的比较问题,可以使用主成分分析法。

2.2 主成分分析法的基本原理主成分分析的第一步是将所有的指标数据进行标准化, 标准化的一般方法为: (xij− x j mean) / δj, 这里x ij是样品j 的第i 个指标, x j mean和δj是第j 个指标的平均值和标准偏差, 通过标准化后, 每个变量的平均值变成0,标准偏差为1。

标准化的好处是可以消除不同指标间的量纲差异和数量级间的差异。

第二步求出指标间的相关矩阵, 通过相关矩阵, 可以确定具有高度相关性的指标, 这些指标间的协方差可以通过另一个变量替代, 这个变量叫作第一成分。

去掉第一成分后, 计算残留相关阵, 通过残留相关阵, 第二组高度相关的变量也可以发现, 它们的协方差可以用第二成分替代,第二成分和第一成分是正交的。

第二成分对原始数据的贡献去除后, 可以提取第三成分。

此过程一直继续, 直到原始数据的所有方差都被提取后结束。

结果是原数据转化成了同样数量的新变量, 但是, 这些新变量之间是正交的。

因此, 每个样品的原始变量的标准化数据就被转换成一系列成分的计算值。

相关文档
最新文档