高中数学选修2-1全套教案

合集下载

高中数学新北师大版精品教案《北师大版高中数学选修2-1 3.2双曲线的简单性质》

高中数学新北师大版精品教案《北师大版高中数学选修2-1 3.2双曲线的简单性质》

§双曲线的简单性质教材版本:北师大版(选修2-1)教材分析:双曲线是圆锥曲线之一,圆锥曲线是选修内容,但是高考必考内容,同时又是高考的热点问题。

双曲线的简单性质是北师大版选修2-1第三章第三节第二课时。

本节课是学生在已掌握椭圆及椭圆的简单性质和双曲线的定义及标准方程之后,类比椭圆的研究方法,再利用双曲线的标准方程和图形研究其简单性质。

双曲线的简单性质是教学大纲要求学生必须掌握的知识点;又是深入研究双曲线,并能灵活运用它解题的基础。

通过本节课的学习进一步使学生理解、掌握解析几何这门学科的研究方法,培养学生的解析几何观念,提高学生的数学素养。

双曲线特有的性质--渐近线,课本上是小体字并带有星号部分。

本节课就没有证明,只是通过“动画”,让学生直观感受,需要学习渐近线的必要性。

学情分析:必修2中学生已经学习了《解析几何初步》,已有些研究解析几何的经验了。

本章学生首先系统地学习了椭圆的概念及标准方程和性质,学生以这些知识为基础,类比椭圆的研究方法,再利用双曲线的标准方程研究其简单性质,相对来说比较轻松。

在课堂中,可以充分以学生为主体,通过与椭圆的类比,启发学生自己找出双曲线的简单性质。

三维目标:1、知识与技能(1)结合图形利用双曲线标准方程了解双曲线的简单性质。

(2)能由双曲线标准方程求出双曲线的顶点坐标、实、虚轴长,渐近线方程和离心率。

(3)能由双曲线的简单性质得出相应的双曲线方程。

(4)理解离心率对双曲线开口大小的影响,能正确说出其中的规律。

2、过程与方法利用研究椭圆的简单性质方法类比获得双曲线的简单性质,培养学生的观察能力,想象能力,数形结合能力和分析、归纳、研究问题能力,以及类比的学习方法。

3、情感、态度与价值观培养学生主动探求知识、合作交流的意识,增强学生数学交流能力,提高学生的合作精神。

教学重点:双曲线的简单性质的探究及其应用。

教学难点:双曲线的简单性质的灵活应用。

教学方法:启发诱导,自主探究,类比分析法.即结合本节内容的特征,主要采用启发诱导式教学方式,学生类比椭圆自主地去探求出双曲线的简单性质,适当借助多媒体等教学辅助手段。

高中数学选修2-1精品教案9:1.3.1 且(and)-1.3.2 或(or)-1.3.3 非(not)教学设计

高中数学选修2-1精品教案9:1.3.1 且(and)-1.3.2 或(or)-1.3.3 非(not)教学设计

1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)教学目标1.知识与技能了解命题的概念,理解逻辑联结词“或”,“且”,“非”的含义,掌握含有“或”,“且”,“非”的命题的构成.2.过程与方法(1)经历抽象的逻辑联结词的过程,培养学生观察,抽象,推理的思维能力.(2)通过发现式的引导,培养学生发现问题,解决问题的能力.3.情感、态度与价值观培养学生积极参与,合作交流的主体意识,并在这过程中,培养学生对数学的兴趣和爱好.教学重点难点重点:通过数学实例,了解逻辑联结词“或”、“且”的含义,使学生能正确地表述相关数学内容.难点:(1)正确理解命题“p∧q”“p∨q”“綈p”真假的规定和判定.(2)简洁、准确地表述命题“p∧q”“p∨q”“綈p”.教学过程知识点1:“且”问题导思1.观察下列三个命题:①2是6的约数;②2是8的约数;③2是6的约数且是8的约数.它们之间有什么关系?【答案】命题③是将命题①、②用“且”联结得到的新命题.2.以上三个命题的真假情况是怎样的?【答案】均为真命题.1.定义一般地,用逻辑联结词“且”把命题p和命题q联结起来就得到一个新命题,记作p∧q.读作“p且q”.2.真假判断当p、q都是真命题时,p∧q是真命题;当p、q两个命题中有一个命题是假命题时,p ∧q是假命题.知识点2:“或”问题导思1.观察下列三个命题:①27是7的倍数;②27是3的倍数;③27是7的倍数或是3的倍数.它们之间有什么关系?【答案】命题③是将命题①②用“或”联结得到的新命题.2.以上三个命题的真假情况是怎样的?【答案】①是假命题,②③是真命题.1.定义一般地,用逻辑联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作p∨q.读作“p或q”.2.真假判断当p、q两个命题有一个命题是真命题时,p∨q是真命题;当p、q两个命题都是假命题时,p∨q是假命题.知识点3:“非”问题导思1.观察下列两个命题①4是16的算术平方根;②4不是16的算术平方根.它们之间有什么关系?【答案】命题②是对命题①的全盘否定.2.以上两个命题的真假情况是怎样的?【答案】命题①为真命题,命题②为假命题.1.定义一般地,对一个命题p全盘否定,就得到一个新命题,记作綈p,读作“非p”或“p的否定”.2.真假判断若p是真命题,则綈p必是假命题;若p是假命题,则綈p必是真命题.例1.指出下列命题的形式及构成它的简单命题:(1)方程x2-3=0没有有理根;(2)有两个内角是45°的三角形是等腰直角三角形;(3)±1是方程x3+x2-x-1=0的根.解:(1)这个命题是“非p”形式的命题,其中p:方程x2-3=0有有理根.(2)这个命题是“p且q”形式的命题,其中p:有两个内角是45°的三角形是等腰三角形,q:有两个内角是45°的三角形是直角三角形.(3)这个命题是“p或q”形式的命题,其中p:1是方程x3+x2-x-1=0的根,q:-1是方程x3+x2-x-1=0的根.规律方法1.判断一个命题的结构,不能仅从字面上看它是否含有“或”“且”“非”等逻辑联结词,而应从命题的结构上看是否用逻辑联结词联结两个命题.2.用逻辑联结词“且”“或”联结两个命题时,关键是正确理解这些词语的意义及在日常生活中的同义词,选择合适的联结词,有时为了语法的要求及语句的通顺也可进行适当的省略和变形.变式训练指出下列命题的构成形式:(1)菱形的对角线垂直且平分;(2)9的算术平方根不是-3;(3)不等式x2-x-2>0的解集是{x|x>2或x<-1}.解:(1)是“p∧q”形式,其中p:菱形的对角形互相垂直,q:菱形的对角线互相平分;(2)是“綈p”形式,其中p:9的算术平方根是-3;(3)是“p∨q”的形式,其中p:不等式x2-x-2>0的解集是{x|x>2},q:不等式x2-x-2>0的解集是{x|x<-1}.例2.分别写出由下列各组命题构成的“p∨q”“p∧q”“綈p”形式的命题,并判断其真假.(1)p:6是自然数,q:6是偶数;(2)p:等腰梯形的对角线相等,q:等腰梯形的对角线互相平分;(3)p:函数y=x2-2x+2没有零点,q:不等式x2-2x+1>0恒成立.解:(1)p∨q:6是自然数或是偶数,真命题.p∧q:6是自然数且是偶数,真命题.綈p:6不是自然数,假命题.(2)p∨q:等腰梯形的对角线相等或互相平分,真命题.p∧q:等腰梯形的对角线相等且互相平分,假命题.綈p:等腰梯形的对角线不相等,假命题.(3)p∨q:函数y=x2-2x+2没有零点或不等式x2-2x+1>0恒成立,真命题.p∧q:函数y=x2-2x+2没有零点且不等式x2-2x+1>0恒成立,假命题.綈p:函数y=x2-2x+2有零点,假命题.规律方法1.判断含有逻辑联结词的命题的真假的步骤:(1)确定含逻辑联结词的命题的构成形式;(2)判断其中简单命题p、q的真假;(3)由真值表判断命题的真假.2.真值表解读真值表变式训练分别指出下列各组命题构成的“p∨q”“p∧q”“綈p”形式的真假;(1)p :3是无理数,q :3是实数; (2)p :4>6,p :4+6≠10.解:(1)∵p 为真命题,q 也为真命题.∴p ∨q 为真命题,p ∧q 为真命题,綈p 为假命题. (2)∵p 为假命题,q 也为假命题.∴p ∨q 为假命题,p ∧q 为假命题,綈p 为真命题.例3.已知a >0且a ≠1,设p :函数y =log a (x +1)在(0,+∞)上单调递减,q :曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点.若p 或q 为真,p 且q 为假,求a 的取值范围. 解:y =log a (x +1)在(0,+∞)内单调递减,故0<a <1.曲线y =x 2+(2a -3)x +1与x 轴交于两点等价于(2a -3)2-4>0,即a <12或a >52.又a >0,∴0<a <12或a >52.∵p 或q 为真,∴p ,q 中至少有一个为真. 又∵p 且q 为假,∴p ,q 中至少有一个为假, ∴p ,q 中必定是一个为真一个为假. ①若p 真,q 假. 则⎩⎪⎨⎪⎧0<a <1,12≤a ≤52且a ≠1, ∴12≤a <1. ②若p 假,q 真.则⎩⎪⎨⎪⎧a >1,0<a <12或a >52,∴a >52. 综上可知,实数a 的取值范围为[12,1)∪(52,+∞).规律方法1.含有逻辑联结词的命题p ∧q 、p ∨q 的真假可以用真值表来判断,反之根据命题p ∧q 、p ∨q 的真假也可以判断命题p 、q 的真假. 2.解答这类问题的一般步骤:(1)先求出命题p ∧q 、p ∨q 在命题p ,q 成立时的参数范围; (2)其次根据命题p ∧q 、p ∨q 的真假判断命题p 、q 的真假; (3)根据p 、q 的真假求出参数的取值范围. 变式训练命题p :关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,命题q :函数f (x )=-(5-2a )x 是减函数,若p 或q 为真,p 且q 为假,求实数a 的取值范围.解:设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0, ∴-2<a <2,∴命题p 中a 应满足-2<a <2. 函数f (x )=-(5-2a )x 是减函数,则有5-2a >1,即a <2.∴命题q 中a 应满足a <2. 又由于p 或q 为真,p 且q 为假,可知p 和q 一真一假.(1)若p 真q 假,则⎩⎪⎨⎪⎧-2<a <2,a ≥2,此不等式组无解.(2)若p 假q 真,则⎩⎪⎨⎪⎧a ≤-2,或a ≥2,a <2,∴a ≤-2.综上,实数a 的取值范围是a ≤-2. 课堂小结1.利用逻辑联结词“且”“或”可以联结两个命题,得到新命题;命题的真假可以通过真值表进行判断.2.命题綈p 是对命题p 的全盘否定,p 和綈p 的真假性相反,要区别于命题p 的否命题. 逻辑联结词的意义又可结合集合的运算理解,利用p ∧q ,p ∨q ,綈p 形式命题的真假可以得到一些集合的关系,确定其中参数的范围. 当堂检测1.命题“矩形的对角线相等且互相平分”是( ) A .“p ∧q ”形式的命题B .“p ∨q ”形式的命题C .“綈p ”形式的命题D .以上说法都不对2.若p是真命题,q是假命题,则()A.p∧q是真命题B.p∨q是假命题C.綈p是真命题 D.綈q是真命题3.命题“在△ABC中,若∠C=90°,则∠A,∠B都是锐角”的否定为________.4.已知p:x2-x≥6,q:x∈Z,若p∧q和綈q都是假命题,求x的取值集合.【答案】1.A2.D3.在△ABC中,若∠C=90°,则∠A、∠B不都是锐角4.解:∵綈q是假命题,∴q为真命题.又p∧q为假命题,∴p为假命题.因此x2-x<6且x∈Z,解得-2<x<3且x∈Z,故x=-1,0,1,2,所以x取值的集合是{-1,0,1,2}.。

人教版高中数学选修2-1 教案目录

人教版高中数学选修2-1 教案目录

学科人教版高中数学选修2-1编写组责任人序号知识模块教案标题编写人1人教版 选修2-1第一章 常用逻辑语 同步复习教案1( 基础)小榄校区(关潮辉)2人教版 选修2-1第一章 常用逻辑语 同步复习教案1( 提高)小榄校区(关潮辉)7人教版 选修2-1第一章 常用逻辑语 同步复习教案2( 基础)小榄校区(温艺铭)8人教版 选修2-1第一章 常用逻辑语 同步复习教案2( 提高)小榄校区(温艺铭)9人教版 选修2-1第一章单元复习教案(基础)小榄校区(泰龙、马俊)10人教版 选修2-1第一章单元复习教案(提高)小榄校区(泰龙、马俊)11第一章单元测试卷(基础)小榄校区(泰龙、马俊)12第一章单元测试卷(提高)小榄校区(泰龙、马俊)13人教版 选修2-1 第二章 2.1曲线与方程 同步教案(基础)石岐(基础)贺丽春起湾(提高)郑狄苗14人教版 选修2-1 第二章 2.1曲线与方程同步教案(提高)石岐(基础)贺丽春起湾(提高)郑狄苗15人教版 选修2-1 第二章 2.1椭圆同步教案(基础)石岐(基础)何善庆起湾(提高)郑狄苗16人教版 选修2-1 第二章 2.1椭圆同步教案(提高)石岐(基础)何善庆起湾(提高)郑狄苗17人教版 选修2-1 第二章 2.2双曲线同步教案(基础)石岐(基础)刘冬有起湾(提高)郑狄苗18人教版 选修2-1 第二章 2.2双曲线同步教案(提高)石岐(基础)刘冬有起湾(提高)郑狄苗19人教版 选修2-1 第二章 2.3抛物线同步教案(基础)石岐(基础)肖爱 起湾(提高)郑狄苗20人教版 选修2-1 第二章 2.3抛物线同步教案(提高)石岐(基础)肖爱 起湾(提高)郑狄苗星火教育高中标准教案目录第一章常用逻辑用语单元复习单元测试卷第二章圆锥曲线与方程刘冬有。

人教A版高中数学选修2-1《2.2椭圆》复习教案

人教A版高中数学选修2-1《2.2椭圆》复习教案

1. 一、知识要点: 椭圆、双曲线、抛物线的标准方程与椭圆、双曲线、抛物线的标准方程与几何几何性质 椭圆椭圆 双曲线双曲线 抛物线抛物线定义定义 1.到两定点F 1,F 2的距离之和为定值2a(2a>|F 1F 2|)的点的轨迹轨迹 1.到两定点F 1,F 2的距离之差的绝对值为定值2a(0<2a<|F 1F 2|)的点的轨迹的点的轨迹2.与定点和直线的距离之比为定值e 的点的轨迹.(0<e<1) 2.与定点和直线的距离之比为定值e 的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹. 图形图形方程 标准方程方程 12222=+b y a x (b a >>0) 12222=-by a x (a>0,b>0) y 2=2px 参数方程 为离心角)参数q q q (sin cos îíì==b y a x 为离心角)参数q q q (tan sec îíì==b y a x îíì=y pt x 22(t 为参数) 范围范围 ─a £x £a ,─b £y £b |x| ³ a,y ÎR x ³0 中心中心 原点O (0,0) 原点O (0,0) 顶点 (a,0), (─a,0), (0,b) , (0,─b) (a,0), (─a,0) (0,0) 对称轴x 轴,y 轴;轴; 长轴长2a,短轴长2b x 轴,y 轴; 实轴长2a, 虚轴长2b. x 轴 焦点焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0) )0,2(p F 焦距 2c (c=22b a -) 2c (c=22b a +)离心率 )10(<<=e a c e )1(>=e a c ee=1 准线准线x=c a 2± x=ca 2±2p x -=渐近线y=±abx 焦半径 ex a r ±= )(a ex r ±±=2px r += 通径通径a b 22 a b 22 2p 焦参数焦参数ca 2ca 2P (1))0(12222>>=+b a b y a x ,焦点:F 1(-c,0),F 2(c,0),其中c=22b a -. (2))0(12222>>=+b a a y b x ,焦点:F 1(0,-c),F 2(0,c),其中以标准方程)0(12222>>=+b a by a x 为例: ①范围:|x|≤a,|y|≤b;②对称性:对称轴x=0,y=0,对称中心为O(0,0);③顶点A(a,0),A′(A(a,0),A′(--a,0),B(0,b),B′(0,a,0),B(0,b),B′(0,-b);-b);长轴|AA′|=2a,短轴|BB′|=2b;④离心率:e=ac,0<e<1;⑤准线x=±ca 2;⑥焦半径:|PF 1|=a+ex,|PF 2|=a-ex,其中P(x,y)是椭圆上任意一点. 二、基本训练1.设一动点P 到直线3x =的距离与它到点A (1,0)的距离之比为3,则动点P的轨迹方程是的轨迹方程是 ( )()A 22132x y += ()B 22132x y -=()C 22(1)132x y ++=()D 22123x y +=2.与曲线)9(192522<=-+-k ky k x 之间具有的等量关系之间具有的等量关系( )()A 有相等的长、短轴有相等的长、短轴 ()B 有相等的焦距有相等的焦距()C 有相等的离心率有相等的离心率()D 有相同的准线有相同的准线3.已知椭圆的长轴长是短轴长的3倍,长、短轴都坐标上,且过点(3,0)A ,则椭圆的方程是圆的方程是 ,1.椭圆的定义: 第一种定义:平面内与两个定点F 1、F 2的距离之和等于的距离之和等于常数常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距焦距. 第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线. 2.椭圆的标准椭圆的标准方程方程: c=22b a -. 3.椭圆的参数方程:îíì==q qsin cos b y a x ,(参数θ是椭圆上任意一点的是椭圆上任意一点的离心率离心率). 4.椭圆的几何性质:曲线192522=+y x .4.底面.底面直径直径为12cm 的圆柱被与底面成30的平面所截,的平面所截,截口是一个椭圆,这个椭圆的长截口是一个椭圆,这个椭圆的长y xOF 1F 2P αβyO x1lF 2 F 1 A 2 A 1 PMl短轴长短轴长 221(0)x y a b a b +,+=>>,P 为椭圆上除长轴端点外的任一点,12,F F 为椭圆的两个焦点,(1)若a =Ð21F PF ,21PF F b Ð=,求证:离心率2cos2cosb a ba -+=e ;(2)若q 221=ÐPF F ,求证:21PF F D 的面积为2t a n b q ×.例4设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->,且椭圆上存在点P ,使得直线1PF 与直线2PF 垂直.(1)求实数m 的取值范围;(2)设l 是相应于焦点2F 的准线,直线2PF 与l 相交于点Q ,若22||23||QF PF =-,求直线2PF 的方程.程.,离心率 .5.已知.已知椭圆椭圆22=>>的离心率为35,若将这个椭圆绕着它的右焦点按逆时针方向逆时针方向旋转旋转2p后,所得新椭圆的一条准线后,所得新椭圆的一条准线方程方程是163y =,则原来的椭,则原来的椭圆方程圆方程是 ;新椭圆方程是;新椭圆方程是 . 三、例题分析 例1(05浙江) .如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的轴的交点交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭求椭圆的方程圆的方程;(Ⅱ)若直线l 1:x =m (|m |>1),P 为l 1上的动点,使∠F 1PF 2最大的点P 记为Q ,求点Q 的坐标(用m 表示).例2设A B 是两个定点,且||2AB =,动点M 到A 点的距离是4,线段MB 的垂直平分线l 交MA 于点P ,求动点P 的轨迹方程.例3.已知椭圆22221(0)x y a b a bïîïíì³<<+)4(2)40(442b bbb ;(B) ïîïíì³<<+)2(2)20(442b bbb ;(C) 442+b ;(D) 2b2. P A 3316 ()B )32(4- ()C )32(16+ ()D 163.已知椭圆22221(0)x y a b a b+=>>的左焦点为的左焦点为 F ,(,0),(0,)A a B b -为椭圆的两个顶点,若F 到AB A 777- ()B 777+ ()C 12()D 454.(05天津卷)从集合{1,2,3…,11}例5(05上海)点A 、B 分别是分别是椭圆椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ^。

高中数学选修2-1精品教案 2.3.1双曲线及其标准方程

高中数学选修2-1精品教案 2.3.1双曲线及其标准方程

2. 3.1双曲线及其标准方程课前预习学案一.预习目标:了解双曲线的定义及焦点、焦距的意义。

二.预习内容:平面内与两定点 1F , 2F 的距离的差的绝对值等于常数(小于|21F F |)的点的轨迹叫做-------。

两定点1F , 2F 叫做双曲线的_________ ,两焦点间的距离|21F F |叫做双曲线的________ .疑惑点疑惑内容课内探究学案一.学习目标:掌握双曲线的标准方程及其特点;会求简单的双曲线的标准方程。

学习重难点:双曲线的定义的理解和标准方程的特点 二.学习过程:问题 1:把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?如图 2-23,定点1F , 2F 是两个按钉,MN 是一个细套管,两条细绳分别拴在按钉上且穿过套管,点M 移动时,|1MF | - |2MF | 是常数,这样就画出一条曲线; 由 |2MF | - |1MF | 是同一常数,可以画出另一支.新知 1:双曲线的定义:平面内与两定点 1F , 2F 的距离的差的绝对值等于常数(小于|21F F |)的点的轨迹叫做双曲线。

两定点1F , 2F 叫做双曲线的_________ , 两焦点间的距离|21F F |叫做双曲线的________ . 反思:设常数为2a ,为什么2a < |21F F | ? 2a = |21F F |时,轨迹是__________ ; 2a > |21F F | 时,轨迹____________ .试一试:点 A ( 1,0) , B (-1 ,0) ,若 |AC | - |BC | = 1 ,则点C 的轨迹是__________ .新知 2:双曲线的标准方程:12222=-by a x ,(a> 0,b> 0,222b a c += )(焦点在x 轴)其焦点坐标为 1F (-c ,0) , 2F (c ,0) .思考:若焦点在 y 轴,标准方程又如何?三.反思总结:1.双曲线定义中需要注意的条件:22c a >2.双曲线方程的特点(注意与椭圆对比、区分):2x 、2y 的系数符号相反,若2x 的系数为正,则焦点在x 轴上,反之则在y 轴上。

高中数学(命题及其关系-四种命题)教案2 苏教版选修2-1 教案

高中数学(命题及其关系-四种命题)教案2 苏教版选修2-1 教案

=,则
B B
不能被2整除;
结论:这些语句都是陈述句,且它们都能判断真假。

一般地,我们用语言、符号或式子表达的,可以判断真假的陈述句,叫做命题;其中判断为正确的命题,
例如,如果原命题是:⑴同位角相等,两直线平行;
它的逆命题就是:⑵两直线平行,同位角相等.
2.否命题与逆否命题的知识
即在两个命题中,一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题就叫做互否命题,若把其中一个命题叫做原命题,则另一个就叫做原命题的否命题.
例如⑶同位角不相等,两直线不平行;
⑷两直线不平行,同位角不相等.
3. 原命题与逆否命题的知识
即在两个命题中,一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题就叫做互为逆否命题,若把其中一个命题叫做原命题,则另一个就叫做原命题的否命题.
概括地说,设命题⑴为原命题,则命题⑵为逆命题;命题⑶为否命题;命题⑷为逆否命题.
关于逆命题、否命题与逆否命题,也可以这样表述:
⑴交换原命题的条件和结论,所得的命题是逆命题;
⑵同时否定原命题的条件和结论,所得的命题是否命题;
⑶交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.
4.四种命题的形式
一般到,我们用p和q分别表示原
命题的条件和结论,用┐p和┐q分别
表示p和q的否定,于是四种命题的形
式就是:
原命题:若p则q;。

苏教版高中数学选修2-1《椭圆的标准方程》教案2

苏教版高中数学选修2-1《椭圆的标准方程》教案2

椭圆的标准方程学习目标:1、通过本节的学习了解椭圆的定义、几何图形和标准方程,了解椭圆的实际背景和它在解决实际问题中的作用.2、理解椭圆标准方程中参数a 、b 、c 之间的关系,灵活地运用定义去思考问题并切实地解决问题.学习重点:椭圆的定义和标准方程学习难点:椭圆标准方程的推导一、新课引入:椭圆的定义:平面内到两定点1F ,2F 的距离和等于常数(大于12F F )的点的轨迹叫做椭圆,两个定点1F ,2F 叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

思考:如何把数学语言转化为代数式或者方程呢?方法:坐标化原则:简洁对称步骤:建系、取点;列式(几何、代数);代换;化简;证明(可省)要求条理清晰) 分析:从定义(几何性质)入手突出:1、如何建系:(让学生从美的原则出发感受轴对称、中心对称的完美性,处理问题时要保持完美性协调,忌破坏。

)以焦点F 1,F 2所在直线为x 轴,线段F 1F 2的中垂线为y 轴,则F 1(-c,0),F 2(c,0) 设椭圆上一点P(x,y)。

2、如何求椭圆的标准方程:(暂且不提标准二字,纯粹从求方程开始)1)明确几何关系:|PF 1|+|PF 2|=2a22a =分析方程的结构及所显示的几何意义(揭示出|F 1F 2|>2a 原因),强调为什么要化简——美化,让学生感受化简的必要性。

3)化简关系:(让学生讨论如何化简,突出化简的目的—去根号)常规方法:平方法2222222)()(44)(y c x y c x a a y c x +-++--=++2a cx -=22222222-()a c x a y a a c +=-()222221x y a a c+=- 注:在化简的过程中,时时注意拓展学生思维,帮助学生学会科学地思考。

化简可以从其它两个方面思考:一、分子有理化(有理化的意识);二、等差中项(数学式子的结构意识)注:①若2a=2c 时,化简所得方程与其图形的对比 ②平方法后得:c a x a -=能说明什么? )()(222x c a a c y c x -=+- →a c x ca y c x =-+-222)( 4)标准方程(分析为什么标准化,它的必要性)结合椭圆的图形分析b 的引入的科学性二、例题分析学习椭圆要分两步走,第一,用方程表示椭圆;第二,通过方程探究椭圆的性质,其中,在各种条件下求出椭圆的方程是学好椭圆的必由之路. 例1 判断下列椭圆的焦点的位置,并求出焦距与焦点坐标. (1)22110064x y +=; (2)221925x y +=; (3)224520x y +=. 解:(1)因为10064>,所以焦点在x 轴上;又因为2221006436c a b =-=-=,故焦距212c =,从而焦点坐标为(6,0)-、(6,0).(2)因为925<,所以焦点在y 轴上;又因为22225916c a b =-=-=,故焦距)0(12222>>=+b a by a x28c =,从而焦点坐标为(0,4)-、(0,4).(3)方程可化为22154x y +=,因为54>,所以焦点在x 轴上;又因为222c a b =-=5-4=1,所以焦距2c=1,从而焦点坐标为(1,0)、(-1,0).注意:第(3)题和前两题的区别,分母上的数是和通过本题的练习,使学生能加深椭圆的焦点位置与标准方程之间关系的理解,同时会求焦点坐标、焦距等基本量(在求解之前要将方程先化成标准式),学习时采用在教师引导下学生自主完成的方法.例2:已知一个运油车上的贮油罐横截面的外轮廓线是一个椭圆它的焦距为2.4m ,外轮廓线上的点到两个焦点距离的和为3m ,求这个椭圆的标准方程. 解:以两焦点1F 、2F 所在直线为x 轴,线段1F 2F 的垂直平分线为y 轴,建立直角坐标系x O y ,则这个椭圆的标准方程可设为()222210x y a b a b += >>. 根据题意知23a =,2 2.4c =,即1.5a =, 1.2c =,故222221.51.20.81b ac =-=-=,因此,这个椭圆的标准方程为2212.250.81x y +=. 说明:进一步熟悉椭圆的焦点位置与标准方程之间的关系;掌握运用待定系数法求椭圆的标准方程,解题时强调“二定”即“定型”和“定量”,培养学生运用知识解决问题的能力.三、巩固练习1. 求下列椭圆的焦点坐标:(1)22194x y +=; (2)22167112x y +=.2. 求适合下列条件的椭圆的标准方程:(1)焦点在x 轴上,a =c =(2)焦点在y 轴上,225a b +=,且过点(;(3)焦距为6,1a b -=;(4)经过两点35(,)22A -,B . 四、本节小结:理解椭圆的标准方程的求法。

高中数学选修2-1《圆锥曲线》教案

高中数学选修2-1《圆锥曲线》教案

4. 待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求. 例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方ax2-4b2x+a2b2=0•••抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b 2x+a2b2=0 应有等根.•••△ =1664-4Q4b2=0,即卩a2=2b.(以下由学生完成)由弦长公式得:即a2b2=4b2-a 2.(三)巩固练习用十多分钟时间作一个小测验,检查一下教学效果•练习题用一小黑板给出.1 .△ ABC-边的两个端点是B(0 , 6)和C(0 , -6),另两边斜率的2. 点P与一定点F(2 , 0)的距离和它到一定直线x=8的距离的比是1 : 2,求点P的轨迹方程,并说明轨迹是什么图形?3. 求抛物线y2=2px(p >0)上各点与焦点连线的中点的轨迹方程. 答案:义法)由中点坐标公式得:(四)小结求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍.五、布置作业1. 两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程.2. 动点P到点F1(1 , 0)的距离比它到F2(3 , 0)的距离少2,求P点的轨迹.3. 已知圆x2+y2=4上有定点A(2 , 0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程.作业答案:1. 以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=4 2. v |PF2|-|PF|=2 ,且|F1F2| • P点只能在x轴上且x V 1,轨迹是一条射线六、板书设计教学反思:4斜率之积为4,9程.分析:由椭圆的标准方程的定义及给出的条件,容易求出a,b,c .引导学生用其他方法来解.另解:设椭圆的标准方程为2 25 31 a b 0,因点一,一在椭圆上,a b2 225 9 则 4a 2 4b 22 2a b 4;10<6例2如图,在圆x 24上任取一点P ,过点P 作x 轴的垂线段 PD , D 为垂足•当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?分析: 点P 在圆x 2 y 2 4上运动,由点 P 移动引起点 M 的运动,则称点 M 是点P 的伴随点,因点M 为线段 PD 的中点,则点 M 的坐标可由点P 来表示,从而能求点 M 的轨迹方程.引申: 设定点2xA 6,2 , P 是椭圆x252y1上动点,求线段 AP 中点M 的轨迹方程.9解法剖析:①(代入法求伴随轨迹)设M x, y , P x 1,y 1 :②(点与伴随点的关系): M为线段AP 的中点,X i y i2x 6;③(代入已知轨迹求出伴随轨迹)2y 22..X 1 '252y11 , •••点M9x的轨迹方程为一25④伴随轨迹表示的范围.例3如图,设A , B 的坐标分别为 5,0 , 5,0 .直线 AM , BM 相交于点M ,且它们的分析:若设点x, y ,则直线AM,BM 的斜率就可以用含 x, y 的式子表示,由于直线AM ,BM 的斜率之积是4 ,因此,可以求出9x, y 之间的关系式,即得到点M 的轨迹方程.解法剖析:设点M x, y ,则 k AM-^― x 5 , k BMx 5 ;x 5x 5代入点M 的集合有4-,化简即可得点 M 的轨迹方程. 9引申:如图,设△ ABC 的两个顶点 A a,0 , B a,0,顶点C 在移动,且k AC k BC k , 且k 0,试求动点C 的轨迹方程.引申目的有两点:①让学生明白题目涉及问题的一般情形;②当 色也是从椭圆的长轴T 圆的直径T 椭圆的短轴.练习:第45页1、2、3、4、 作业:第53页2、3、k 值在变化时,线段 AB 的角求点M 的轨迹方程.分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决 问题的能力.思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能 力.实践能力:培养学生实际动手能力,综合利用已有的知识能力.创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.♦过程与方法目标(1 )复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对 椭圆的标准方程的讨论, 研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先 定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过 题,探究椭圆的扁平程度量椭圆的离心率. 〖板书〗§ 2. 1. 2椭圆的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质. 提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、 从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.(ii )椭圆的简单几何性质2x一2 0,进一步得:a xax 代x ,且以 y 代y 这三个方面来研究椭圆的标准 y 轴为对称轴,原点为对称中心;即圆锥曲线的对称轴与圆锥曲线的交点叫做圆 锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较 短的叫做短轴;c④离心率: 椭圆的焦距与长轴长的比e 叫做椭圆的离心率(0 e 1 ),a当 e1 时,c a ,,b0.; 椭圆图形越扁(iii )例题讲解与引申、扩展400的长轴和短轴的长、离心率、焦点和顶点的坐标.分析:由椭圆的方程化为标准方程,容易求出a,b,c •弓I 导学生用椭圆的长轴、短轴、离心率、 焦点和顶点的定义即可求相关量.确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探 究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1)(3) (4)大小和位置.要巳8的思考冋①范围:由椭圆的标准方程可得,y 2 b 2b y b ,即椭圆位于直线x② 对称性:由以 x 代x ,以 方程发生变化没有,从而得到椭圆是以③ 顶点:先给出圆锥曲线的顶点的统一定义,y 代y 和 x 轴和 a ,同理可得:b 所围成的矩当 e 0 时,c 0,b a 椭圆越接近于圆例4求椭圆I6x 225y 2/Tn扩展:已知椭圆血5y2 5m m 0的离心率为e—,求m的值.解法剖析:依题意,m0,m 5,但椭圆的焦点位置没有确定, 应分类讨论: ①当焦点在x轴上,即0 m 5时,有a品 b 丽,c 75 ~m,二_—:得m 3;②当焦点在y轴上,即m例5如图,応b 岳c J m 5 , ••• J:5V m一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口5时,有a105253BAC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上, 由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2.已知BC F1F2,RB 2.8cm,F1F24.5cm .建立适当的坐标系,求截口BAC所在椭圆的方程.解法剖析:建立适当的直角坐标系,设椭圆的标准方程为1,算出a,b,c的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于a,b,c的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,“神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心F2为一个焦点的椭圆,近地点A距地面200km,远地点B距地面350km,已知地球的半径R 6371km •建立适当的直角坐标系,求出椭圆的轨迹方程.例6如图,设M x, y与定点F 4,0的距离和它到直线I : 兰的距离的比是常数4点M的轨迹方程./ 2 2 「亠「■25匚亠2MF(x 4 y ,到直线I:x 的距离d x44分析:若设点M x, y,则则容易得点M的轨迹方程.引申:(用《几何画板》探究)若点M x, y与定点F c,0的距离和它到定直线l :c距离比是常数e aac 0 ,则点M 的轨迹方程是椭圆.其中定点F c,0是焦点,2x —相应于F的准线;c由椭圆的对称性, 另一焦点F c,0 ,相应于F的准线l :练习:第52页1、作业:第53页4、教学反思:2、3、4、5、6、75ac4,求52a的c定直线l :类比椭圆:设参量b的意义:第一、便于写出双曲线的标准方程;第二、的几何意义.2 类比:写出焦点在y轴上,中心在原点的双曲线的标准方程召b (iii )例题讲解、引申与补充例1已知双曲线两个焦点分别为F15,0 , F25,0,双曲线上一点绝对值等于6,求双曲线的标准方程.分析:由双曲线的标准方程的定义及给出的条件,容易求出a,b,c的关系有明显P到R , F2距离差的2x2a1 a 0,b 0 . a,b, c.补充:求下列动圆的圆心M 的轨迹方程:① 与O C :2 22 y 2内切,且过点 A 2,0 :②与O C 1 : x 2 y 12 21 和O C2 : x y 4都外切;③与O C i :2 y 9外切,且与O C 2: x 223 y 1内切.解题剖析 半径为r :这表面上看是圆与圆相切的问题, 实际上是双曲线的定义问题•具体解: 设动圆•/ O C 与O M 内切,点A 在O C 外,• MC| r /2 MA,因此有MA 2x 2 •••点 MC 2,•点M 的轨迹是以C 、 A 为焦点的双曲线的左支,即M 的轨迹方程是MC i •••O M 与O c 1、O C 2 均外切,•••|MC 1| r 1, MC 2 r 2,因此有的轨迹是以C 2、C i 为焦点的双曲线的上支,• M 的轨迹方程是4y••• e M MC 2MC 24x 2 3MC i 1 ,与eG 外切,且e M 与e C 2内切,•- MC j4,•点M 的轨迹是以C i 、C 2为焦点的双曲线的右支,• MC 2r 1,因此M 的轨迹方程是例2已知A , B 两地相距800m ,在A 地听到炮弹爆炸声比在 B 地晚2s ,且声速为340m / s ,求炮弹爆炸点的轨迹方程. 分析:首先要判断轨迹的形状,由声学原理:由声速及 A , B 两地听到爆炸声的时间差,即可知A , B 两地与爆炸点的距离差为定值•由双曲线的定义可求出炮弹爆炸点的轨迹方程. 扩展:某中心接到其正东、正西、正北方向三个观察点的报告:正西、正北两个观察点同时听 到了一声巨响,正东观察点听到该巨响的时间比其他两个观察点晚 4s .已知各观察点到该中心的 距离都是1020m •试确定该巨响发生的位置(假定当时声音传播的速度为 340m/s ;相关点均在 同一平面内)• 解法剖析:因正西、正北同时听到巨响,则巨响应发生在西北方向或东南方向,以因正东比正西晚 4s ,则巨响应在以这两个观察点为焦点的双曲线上. 如图,以接报中心为原点 0,正东、正北方向分别为 x 轴、y 轴方向,建立直角坐标系,设 B 、C 分别是西、东、北观察点,则 A 1020,0 , B 1020,0 , C 0,1020 • 设P x,y 为巨响发生点,•/ A 、C 同时听到巨响,•OP 所在直线为y x ……①,又因B 点比A 点晚4s 听到巨响声,• PB PA 4 340 1360 m •由双曲线定义知,a 680 ,2 2c 1020 ,••• b 340^5 ,••• P点在双曲线方程为X 2y2 1 x 680……②.联立680 5 340①、②求出P点坐标为P 680 ;5,680 ,'5 •即巨响在正西北方向680、、10m处.探究:如图,设A,B的坐标分别为5,0,5,0 •直线AM,BM相交于点M,且它们4的斜率之积为,求点M的轨迹方程,并与§ 2. 1.例3比较,有什么发现?9探究方法:若设点M x,y,则直线AM , BM的斜率就可以用含x, y的式子表示,由于直线AM , BM的斜率之积是4,因此,可以求出x, y之间的关系式,即得到点M的轨迹方程.9练习:第60页1、2、3、作业:第66页1、2、2 . 3. 2双曲线的简单几何性质♦知识与技能目标了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2 )通过方程,研究曲线的性质.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义♦过程与方法目标(1 )复习与引入过程引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养.①由双曲线的标准方程和非负实数的概念能得到双曲线的范围;②由方程的性质得到双曲线的对称性;③由圆锥曲线顶点的统一定义,容易得出双曲线的顶点的坐标及实轴、虚轴的概念;④应用信息技术的《几何画板》探究双曲线的渐近线问题;⑤类比椭圆通过F56的思考问题,探究双曲线的扁平程度量椭圆的离心率. 〖板书〗§ 2. 2. 2双曲线的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的几何性质.提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质.(ii )双曲线的简单几何性质2 2①范围:由双曲线的标准方程得, 1 0,进一步得:x a ,或xa .这说b a明双曲线在不等式 x a ,或x a 所表示的区域;② 对称性:由以 x 代x ,以y 代y 和 x 代x ,且以 y 代y 这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以x 轴和y 轴为对称轴,原点为对称中心;③ 顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线 的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴, 焦点不在的对称轴叫做虚轴;c⑤ 离心率:双曲线的焦距与实轴长的比 e —叫做双曲线的离心率(e 1).a④渐近线:直线ybx 2x 叫做双曲线一 aa 2yb 2 1的渐近线;y 轴上的渐近线是扩展:求与双曲线x 2 162y —1共渐近线,2. 3, 3点的双曲线的标准方及离心率.解法剖析 :双曲线2x16291的渐近4x .①焦点在x 轴上时,设所求的双曲2线为X 216k 2 2 y 9k 2A 2;3, 3点在双曲线上,••• k 21,无解;4②焦点在y 轴上时,设所求的双曲线2x 16k 229:2 1,―A2 3, 3点在双曲线上,• k21,因此,所求双曲线42的标准方程为y9 41,离心率e5.这个要进行分类讨论,但只有一种情形有解,事实上, 3可直接设所求的双曲线的方程为2x162y一 mm R,m 0 .9(iii )例题讲解与引申、扩展例3求双曲线9y2 16x2 144的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.分析:由双曲线的方程化为标准方程,容易求出a,b,c.引导学生用双曲线的实半轴长、虚半轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在例4双曲线型冷却塔的外形,半径为12m,上口半径为13m,下口半径为25m,高为55m .试选择适当的坐标系,求出双曲线的方程(各长度量精确到1m).是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小解法剖析:建立适当的直角坐标系,设双曲线的标准方程为2 2七七 1,算出a,b,c的值;a b此题应注意两点:①注意建立直角坐标系的两个原则;②关于 精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,在 P 处堆放着刚购买的草皮,现要把这些草皮沿着道路 PA 或PB 送到呈矩形的足球场 ABCD 中去铺垫,已知|Ap 150m ,|Bp 100m,| BC| 60m , APB 60o •能否在足球场上画一条 “等距离”线,在“等距离”线的两侧的区域应该选择怎样的线路?说明理由.解题剖析:设M 为“等距离”线上任意一点,则|PA |AM点M 的轨迹方程.♦情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教 学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生 创新.必须让学生认同和掌握:双曲线的简单几何性质,能由双曲线的标准方程能直接得到双曲线 的范围、对称性、顶点、渐近线和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系 的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;必须让学生认同与熟悉:取 近似值的两个原则:①实际问题可以近似计算,也可以不近似计算,②要求近似计算的一定要按要 求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并 掌握利用信息技术探究点的轨迹问题, 培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1) 分析与解决问题的能力:通过学生的积极参与和积极探究 ,培养学生的分析问题和解决 问题的能力.(2)思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能MF I 1 ^2 2 .16 ,16 J X 5y ,到直线l:x 一的距离dx — 15 5分析:若设点M x, y ,则a,b,c 的近似值,原则上在没有注意PB BM ,即BM | |AM | |Ap |Bp 50 (定值),“等距离”线是以A 、B 为焦点的双曲线的左支上的2部分,容易“等距离”线方程为x y1 35 x 625 375025,0 y 60 .理由略.例5如图,设M x, y 与定点F 5,0的距离和它到直线 15的距离的比是常数5,求4则容易得点M 的轨迹方程. 引申:《几何画板》探究点的轨迹:双曲线x, y 与定点 F c,0 的距离和它到定直线2a——的距离 c比是常数0,则点M 的轨迹方程是双曲线. 其中定点F c,02是焦点,定直线l : x —相c应于F 的准线; 另一焦点 F c,0,相应于F 的准线I : xx2力.(3) 实践能力:培养学生实际动手能力,综合利用已有的知识能力.(4)创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.练习:第66页1、2、3、4、5 作业:第3、4、6补充:3.课题:双曲线第二定义教学目标:1•知识目标:掌握双曲线第二定义与准线的概念,并会简单的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档