高中数学《直线的倾斜角和斜率》教案
高中数学直线的倾斜角和斜率 教案 北师大必修2

直线的倾斜角和斜率 教案教学目标:知识目标:直线倾斜角的定义与直线的斜率能力目标:通过让学生经历直线方程的发现过程,以提高学生分析、比较、概括的数学能力,使学生初步了解用代数方程研究几何问题的思路,培养学生综合运用知识解决问题的能力王新敞情感目标:在教学中揭示“数〞与“形〞的内在联系,体会数、形的统一美,激发学生学习数学的兴趣重点:直线倾斜角与直线的斜率 难点:直线的斜率的应用教学过程:复习回顾:直线的表示:一次函数优点:形式简单,x,y 对应关系局限性:对于给定的自变量x ,有唯一确定的y 值与之对应概念引入:直线方程的定义:以一个方程的解为坐标的点都是某条直线上的点;反之这条直线上的点的坐标都是这个方程的解.这时这个方程叫做这条直线的方程;这条直线叫就这个方程的直线.直线的斜率:直线为y kx b =+,知道任意两点A 11(,)x y ,B 22(,)x y (21x x ≠), 那么2121y y k x x -=- (21x x ≠), 假设记x ∆=21x x -,21y y y ∆=-,那么y k x∆=∆,〔0x ∆≠〕. 通常,系数k 叫做这条直线的斜率,同一条直线上任意两点间的斜率相同.注意:斜率不存在:21x x =,分母为零,直线垂直于x 轴直线的倾斜角:x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,规定: 与x 轴平行或重合的直线的倾斜角为零度角直线倾斜角与斜率的关系:0k =时,直线平行于x 轴或与x 轴重合〔多媒体展示〕 0k >时,直线的倾斜较为锐角,k 值增大,直线的倾斜角也随之增大;0k <时,直线的倾斜较为钝角,k 值增大,直线的倾斜角也随之增大;垂直于x 轴的直线的倾斜角等于90倾斜角的X 围是: [0,180)︒斜率与倾斜角联系:①都反映直线的倾斜程度.②倾斜角为90°,斜率不存在;k>0 倾斜角为锐角;k<0 倾斜角为钝角.③斜率公式与两点的顺序无关,直线上两点的取点位置无关.④斜率公式是推导直线方程、研究直线的位置关系等许多问题的关键,也是学好本章的关键.⑤研究直线时斜率公式更为方便.例题讲解:例1.求经过A 〔-2,0〕,B(-5,3 )两点的直线的斜率 k变式引申:证明A 〔1,3〕,B 〔5,7〕,C 〔10,12〕三点共线.方法1:待定系数法,确定直线AB ,代入点C 坐标检验方法2:斜率公式AB AC k k =例2. 三点A 〔4-,0〕,B 〔1-,0〕,P 〔0,5〕,过P 的直线与线段l 相交,那么直线l 的斜率的取值X 围是__________ 〔几何画板演示〕变式引申1:A 〔4-,0〕⇒ A 〔1,0〕注意斜率bu变式引申2:两点A 〔4-,0〕,B 〔1-,0〕与直线l :5y kx =+,直线l 与线段AB 相交,那么直线的斜率的取值X 围是______思考:假设直线的斜率k>0时,它与倾斜角有何数量间的关系?tan k α=复习小结:直线的斜率2121y y k x x -=- (21x x ≠)。
高中数学_高中数学直线的倾斜角与斜率教学设计学情分析教材分析课后反思

直线的倾斜角和斜率教学设计一、教学目标:1、知识目标:理解倾斜角、斜率的概念。
了解斜率公式的推导过程。
2、能力目标:通过斜率概念的建立和斜率公式的推导,引导学生观察,类比,探索发现,帮助学生进一步理解特殊到一般的思想,数形结合的思想,渗透辩证唯物主义的思想,初步感受几何问题代数化的解析几何研究思想。
3、德育目标:通过数形结合的思想,让学生感受和体会数学的魅力,培养学生的数学意识和科学精神。
通过学生之间师生之间的交流合作,实现共同探究的目标,学生进一步体会合作精神。
【目标分析】在学习倾斜角,斜率,斜率公式的同时,让学生体会到知识产生和发现的方法,感受其中体现的数学思想,在这个过程中培养学生的数学思维,和同学老师的合作探究的行为方式。
二、教学重点:用代数方法刻画直线斜率的过程,过两点的直线斜率的计算公式。
教学难点:直线的斜率与它的倾斜角的关系。
【重难点突破的方法】通过对坡度概念的理解,引入了斜率。
在直线的斜率公式的推导中,借助于坡度的计算方法的理解,很自然就解决了这个问题。
斜率和倾斜角的关系,借助于直角组体会倾斜角变化引起的斜率的变化。
三、教学方法:在多媒体的课件的支持下,让学生在教师引导下,积极探索,体会概念的发现和形成过程,体验解析几何的研究方法。
四、教学过程1、介绍解析几何的背景。
解析几何的思想:借助于坐标系,用代数的方法研究几何问题。
【设计意图】给出三篇阅读材料,让学生对解析几何的思想有个初步的了解。
2、坐标系中的直线的倾斜角。
问题1:平面内确定直线的条件是什么?用一个点呢?答:两点问题2:已知一个点如何确定直线?【设计意图】由两点到一点确定直线,引出倾斜角。
(出示幻灯片)(总结:确定直线有两种方式:两点或者直线上一点和直线的方向)同学们讨论几种答案后,最终确定用直线与x轴正方向所形成的角来确定直线的位置。
定义:倾斜角:当直线l与x轴相交时,我们取x轴作为基准,x轴正方向与直线l向上的方向之间所形成的角α叫直线l的倾斜角。
高中数学必修2第二章《1.1直线的倾斜角和斜率》教学设计

《直线的倾斜角与斜率》教学方案...情感、态度与价值观.)斜率公式给出了求斜率的反映了斜率是垂直变、元芳说:“过点(2,1),例题讲解就………. 电子屏幕直线的倾斜角与斜率(1)一、倾斜角的定义:二、斜率的定义三、斜率的坐标公式《直线的倾斜角与斜率1》教案说明本节课的设计以新课程的教学理念为指导,遵循“学生为主体,教师为主导,知识为主线,发展思维为主旨”的原则。
教案的设计考虑了以下几方面内容:一、教学内容的数学本质(1)直线的应用直线作为平面几何的基本元素,在生活技术和自然科学研究中首先要作为被研究的对象,它是由几何到代数必经之路,16世纪开始,由于制造业和航海业的迅速发展,产生了许多迫切需要解决的问题,如航海中船的定位、速度问题等等,在这种形势下笛卡尔解析几何确立,如今的航天、导弹、卫星定位都有直线的影子。
如果把解析几何看成是我们科学发展的“必经路”那直线就是“铺路砖”。
(2)内容理解北师大教材侧重于由直观、归纳、理解的过程,本节也不例外,数学的本质是由现实到理论,由形到数的过程,如何把直线的“形”度量并表示出来是这解课的最终目标,倾斜角和斜率都是刻画直线倾斜度的量,它们之间以及与坐标之间是有密切联系的,而如何建立、推导相互间的关系,是这节课的主要任务。
二、教学目标解析1、探索确定直线位置的几何要素,感受倾斜角这个反映倾斜程度的几何量的形成过程;2、通过教学,使学生从生活中坡度自然迁移到数学中直线的斜率的过程,感受数学概念来源于生活实际,数学概念的形成是自然的,从而渗透辩证唯物主义思想;3、充分利用倾斜角和斜率是从数与形两方面刻画直线相对于x轴倾斜程度的两个量这一事实,渗透数形结合思想;4、经历用代数方法刻画直线斜率的过程,初步掌握过已知两点的直线的斜率计算公式,渗透几何问题代数化的解析几何研究思想。
三、教学内容与地位作用解析本节课是北师大版普通高中课程标准实验教科书(必修2)第二章§2.1.1的内容。
2.1.1 倾斜角与斜率 教案 人教A版选修一

高中数学人教A版选修一2.1.1 倾斜角与斜率【教学目标】1、探索确定直线位置的几何要素,感受倾斜角这个反映倾斜程度的几何量的形成过程。
2、通过教学,使学生从生活中的坡度,自然迁移到数学中直线的斜率,感受数学概念来源于生活实际,数学概念的形成是自然的,从而渗透辩证唯物主义思想。
3、充分利用倾斜角和斜率是从数与形两方面,刻画直线相对于x轴倾斜程度的两个量这一事实,渗透数形结合思想。
4、经历用代数方法刻画直线斜率的过程,初步掌握过已知两点的直线的斜率计算公式,渗透几何问题代数化的解析几何研究思想。
【教学重难点】重点:倾斜角、斜率、过两点的直线的斜率公式;难点:斜率。
【教学过程】(一)新知引入1.综合法与坐标法;2.解析几何相关内容介绍;(二)新课讲授问题1:直线是最简单的几何图形之一。
确定一条直线的几何要素是什么?师生活动:学生独立思考后回答,教师总结:一点+一个方向。
追问:观察以下过同一点A的直线,它们有何区别?你能找出一个量来区分它们吗?师生活动:对直线的方向进行规定后,引导学生观察这些直线与坐标系之间所蕴含的位置关系,为后续倾斜角的引出做铺垫。
明确定义:直线的倾斜角:当直线 l 与x 轴相交时,我们以x 轴作为基准,x 轴正向与直线 l 向上的方向之间所成的角α 叫做直线 l 的倾斜角.规定:当直线与x 轴平行或重合时,倾斜角为0°追问:下图中哪些角是直线的倾斜角?想一想:直线的倾斜角的范围是什么?师生活动:通过两个问题,加强学生对直线的倾斜角这一概念的理解,并指出:任何一条直线都有一个倾斜角与之对应,直线的方向不同,直线的倾斜程度不同,倾斜角也不相等。
练习:说出如图所示直线的倾斜角问题2:直线l 的倾斜角从形的角度刻画了直线的方向,能否用代数的方法刻画直线方向?α与P 1(x 1,y 1),P 2(x 2,y 2)两点的坐标有什么内在联系?1800<≤α探究:在平面直角坐标系中,设l 直线的倾斜角为α .(1)已知直线l 经过O (0,0), P (√3,1) ,α与O , P 的坐标有什么关系? (2)类似地,若直线l 经过P 1(−1,1), P 2(√2,0) ,α与P 1, P 2的坐标又有什么关系?(3)一般地,若直线l 经过P 1(x 1,y 1), P 2(x 2, y 2)(x 1≠ x 2) ,那么α与P 1,P 2的坐标有怎样的关系?问题3:这个关系式对任意给定的两点都适用吗?追问:这个关系式的意义是什么?联系生活实际想一想。
高考数学复习知识点讲解教案第47讲 直线的倾斜角与斜率、直线的方程

定倾斜角 的取值范围.
π
(2)注意倾斜角的取值范围是[0, π),若直线的斜率不存在,则直线的倾斜角为 ,此
2
时直线垂直于轴.
(3)每条直线都有倾斜角,但不一定存在斜率.
变式题(1)
若直线 + − 1 = 0与连接 2,3 , −3,2 的线段总有公共点,
3.直线 + + = 0
= −, .
2
+
2
≠ 0 的一个法向量 = , ,一个方向向量
◆ 对点演练 ◆
题组一 常识题
− 3
1.[教材改编] 已知直线经过点 −2,0 与 −5,3 3 ,则直线的斜率 =______,
∘
1,
−
3
(答案不唯一)
120
倾斜角 =_______,一个方向向量为_____________________________.
当直线在轴、轴上的截距均不为0时,设直线的方程为
+ =
将点 −3,1 的坐标代入可得 = −2或 = −4,
此时直线的方程为 + + 2 = 0或 − + 4 = 0.故选ABC.
1或
+
−
=1 ≠0 ,
(2)
[2023·山西大学附中月考] 已知△ 的顶点 5,5 ,边上的高所在直
=
2
,
3
=
−1
4− −2
=
−1
−1
,所以
6
6
=
2
人教版高中数学直线的倾斜角和斜率教案

人教版高中数学直线的倾斜角和斜率教案第一章:直线的倾斜角教学目标:1. 理解直线的倾斜角的概念;2. 学会计算直线的倾斜角;3. 掌握直线的倾斜角与斜率的关系。
教学重点:直线的倾斜角的概念及计算方法。
教学难点:直线的倾斜角与斜率的关系。
教学准备:直角坐标系图。
教学过程:1. 引入:引导学生回顾初中阶段学过的直线的倾斜概念,提问:直线的倾斜角是什么?2. 讲解:讲解直线的倾斜角的定义,通过直角坐标系图,演示直线的倾斜角的计算方法。
3. 练习:让学生在直角坐标系图中找出给定直线的倾斜角,并计算。
第二章:斜率的定义教学目标:1. 理解斜率的定义;2. 学会计算直线的斜率;3. 掌握斜率的符号表示。
教学重点:斜率的定义及计算方法。
教学难点:斜率的符号表示。
教学准备:直角坐标系图。
教学过程:1. 引入:引导学生回顾初中阶段学过的斜率概念,提问:斜率是什么?2. 讲解:讲解斜率的定义,通过直角坐标系图,演示斜率的计算方法。
3. 练习:让学生在直角坐标系图中找出给定直线的斜率,并计算。
第三章:斜率的计算教学目标:1. 掌握斜率的计算方法;2. 学会使用斜率公式;3. 能够应用斜率公式解决实际问题。
教学重点:斜率的计算方法及应用。
教学难点:斜率公式的运用。
教学准备:直角坐标系图。
教学过程:1. 引入:让学生回顾上一章所学的内容,提问:如何计算直线的斜率?2. 讲解:讲解斜率的计算方法,通过直角坐标系图,演示斜率的计算过程。
3. 练习:让学生运用斜率公式计算给定直线的斜率,并解决实际问题。
第四章:直线的倾斜角与斜率的关系教学目标:1. 理解直线的倾斜角与斜率的关系;2. 学会利用直线的倾斜角求斜率;3. 能够利用斜率求直线的倾斜角。
教学重点:直线的倾斜角与斜率的关系。
教学难点:利用斜率求直线的倾斜角。
教学准备:直角坐标系图。
教学过程:1. 引入:让学生回顾前几章所学的内容,提问:直线的倾斜角与斜率有什么关系?2. 讲解:讲解直线的倾斜角与斜率的关系,通过直角坐标系图,演示如何利用直线的倾斜角求斜率,以及如何利用斜率求直线的倾斜角。
直线的倾斜角和斜率教案

2.5等比数列的前n项和(第一课时)教案一、内容及其解析“直线的倾斜角与斜率”是人教版数学必修2第三章第一节的内容,是高中解析几何内容的开始。
这节课学习的内容是直线在平面直角坐标系下的倾斜角和斜率。
其核心内容是直线倾斜角的概念和斜率的求法,理解它的关键是在平面直角坐标系中直线向上的方向与X轴正方向所成的角和角的正切值。
之前学生已经学过一次函数的图像和平面中两点可以确定一条直线,这节内容就是刻画直线倾斜程度的几何要素与代数表示,是平面直角坐标系内以坐标法(解析法)的方式来研究直线及其几何性质(如直线位置关系、交点坐标、点到直线距离等)的基础。
通过该内容的学习,帮助学生初步了解直角坐标平面内几何要素代数化的过程,渗透解析几何的基本思想和基本研究方法。
直线的斜率是后继内容展开的主线,无论是建立直线的方程,还是研究两条直线的位置关系,以及讨论直线与二次曲线的位置关系,直线的斜率都发挥着重要作用。
二、目标及其解析目标定位:1、正确理解直线的倾斜角和斜率的概念.2、会求出直线的倾斜角和直线的斜率.3、掌握过两点的直线的斜率公式.目标解析:1、正确理解直线的倾斜角是指理解平面直角坐标系中以X轴为基准,直线与X 轴相交时,X轴正方向与直线向上的方向的角;理解斜率概念是指直线的斜率就是直线倾斜角的正切值。
2、会求出直线倾斜角是指已知直线的斜率求出其对应倾斜角,会求直线斜率是指知道直线的倾斜角会求出其对应直线的斜率。
3、掌握过两点的直线的斜率公式就是要熟练应用经过P1(x1,y1),P2(x2,y2)两点的直线的斜率公式k= 1212x x y y --(21x x ≠)。
三、问题诊断与分析1、对于倾斜角概念:根据倾斜角的定义说清楚“基准”与“直线方向”学生是容易掌握的,对于“是不是所有的直线都有倾斜角”这个问题绝大部分同学都能够理解。
而对于倾斜角的范围有些同学容易在180这里产生误解。
2、对于斜率,学生基本上能从斜坡的坡度中顺利迁移过来,当倾斜角为90及0时可以特殊认识,当倾斜角为钝角时(与斜坡稍有不同)斜率的求法应重点分析,突出转化思想的同时,引导学生认识P83页的脚注,使学生对所有直线的斜率情况有全面的认识。
高中数学《直线的倾斜角和斜率》教案

高中数学《直线的倾斜角和斜率》教案在平面直角坐标系中,我们用斜率来描述直线的倾斜程度,但是斜率只能描述直线相对于x轴的倾斜程度,无法描述直线相对于y轴的倾斜程度。
因此,引入直线的倾斜角来描述直线的倾斜程度,可以更加全面地描述直线的特征。
2.举例说明:如图,直线L1与x轴的夹角为30度,直线L2与x轴的夹角为60度,直线L3与x轴的夹角为120度。
我们可以发现,直线L1相对于x轴的倾斜程度最小,直线L3相对于x轴的倾斜程度最大。
同时,我们也可以根据倾斜角的大小来判断直线相对于x轴的倾斜方向。
二)直线的斜率1.定义:直线L上两点A(x1,y1)和B(x2,y2)的连线所成的角,叫做直线L的斜率,记作k,即k=tan.2.斜率公式:设直线L上两点A(x1,y1)和B(x2,y2),则直线L的斜率为k=(y2-y1)/(x2-x1).3.举例说明:如图,直线L1过点A(1,2)和点B(3,4),直线L2过点C(2,3)和点D(2,5),直线L3过点E(-1,2)和点F(1,-2)。
我们可以通过斜率公式计算出直线L1的斜率为1,直线L2的斜率为无穷大,直线L3的斜率为-2.三)倾斜角和斜率的关系1.推导过程:设直线L与x轴的夹角为,则tan=k,即=arctan(k)。
2.结论:直线的倾斜角和斜率是互相确定的,知道其中一个就可以求出另一个。
同时,当直线的斜率存在时,直线的倾斜角是唯一确定的。
三、知识拓展一)斜率的性质1.斜率相等的直线平行,斜率相反的直线垂直。
2.斜率为0的直线与x轴平行,斜率不存在的直线与y轴平行。
3.斜率为正数的直线向上倾斜,斜率为负数的直线向下倾斜。
4.斜率越大,直线的倾斜程度越大。
二)斜率的应用1.求两点间的距离:设两点A(x1,y1)和B(x2,y2),则AB的距离为d=sqrt[(x2-x1)²+(y2-y1)²]。
2.判断三点共线:设三点A(x1,y1),B(x2,y2)和C(x3,y3),则当AB的斜率等于BC的斜率时,三点共线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:直线的倾斜角和斜率教材:普通高中课程标准实验教科书(人教版)数学第3章第1节一、教学目标:1、知识与能力:(1)理解直线的倾斜角和斜率的概念.(2)掌握过两点的直线的斜率公式,会求直线的斜率和倾斜角.(3)理解直线的倾斜角和斜率之间的相互关系.2、过程与方法:(1)经历直线倾斜角概念的形成过程,理解直线倾斜角和斜率之间的关系.(2)从数与形两方面让学生明白,倾斜角和斜率都是刻画直线相对于x轴的倾斜程度.渗透数形结合思想.(3)通过问题,层层设疑,提高学生分析、比较、概括、化归的数学思维能力,使学生初步了解用代数方程研究几何问题的思路.3、情感态度与价值观:1.从生活中的坡度,自然迁移到数学中直线的斜率,让学生感受数学来源于生活,渗透辩证唯物主义世界观.2.帮助学生进一步了解分类思想、数形结合思想,在教学中充分揭示“数”与“形”的内在联系,体现数、形的统一,激发学生学习数学的兴趣,培养学生勇于探索、勇于创新的精神.二、教学重点:直线的倾斜角和斜率的概念,直线的斜率公式推导和应用.三、教学难点:倾斜角概念的形成,斜率公式的推导四、教学方法与手段:计算机辅助教学与发现法相结合.即在多媒体课件支持下,创设情境问题,层层设疑,制造认知冲突,引发争论,让学生在教师引导下,积极探索,亲身经历概念的发现与形成过程,体验公式的推导过程,主动建构自己的认知结构.【教学过程】一、知识导入在初中,我们学过了函数的图象,知道在直角坐标系中,点可以用有序实数对)x来表示和确定.那么直线呢?在平面直角坐标系中,(y,问题:经过一点P的直线L的位置能确定吗?预案:不能.如图, 过一点P就可以作无数多条直线.那么,问题:这些直线之间又有什么联系和区别呢?短暂思考和讨论后,学生可以回答预案:(1)它们都经过点P.(2)它们的“倾斜程度”不同.那么,我们应该怎样描述这种不同直线的“倾斜程度”呢?〖设计意图〗学生刚刚学完立体几何,对解析几何已经有些陌生.所以从简单问题入手,便于激发学生学习热情,同时又能引入倾斜角的概念,起到承上启下的作用.二、知识探索(一)直线倾的斜角1.定义:直线L与x轴相交时,我们取x轴作为基准,x轴正向与直线L向上的方向之间所成的角α叫做直线L的倾斜角.教师指出:对于定义的理解,我们强调的是x轴正向与直线L向上的方向所成的角.为了帮助学生加深理解,此时,可以借助几何画板来直观呈现.如下图所示:教师在演示的过程中再次向学生强调:从x轴正方向出发,到直线向上的方向之间所成角α就是直线L的倾斜角.〖设计意图〗学生开始对倾斜角概念还有些模糊,再此数形结合,向学生动态、直观的展示给定直线倾斜角的形成过程,加深学生对概念的理解.【快速练习一】1.下列四图中,表示直线的倾斜角的是( )A B C D2.请标出下列直线L的倾斜角α.〖设计意图〗该题组的设计均为加深学生对倾斜角概念的理解.第一题比较简单,通过PPT 展示出来后,让学生集体回答即可.第二题稍难一些,在实际授课时,教师将四个图形画到黑板上,请一个同学到黑板上来画.这个题目看起来简单,而实际上,题目中设置了一些问题,图(4)情况的倾斜角学生找一会儿,可就是找不到的!这样就给学生的制造了一定的认知冲突,激发了学生学习探究的兴趣,同时加深了学生对图(4)这种特殊情况下倾斜角的记忆.教师一边巡查一边指导.待学生完成后指出,图(1)的倾斜角是锐角,图(2)是钝角,图(3)是直角.那图(4)呢?问题:为什么图(4)的倾斜角我们没能标出来呢?那么它到底应该是多少呢?学生可能难以回答.此时让学生再看到倾斜角的定义,然后学生可以发现:预案:定义中的倾斜角是要求直线L 与x 轴相交的,而图(4)中的直线L 却是与x 轴平行的. 教师指出:因此,对于图(4)的直线的倾斜角并不能用该定义标出.所以,我们对于此类直线,也就是当直线L 与x 轴平行或是重合时,我们规定它们的倾斜角均为00.所以,根据上述四种情况,我们可以得到直线L 倾斜角的范围为:00≤α<1800.〖设计意图〗至此,直线倾斜角的定义从引入到解读基本完成.由易到难,由旧到新,符合学生的认知过程.学生很自然的完成了知识的过渡,并通过动态演示、认知冲突加深了对倾斜角这个概念的理解,让学生明白了“直线的倾斜角通俗的讲就是直线对x 轴正方向的倾斜程度.”为了更加深直线和倾斜角之间的关系,我们继续提问:问题:在平面坐标系中,每一条直线有多少个倾斜角呢?预案:有且只有一个.问题:一个倾斜角对应的直线有多少条呢?预案:无数条.它们都是互相平行的.如右图.所以仅有倾斜角是不能确定直线的!问题:倾斜角再加什么条件就可以确定直线呢?预案:再加一个点.即一个点P 和倾斜角α可以唯一确定一条直线.〖设计意图〗每提出一个问题,让学生自己先行思考,或是合作讨论,老师再加以点评.以加深对直线倾斜角的理解,明晰直线和倾斜角之间的关系.(二)直线的斜率问题:除了倾斜角外,我们还有没有其他表示倾斜程度的量呢?学生可能难以回答此问题.老师可以慢慢引导.在日常生活中,我们还会遇到一个叫“坡度”的概念,坡度即是坡面的铅直高度和水平长度之比(如右图).其实坡度的实际就是倾斜角α的正切.用类似的方法我们可以定义一个新的量来刻画直线的倾斜程度.1.直线斜率的定义:我们把直线的倾斜角α的正切值叫做这条直线的斜率.用小写字母 k 表示,即αtan =k .【快速练习二】已知直线的倾斜角如下,分别求出其斜率.(1)030=α (2)060=α (3)090=α (4)0120=α〖设计意图〗学生对于初中学过的特殊角的三角函数值已经有些陌生,在此既复习特殊角的三角函数值,又熟悉直线斜率的求法.对于(4)要告诉同学们公式0tan(180)tan αα-=-(α是锐角).同时,根据题目可以总结出一些结论,承上启下.教师:从上面的运算或是正切的计算可以得到:(设直线的倾斜角为α)①090000>⇔<<k α ②01809000<⇔<<k α③000=⇔=k α ④不存在k ⇔=090α我们也可以通过几何画板来直观演示斜率的正负和倾斜角的关系,请大家看屏幕.(略) 问题:任何一条直线都有斜率吗?预案:倾斜角为900的直线没有斜率.教师:所以,我们要知道,所有的直线都有倾斜角,但是并不是所有的直线都有斜率的. 〖设计意图〗加深对倾斜角和斜率之间的关系的理解.2.过两点的直线斜率的公式学习了斜率之后, 我们又可以用斜率来表示直线的倾斜程度了.我们知道,如果给定直线的倾斜角α()︒≠90α,我们当然可以根据斜率的定义αtan =k 求出直线的斜率.我们也知道,两点确定一条直线,也就是给定直线上两点坐标,直线就确定了,倾斜角也就确定了,那么怎么求出该直线的斜率呢?也就是:问题:已知直线L 上两个点的坐标),(),,(222111y x P y x P ,21x x ≠,如何求直线L 的斜率呢? 对于这个问题,学生一下难以回答.教师可以先给出一个图形(图一),一定要让学生结合图形思考,先让学生提出思路,教师启发引导,最后共同完成公式的推导(图二),得出1212x x y y k --=.图一 图二 图三教师:我们知道倾斜角还有可以是钝角,那么当α为钝角时,公式还成立吗?在此老师要适当引导学生,得出0180αθ+=(如图三),再利用诱导公式0tan(180)tan αα-=-钝角的情况转化为锐角来求解.具体过程由同学们自己推导.让一个学生到黑板上推导.〖设计意图〗整个斜率的推导过程体现了数形结合和分类讨论的思想,教学中一定要向学生不断渗透这些数学思想.师生共同完成了倾斜角为锐角的推导过程,而倾斜角为钝角的推导则通过教师引导,由学生自己完成,让学生真正体会到知识的形成过程,并利用这一过程将外在的知识点内化成自身知识体系的一部分,完成知识飞跃,完善知识结构.问题:当α=00时,公式1212x x y y k --=还成立吗? 预案:当α=00时,直线与x 轴平行或重合.000=tan .12y y =,此时0=k ,所以当α=00时公式依然成立.问题:与P 1,P 2在直线上的顺序有关吗?让学生思考,讨论.学生开始会觉得与顺序有关,但是后来有觉得应该是没有关系的,但说不出具体的利用.此时教师结合几何画板,再结合图象,拖动点P 1,P 2的位置,让学生直观发现直线L 的斜率并没有因P 1,P 2位置的改变而改变.详细推导过程留给学生课外完成.预案:无关.即21y y ,和21x x ,在公式中的前后次序可以同时交换, 但分子、分母不能交换. 问题:从几何角度怎样理解公式中要求21x x ≠呢?预案:当21x x =,直线垂直x 轴,倾斜角为900,此时斜率不存在.所以一定要注意公式适用的范围.〖设计意图〗通过问题引导,层层推进,分解公式难点,挖掘公式中的隐含知识点.同时结合几何画板,加深对公式的理解.留下一定的思考题,将课堂内容延伸到课外,培养学生合作探究的能力和习惯.教师:到现在为止,我们用代数的方法刻画出了直线的斜率公式.我们也有两种方式来求直线的斜率了.一是利用倾斜角,二是利用直线上两点的坐标.而且我们还可以先利用直线上两点的坐标算出斜率,进而求得直线的倾斜角.三、知识应用例1:关于直线的倾斜角和斜率,下列哪些说法是正确的:(1)任一条直线都有倾斜角,也都有斜率 ( )(2)直线的倾斜角越大,它的斜率就越大 ( )(3)平行于x 轴的直线的倾斜角是00或1800 ( )(4)两直线的倾斜角相等,它们的斜率也相等 ( )〖设计意图〗斜率与倾斜角概念的辨析题,巩固对斜率与倾斜角的理解.任意拖动改变P1,P2位置斜率k 的大小并没有改变例2:已知A(3,2),B(-4,1),C(0,1),求直线AB 、BC 、CA 的斜率,并判断这些直线的倾斜角是锐角还是钝角.〖设计意图〗斜率公式的直接应用和斜率的正负与倾斜角之间的关系.练习:1.求经过点A(2,-1)和点B(a ,-2)的直线L 的斜率,并讨论a 为何值时,直线L 的倾斜角是锐角、钝角、直角?〖设计意图〗例2知识点的延伸,同时隐含了分类讨论的思想.2.已知三点A(a ,2),B(3,7),C(-2,-9a )在一条直线上,求实数a 的值.〖设计意图〗加深对斜率公式的理解,让学生明白斜率的求得与直线上的点的选择无关.同时此题也是用斜率研究三点共线问题,为后面的学习做铺垫.〖题组设计意图〗整个练习的设计围绕斜率和倾斜角展开,由浅入深.同时注意了知识的承上启下和数学思想的渗透.四、知识小结1、直线的倾斜角定义及其范围:00≤α<18002、倾斜角和斜率k 之间的关系:①090000>⇔<<k α ②01809000<⇔<<k α③000=⇔=k α ④不存在k ⇔=090α3、直线斜率的两种求法:①若已知倾斜角)(090≠αα时,αtan =k②若知直线过两点),(),,(222111y x P y x P 且21x x ≠,1212x x y y k --=五、板书设计教案说明全课以化归思想为主线,达到化未知为已知,化难为易,化几何问题为代数问题的目的.通过利用多媒体课件辅助教学,帮助学生变抽象为具体,破解教学难点.本节课在教法上力求通过设置问题,层层递进,揭示知识的形成发展过程,讲清知识的来龙去脉,突出知识的本质特征,整节课突出“问题解决”.从而使学生对所学的知识理解得更加深刻.(一)设置层层疑问,促进学生探究在教学过程中按照“教、学、研同步协调原则”,充分发挥教师的主导作用和学生的主体地位.借助提问,给学生营造一个思考情境,促进学生探究,给每个学生提供思考、创造、表现及获得成功的机会,使学生在民主开放、和谐愉悦的教学氛围中获取新知识,提高能力,发展自我.(二)引导学生反思,渗透数学思想.数学思想方法是数学问题的灵魂.解析几何是用代数方法研究几何问题,坐标法思想则是解析几何的核心思想.本节课注重了启发学生思维,引导学生反思思维过程,注重了数学思想方法的渗透.在贯穿坐标法思想的同时渗透了数形结合思想、转化化归思想、分类讨论思想等.(三)灵活应用多媒体,突破教学难点多媒体的灵活运用,很好的帮助学生突破了难点.倾斜角概念的形成、斜率公式的得到以及倾斜角和斜率之间的关系等,都是本节课知识的难点.借助几何画板,直观、动态演示了形成过程和变化趋势,很好的帮助学生解决了难点,内化了知识.。