一次函数与一元一次不等式练习题

合集下载

一次函数与一元一次不等式训练题及答案

一次函数与一元一次不等式训练题及答案

一次函数与一元一次不等式训练题及答案Company number:【0089WT-8898YT-W8CCB-BUUT-202108】一次函数与一元一次不等式训练题及答案 一、选择题(共10小题;共30分)1. 如图,以两条直线 l 1,l 2 的交点坐标为解的方程组是 (??)A. {x −y =12x −y =1B. {x −y =−12x −y =−1C. {x −y =−12x −y =1D. {x −y =12x −y =−1 2. 将一次函数 y =12x 的图象向上平移 2 个单位,平移后,若 y >0,则 x 的取值范围是( )A. x >4B. x >− 4C. x >2D. x >−2 3. 如图所示,函数 y 1=∣x∣ 和 y 2=13x +43 的图象相交于 (−1,1),(2,2) 两点.当 y 1>y 2 时,x 的取值范围是 (??)A. x <−1B. −1<x <2C. x >2D. x <−1 或 x >24. 一次函数 y =kx +b 的图象如图所示,则方程 kx +b =0 的解为( )A. x =2B. y =2C. x =−1D. y =−1 5. 如图,直线 l 是函数 y =12x +3 的图象.若点 P (x,y ) 满足 x <5 ,且 y >12x +3 ,则 P 点的坐标可能是( ).A. (7,5)B. (4,6)C. (3,4)D. (−2,1)6. 如图,一次函数 y 1=x +b 与一次函数 y 2=kx +4 的图象交于点 P (1,3),则关于 x 的不等式 x +b >kx +4 的解集是( )A. x >−2B. x >0C. x >1D. x <1 7. 用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( ).A. {x +y −2=03x −2y −1=0B. {2x −y −1=03x −2y −1=0C. {2x −y −1=03x +2y −5=0D. {x +y −2=02x −y −1=0 8. 已知函数 y =2x −3,y =−x 3+4,y =kx +9 的图象交于一点,则 k 值为( )A. 2B. −2C. 3D. −39. 如图,函数 y =2x 和 y =ax +4 的图象相交于点 A (m,3),则不等式 2x ≥ax +4 的解集为( )A. x ≥32B. x ≤3C. x ≤32D. x ≥310. 已知关于x的一次函数y=mx+2m−7在−1≤x≤5上的函数值总是正的,则m的取值范围是(??)A. m>7B. m>1C. 1≤m≤7D. 以上答案都不对二、填空题(共5小题;共15分)11. 如图,已知函数y=x−2和y=−2x+1的图象交于点P,根据图象可得方程组{x−y=2,2x+y=1的解是.12. 一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是.13. 如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx−3>2x+b的解集是.14. 方程组{x+y=15,x−y=7的解是{x=11,y=4,则直线y=−x+15和y=x−7的交点坐标是.15. 观察函数的图象,根据图所提供的信息填空:(1)当x时,y1<0;(2)当x时,y2>3;(3)当x时,y1<y2;(4)当x时,y1=y2.三、解答题(共5小题;共55分)16. 如图,函数y=2x和y=−23x+4的图象相交于点A,(1)求点A的坐标;(2)根据图象,直接写出不等式2x≥−23x+4的解集.17. 已知一次函数的图象过点A(1,4),B(−1,0),求函数表达式并画出它的图象,再利用图象求:(1)当x为何值时,y>0,y=0,y<0;(2)当−3<x<0时,y的取值范围;(3)当−2≤y≤2时,x的取值范围.18. 甲、乙两地相距300 km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系.根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了h;(2)求线段DE对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.19. 如图,直线y=kx+b经过点A(0,5),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x−4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x−4≥kx+b的解集.20. 如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2) 求 △OAC 的面积.(3) 当 △OMC 的面积是 △OAC 的面积的 14 时,求出这时点 M 的坐标. 答案第一部分1. C2. B3. D4. C5. B6. C7. D8. B9. A 10. A第二部分11. {x =1y =−112. x <−213. x <414. (11,4)15. (1)<−1;(2)>3;(3)>2;(4)=2第三部分16. (1) 由题意,得方程组 {y =2x,y =−23x +4.解得 {x =32,y =3. ∴A 的坐标为 (32,3). (2) 由图象,得不等式的解集为:x ≥32.17. (1) 设一次函数的表达式为 y =kx +b .把点 A (1,4),B (−1,0) 分别代入,得{k +b =4,−k +b =0,解得{k =2,b =2. 所以 y =2x +2.一次函数 y =2x +2 的图象如图所示.由图可知,直线 y =2x +2 与 x 轴交于 (−1,0) 点,当 x >−1 时,y >0;当 x =−1 时,y =0;当 x <−1 时,y <0.(2) 当 −3<x <0 时,−4<y <2.(3) 当 −2≤y ≤2 时,−2≤x ≤0.18. (1) 0.5(2) 设线段 DE 对应的函数解析式是 y =kx +b (5≤x ≤4.5).∵D (2.5,80),E (4.5,300),∴{80=2.5k +b,300=4.5k +b, ∴{k =110,b =−195.故线段 DE 对应的函数解析式是 y =110x −195(2.5≤x ≤4.5).(3) 设线段 OA 对应的函数解析式是 y =k 1x (0≤x ≤5),∵A (5,300),∴k 1=60.∴ 线段 OA 对应的函数解析式是 y =60x (0≤x ≤5).解方程组 {y =110x −195,y =60x, 得 {x =3.9,y =234.3.9−1=2.9(小时).答:轿车从甲地出发后经过 2.9 小时追上货车.19. (1) ∵ 直线 y =−kx +b 经过点 A (5,0),B (1,4),所以 {5k +b =0,k +b =4. 解方程得 {k =−1,b =5. ∴ 直线 AB 的解析式为 y =−x +5.(2) ∵ 直线 y =2x −4 与直线 AB 相交于点 C ,∴ 解方程组 {y =−x +5,y =2x −4. 得 {x =3,y =2.∴ 点 C 的坐标为 (3,2).(3) 当 x >3 时.直线 y =2x −4 位于直线 y =−x +5 上方.∴ 不等式 2x −4≥kx +b 的解集为 x ≥3.20. (1) 设直线 AB 的解析式是 y =kx +b ,根据题意得:{4k +b =2,6k +b =0, 解得 {k =−1,b =6. 则直线的解析式是:y =−x +6;(2) 在 y =−x +6 中,令 x =0,解得 y =6,S △OAC =12×6×4=12;(3) 设 OA 的解析式是 y =mx ,则 4m =2,解得:m =12, 则直线的解析式是:y =12x ,∵ 当 △OMC 的面积是 △OAC 的面积的 14 时, ∴M 的横坐标是 14×4=1,在 y =12x 中,当 x =1 时,y =12,则 M 的坐标是 (1,12);在 y =−x +6 中,x =1 则 y =5,则 M 的坐标是 (1,5).则 M 的坐标是:M 1(1,12) 或 M 2(1,5).。

北师大版数学八年级下册第二章一元一次不等式与一元一次不等式组第5节一元一次不等式与一次函数课堂练习

北师大版数学八年级下册第二章一元一次不等式与一元一次不等式组第5节一元一次不等式与一次函数课堂练习

第二章一元一次不等式与一元一次不等式组第5节一元一次不等式与一次函数课堂练习学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.一次函数1y ax b 与2y cx d =+ 的图象如图所示,下列说法:①0ab < ;①函数y ax d =+ 不经过第一象限;①不等式ax b cx d ++> 的解集是3x < ;①()13a c db -=- .其中正确的个数有( )A .4B .3C .2D .12.同一直角坐标系中,一次函数11y k x b =+与正比例函数22y k x =的图象如图所示,则满足12y y ≥的x 取值范围是( )A .2x -≤B .2x ≥-C .2x <-D .2x >-3.如图,一次函数y kx b =+的图象经过A 、B 两点,则不等式0kx b +<的解集是( )A.1x>B.01x<<C.1x<D.0x<4.若一次函数y kx b=+(k b、为常数,且0k≠)的图象经过点()01A-,,()11B,,则不等式1kx b+>的解为()A.0x<B.0x>C.1x<D.1x>5.一次函数y=kx+b的图象如图所示,当y>3时,x的取值范围是()A.x0<B.x0>C.x2<D.x2>.6.如图,一次函数y1=x+3与y2=ax+b的图象相交于点P(1,4),则关于x的不等式x+3≤ax+b的解集是()A.x≥4B.x≤4C.x≥1D.x≤17.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;①a>0;①当x<3时,y1<y2;①当y1>0且y2>0时,﹣a<x<4.其中正确的个数是()A.1个B.2个C.3个D.4个8.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A .x >2B .x <2C .x >﹣1D .x <﹣1评卷人得分 二、填空题 9.如图,已知一次函数y =ax+b 和y =kx 的图象交于点P(﹣4,﹣2),则关于x 的不等式ax+b≤kx <1的解集为______.10.如图,直线()0y kx b k =+>交x 轴于点()30A -,,交直线y x =于点B ,则根据图象可知,()0x kx b +<不等式的解为_______.11.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.12.如图,直线11y k x a =+与22y k x b =+的交点坐标为()1,2,当12k x a k x b +≤+时,则x 的取值范围是__________.13.如图,一次函数y=﹣x ﹣2与y=2x +m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为_____.14.函数2y x =和4y ax =+的图象相交于点(),2A m ,则不等式24x ax -≤的解为__________.15.如图,一次函数y kx b =+的图象与x 轴的交点坐标为()2,0-,则下列说法:y ①随x 的增大而减小;0b <②;③关于x 的方程0kx b +=的解为2x =-;④当1x =-时,0.y <其中正确的是______.(请你将正确序号填在横线上)16.一次函数y =kx +b 的图像如图所示,则关于x 的不等式kx -m +b >0的解集是____.评卷人得分三、解答题 17.如图:已知直线y kx b =+经过点()5,0A ,()1,4B .(1)求直线AB的解析式;(2)若直线24y x=-与直线AB相交于点C,求点C的坐标;(3)根据图象,直接写出关于x的不等式240x kx b->+>的解集.18.如图,直线1l:1y x=+与直线2l:y mx n=+相交于点()1,P b.(1)求关于x,y的方程组1y xy mx n=+⎧⎨=+⎩的解;(2)已知直线2l经过第一、二、四象限,则当x______时,1x mx n+>+.19.如图,已知一次函数y=kx+k+1的图象与一次函数y=﹣x+4的图象交于点A (1,a).(1)求a、k的值;(2)根据图象,写出不等式﹣x+4>kx+k+1的解;(3)结合图形,当x>2时,求一次函数y=﹣x+4函数值y的取值范围;20.如图,直线1:1l y x=+与直线22 :3l y x a=-+相交于点(1,)p b;(1)求出a,b的值;(2)根据图象直接写出不等式2013x x a<+<-+的解集;(3)求出ABP∆的面积.参考答案:1.A【解析】【分析】仔细观察图象:①a 的正负看函数y 1=ax +b 图象从左向右成何趋势,b 的正负看函数y 1=ax +b 图象与y 轴交点即可;①c 的正负看函数y 2=cx +d 从左向右成何趋势,d 的正负看函数y 2=cx +d 与y 轴的交点坐标;①以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;①看两直线都在x 轴上方的自变量的取值范围.【详解】由图象可得:a <0,b >0,c >0,d <0,①ab <0,故①正确;函数y =ax +d 的图象经过第二,三,四象限,即不经过第一象限,故①正确,由图象可得当x <3时,一次函数y 1=ax +b 图象在y 2=cx +d 的图象上方,①ax +b >cx +d 的解集是x <3,故①正确;①一次函数y 1=ax +b 与y 2=cx +d 的图象的交点的横坐标为3,①3a +b =3c +d①3a−3c =d−b ,①a−c =13(d−b ),故①正确, 故选:A .【点睛】本题考查了一次函数与一元一次不等式,一次函数的图象与性质,利用数形结合是解题的关键.2.A【解析】【详解】试题分析:当2x ≤-时,直线11y k x b =+都在直线22y k x =的上方,即12y y ≥.故选A . 考点:一次函数与一元一次不等式.3.A【解析】由图象可知:B (1,0),且当x >1时,y <0,即可得到不等式kx+b <0的解集是x >1,即可得出选项.【详解】解:①一次函数y=kx+b 的图象经过A 、B 两点,由图象可知:B (1,0),根据图象当x >1时,y <0,即:不等式kx+b <0的解集是x >1.故选A .【点睛】本题主要考查对一次函数与一元一次不等式的关系,一次函数的图象等知识点的理解和掌握,能根据图象进行说理是解此题的关键,用的数学思想是数形结合思想.4.D【解析】【分析】可直接画出图像,利用数形结合直接读出不等式的解 【详解】如下图图象,易得1kx b +>时,1x >故选D【点睛】本题考查一次函数与不等式的关系,本题关键在于利用画出图像,利用数形结合进行解题 5.A【解析】根据题意在函数图像中寻找3y >时函数图像所在的位置,发现此时函数图像对应的x 范围是小于零,从而得出答案【详解】解:①由函数图象可知,当x <0时函数图象在3的上方,①当y >3时,x <0.故选A .【点睛】本题考查的是一次函数的图象,能利用数形结合求出x 的取值范围是解答此题的关键. 6.D【解析】【详解】根据函数图像可得:当1x ≤时,21y y ≥,即3ax b x +≥+.故选D考点:一次函数与不等式7.B【解析】【分析】仔细观察图象,①k 的正负看函数图象从左向右成何趋势即可;①a 看y 2=x +a 与y 轴的交点坐标;①以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;①看两直线都在x 轴上方的自变量的取值范围.【详解】①①y 1=kx +b 的图象从左向右呈下降趋势,①k <0正确;①①y 2=x +a ,与y 轴的交点在负半轴上,①a <0,故①错误;①当x <3时,y 1>y 2,故①错误;①y 2=x +a 与x 轴交点的横坐标为x =﹣a ,当y 1>0且y 2>0时,﹣a <x <4正确;故正确的判断是①①,正确的个数是2个.【点睛】本题考查一次函数与一元一次不等式、一次函数的图象与性质,利用数形结合是解题的关键.8.D【解析】【详解】解:①函数12y x =-与23y ax =+的图象相交于点A (m ,2),把点A 代入12y x =-,得: 1m =-,①点A (-1,2),①当1x <-时,12y x =-的图象在23y ax =+的图象上方,①关于 x 的不等式﹣2x >ax +3 的解集是1x <-.故选:D.9.﹣4≤x <2【解析】【分析】先利用待定系数法求出y =kx 的表达式,然后求出y =1时对应的x 值,再根据函数图象得出结论即可.【详解】解:①已知一次函数y =ax+b 和y =kx 的图象交于点P(﹣4,﹣2),①﹣4k =﹣2,解得:k =12,①解析式为y =12x ,当y =1时,x =2,①由函数图象可知,当x≥﹣4时一次函数y =ax+b 在一次函数y =kx 图象的下方, ①关于x 的不等式ax+b≤kx <1的解集是﹣4≤x <2.故答案为:﹣4≤x <2.【点睛】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.10.-3<x <0【解析】【分析】先把()0x kx b +<化简 00x kx b >⎧⎨+<⎩或00x kx b <⎧⎨+>⎩然后利用函数图像分别解两个不等式组即可. 【详解】解:由题意得:不等式()0x kx b +<化简 00x kx b >⎧⎨+<⎩或00x kx b <⎧⎨+>⎩得00x kx b >⎧⎨+<⎩无解,00x kx b <⎧⎨+>⎩的解集 -3<x <0 故答案为:-3<x <0【点睛】本题考查了一次函数与一元一次不等式组的解,正确将一元二次不等式转化为一元一次不等式组是解题的关键.11.1x <-【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.12.1x ≤【解析】【分析】在图中找到两函数图象的交点,根据一次函数图象的交点坐标与不等式组解集的关系即可作出判断.【详解】解:①直线l 1:y 1=k 1x+a 与直线l 2:y 2=k 2x+b 的交点坐标是(1,2),①当x=1时,y 1=y 2=2.而当y 1≤y 2时,即12k x a k x b +≤+时,x≤1.故答案为:x≤1.【点睛】此题考查了直线交点坐标与一次函数组成的不等式组的解的关系,利用图象即可直接解答,体现了数形结合思想在解题中的应用.13.﹣2<x <2【解析】【分析】先将点P (n ,﹣4)代入y=﹣x ﹣2,求出n 的值,再找出直线y=2x+m 落在y=﹣x﹣2的下方且都在x 轴下方的部分对应的自变量的取值范围即可. 【详解】①一次函数y=﹣x ﹣2的图象过点P (n ,﹣4),①﹣4=﹣n ﹣2,解得n=2,①P (2,﹣4),又①y=﹣x ﹣2与x 轴的交点是(﹣2,0),①关于x 的不等式组2220x m x x +--⎧⎨--⎩<<的解集为22x -<<. 故答案为22x -<<.【点睛】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出 n 的值,是解答本题的关键.14.1x ≤【解析】【分析】函数2y x =和4y ax =+的图象相交于点(),2A m ,求出m 的值,然后解不等式即可.【详解】解:①函数y=2x 的图象经过点A (m ,2),①2m=2,解得:m=1,①点A (1,2),当x≤1时,2x≤ax+4,即不等式2x-4≤ax 的解集为x≤1.故答案为x≤1.【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.15.③【解析】【分析】根据一次函数的性质,一次函数与一元一次方程的关系对个小题分析判断即可得解.【详解】由图可知:①y 随x 的增大而增大,错误;①b >0,错误;①关于x 的方程kx +b =0的解为x =﹣2,正确;①当x =﹣1时,y >0,错误.故答案为①.【点睛】本题考查了一次函数的性质,一次函数与一元一次方程、一元一次不等式的关系,利用数形结合是求解的关键.16.3x <-【解析】【分析】先根据一次函数y=kx+b 的图象经过点(3-,m )可知,由图像可知,当x 3<-时,kx b m +>,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(3-,m ),则当x 3=-时,kx b m +=,由图像可知,当x 3<-时,kx b m +>,①0kx m b -+>的解集是:3x <-;故答案为:3x <-.【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.17.(1)5y x =-+;(2)点C 的坐标为()32,;(3)35x <<【解析】【分析】 (1)将A 、B 坐标代入解析式中计算解答即可;(2)将两直线方程联立求方程组的解即可;(3)根据图像找出y>0,且直线24y x =-高于直线y kx b =+部分的x 值即可.【详解】解:(1)因为直线y kx b =+经过点()5,0A ,()1,4B所以将其代入解析式中有504x b x b +=⎧⎨+=⎩,解得15k b =-⎧⎨=⎩, 所以直线AB 的解析式为5y x =-+;(2)因为直线24y x =-与直线AB 相交于点C所以有524y x y x =-+⎧⎨=-⎩,解得32x y =⎧⎨=⎩ 所以点C 的坐标为()32,; (3)根据图像可知两直线交点C 的右侧直线24y x =-高于直线y kx b =+且大于0,此时x的取值范围是大于3并且小于5,所以不等式240x kx b ->+>的解集是35x <<.【点睛】本题考查的是一次函数综合问题,能够充分调动所学知识是解题的关键.18.(1)1x =,2y = (2)1x >【解析】【分析】(1)方程组的解即为两条直线的交点P 的坐标,将x =1,代入直线l 1求出P 点坐标即可;(2)不等式x +1>mx +n 的解集即直线l 1在直线l 2的上方时x 的取值范围.【详解】解:(1)由题意可得,关于x ,y 的方程组的解即为两条直线的交点P 的坐标, 当x =1时,代入直线l 1,求得y =2,即P (1,2)即方程组的解为12x y =⎧⎨=⎩; (2)由题意可知,x +1>mx +n 时,直线l 1在直线l 2的上方,由函数图象可得,此时x >1,故答案为x >1.【点睛】本题主要考查一次函数与二元一次方程组及一元一次不等式的关系,熟悉一次函数的图象并熟练应用数形结合的思想是解答本题的关键19.(1)a =﹣3,k =1;(2)x <1;(3)当x >2时,y <2.【解析】【分析】(1)把A (1,a )代入y =﹣x +4求得a 的值,再把将A (1,3)代入y =kx +k +1即可求得k 的值;(2)观察函数图象即可解答;(3)当x =2时,y =2,观察图象,x >2时,图象在x =2的右侧,在y =2的下面,即可解答.【详解】(1)把A (1,a )代入y =﹣x +4得a =﹣1+4=3,将A(1,3)代入y=kx+k+1得k+k+1=3,解得k=1;(2)根据图象可得:不等式﹣x+4>kx+k+1的解集为x<1;(3)当x=2时,y=﹣x+4=﹣2+4=2,所以当x>2时,y<2.【点睛】本题考查的是一次函数与不等式的解集,掌握利用函数图象求不等式解集的方法是关键.20.(1) a=83,b=2;(2)-1<x<1;(3)5.【解析】【分析】(1)把P点坐标代入y=x+1可得b的值,继而代入23y x a=-+可求a的值;(2)根据两函数图象的交点坐标及y=x+1与x轴的交点可得答案;(3)首先求出点A、B的坐标,由此计算AB的长,再由点P的坐标,即可计算出ABP∆的面积.【详解】解:(1)①直线l1:y=x+1过点P(1,b),①b=1+1=2;把点P(1,2)代入23y x a=-+中得a=8 3(2)①y=x+1与x轴交于点(-1,0),①在x=-1的左边x=1的右边的图象满足不等式2013x x a<+<-+,①不等式2013x x a<+<-+的解集是-1<x<1(3)在2833y x=-+中,当y=0时,x=4①点B的坐标是(4,0)又A(-1,0),①AB=4+1=5,①点P(1,2),①ABP∆的面积为:12×5×2=5.【点睛】此题主要考查了一次函数与二元一次方程组,关键是掌握待定系数法求一次函数解析式,掌握凡是函数图象经过的点必能满足解析式即可.。

一元一次不等式与一次函数练习题

一元一次不等式与一次函数练习题

• (一题多变题)x为何值时,一次函数 y=-2x+3的值小于一次函数y=3x-5的值? (1)一变:x为何值时,一次函数y=-2x+3 的值等于一次函数y=3x-5的值; (2)二变:x为何值时,一次函数y=-2x+3 的图象在一次函数y=3x-5的图象的上方? (3)三变:已知一次函数y1=-2x+a, y2=3x-5a,当x=3时,y1>y2,求a的取 值范围.
• 5.直线L1:y=k1x+b与直线L2:y=k2x 在同一平面直角坐标系中的图象如图 所示,则关于x的不等式k1x+b>k2x的 解为( ) A.x>-1 B.x<-1 C.x<-2 D.无法确定
(2008,沈阳,3分)一次函数 y=kx+b的图象如图所示,当y<0时, x的取值范围是( ) • A.x>0 B.x<0 C.x>2 D.x<2
堂清作业

• 某学校需刻录一批光盘,若在电脑公 司刻录每张需8元(包括空白光盘费); 若学校自制,除租用刻录机需120元外, 每张还需成本4元(包括空白光盘 费).问刻录这批电脑光盘到电脑公 司刻录费用省,还是自制费用省?请 你说明理由.
• 解:设需刻录x张光盘,学校自刻的总费用 为y1元,电脑公司刻录的总费用为y2 元.由题意,得y1=4x+120,y2=8x. (1)当y1>y2时,即4x+120>8x,解得x<30; (2)当y1=y2时,即4x+120=8x,解得x=30; (3)当y1<y2时,即4x+120<8x,解得 x>30. 所以,当刻录光盘小于30张时,到电脑公司 刻录费用省;当刻录光盘等于30张时,两 个地方都行;当刻录光盘大于30张时,学 校自刻费用省.

一次函数、一元一次方程和一元一次不等式(基础作业)2022-2023学年苏科版数学八年级上册

一次函数、一元一次方程和一元一次不等式(基础作业)2022-2023学年苏科版数学八年级上册

6.6 一次函数、一元一次方程和一元一次不等式(基础作业)-苏科版八年级上册一.选择题1.一次函数y=kx+b的图象如图所示,则下列结论正确的是()A.k>0B.b=﹣1C.y随x的增大而增大D.当x>2时,kx+b<02.若一次函数y=kx+b的图象过点(﹣2,0)、(0,1),则不等式k(x﹣1)+b>0的解集是()A.x>﹣2B.x>﹣1C.x>1D.x>23.在平面直角坐标系xOy中,直线l1:y1=k1x+5与直线l2:y2=k2x的图象如图所示,则关于x的不等式k2x<k1x+5的解集为()A.x>﹣2B.x<﹣2C.x<3D.x>34.对于一次函数y=kx+b(k<0,b>0),下列的说法错误的是()A.y随着x的增大而减小B.点(﹣1,﹣2)可能在这个函数的图象上C.图象与y轴交于点(0,b)D.当时,y<05.一次函数y1=kx+3(k为常数,k≠0)和y2=x﹣3.当x<2时,y1>y2,则k取值范围()A.k≤﹣2B.﹣2≤k≤1且k≠0C.k≥1D.﹣2<k<1且k≠06.如图,已知一次函数y=mx+n的图象经过点P(﹣2,3),则关于x的不等式mx+n<3的解集为()A.x>﹣3B.x<﹣3C.x>﹣2D.x<﹣27.如图,直线l是函数y=x+3的图象.若点P(a,b)满足a<5,且b>x+3,则P 点的坐标可能是()A.(2,3)B.(3,5)C.(4,4)D.(5,6)8.定义max(a,b),当a≥b时,max(a,b)=a,当a<b时,max(a,b)=b;已知函数y=max(﹣x﹣3,2x﹣9),则该函数的最小值是()A.﹣9B.﹣3C.﹣6D.﹣59.已知函数y1=3x+1,y2=ax(a为常数),当x>0时,y1>y2,则a的取值范围是()A.a≥3B.a≤3C.a>3D.a<310.一次函数y=mx+n与y=ax+b在同一平面直角坐标系中的图象如图所示,根据图象有下列五个结论:①a>0;②n<0;③方程mx+n=0的解是x=1;④不等式ax+b>3的解集是x>0;⑤不等式mx+n≤ax+b的解集是x≤﹣2.其中正确的结论个数是()A.1B.2C.3D.4二.填空题11.已知一次函数y=mx+n与x轴的交点为(﹣5,0),则方程mx+n=0的解是.12.如图所示,一次函数y=kx+b的图象经过A(0,2)、B(4,0)两点,则不等式kx+b >0的解集是.13.如图,直线y=x+5与直线y=0.5x+15交于点A(20,25),则方程x+5=0.5x+15的解为.14.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x 的方程kx﹣x=a﹣b的解是x=3;④当x<3时,y1>y2.则其中正确的序号有.15.对于平面直角坐标系xOy中第一象限内的点P(x,y)和图形W,给出如下定义:过点P作x轴和y轴的垂线,垂足分别为M,N,若图形W中的任意一点Q(a,b)满足a≤x 且b≤y,则称四边形PMON是图形W的一个覆盖,点P为这个覆盖的一个特征点.例:若M(1,3),N(4,3),则点P(5,4)为线段MN的一个覆盖的特征点.已知A(1,3),B(3,1),C(2.3),请回答下列问题:(1)在P1(3,3),P2(3,2),P3(1,2)中,是△ABC的覆盖特征点的是;(2)若在一次函数y=mx+5(m≠0)的图象上存在△ABC的覆盖的特征点,则m的取值范围是.三.解答题16.如图,一次函数y=kx+b的图象与x轴交于点B(2,0),与y轴交于点A(0,5),与正比例函数y=mx的图象交于点C,且点C的横坐标为(1)求一次函数y=kx+b和正比例函数y=mx的解析式;(2)结合图象直接写出不等式0<kx+b<mx的解集.17.小时在学习了一次函数知识后,结合探究一次函数图象与性质的方法,对新函数y=2﹣|x﹣1|及其图象进行如下探究.(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:x…﹣3﹣2﹣1012345…y…﹣2﹣1m1210n﹣2…其中m=,n=.(2)请在给出的平面直角坐标系中画出该函数的图象,并结合图象写出该函数的一条性质:.(3)当时,x的取值范围为.18.如图,直线y=kx+b经过点A(﹣5,0),B(﹣1,4)(1)求直线AB的表达式;(2)求直线CE:y=﹣2x﹣4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>﹣2x﹣4的解集.19.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=﹣x﹣2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.20.如图,直线y=﹣x+1与x轴,y轴分别交于B,A两点,动点P在线段AB上移动,以P为顶点作∠OPQ=45°交x轴于点Q.(1)求点A和点B的坐标;(2)比较∠AOP与∠BPQ的大小,说明理由.(3)是否存在点P,使得△OPQ是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.。

一次函数与方程不等式相关练习

一次函数与方程不等式相关练习

一、一次函数与一元一次方程综合1.已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( )A .2-B .2C .1-D .02.已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______.3.已知一次函数y kx b =+的图象经过点()20,,()13,,则不求k b ,的值,可直接得到方程3kx b +=的解是x =______.二、一次函数与一元一次不等式综合1.已知一次函数25y x =-+.(1)画出它的图象;(2)求出当32x =时,y 的值;(3)求出当3y =-时,x 的值;(4)观察图象,求出当x 为何值时,0y >,0y =,0y <2.当自变量x 满足什么条件时,函数41y x =-+的图象在:(1)x 轴上方; (2)y 轴左侧; (3)第一象限. 3.已知15y x =-,221y x =+.当12y y >时,x 的取值范围是( ) A .5x > B .12x < C .6x <- D .6x >- 4.已知一次函数23y x =-+(1)当x 取何值时,函数y 的值在1-与2之间变化? (2)当x 从2-到3变化时,函数y 的最小值和最大值各是多少?5.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为______.6.若解方程232x x +=-得2x =,则当x _____时直线2y x =+上的点在直线32y x =-上相应点的上方. 已知一次函数经过点(1,-2)和点(-1,3),求这个一次函数的解析式,并求:(1)当2x =时,y 的值;(2)x 为何值时,0y <?三、一次函数与二元一次方程(组)综合1.已知直线3y x =-与22y x =+的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________. 2.已知方程组y ax c y kx b -=⎧⎨-=⎩(a b c k ,,,为常数,0ak ≠)的解为23x y =-⎧⎨=⎩,则直线y ax c =+和直线y kx b =+的交点坐标为________.3.已知24x y =⎧⎨=⎩,是方程组73228x y x y -=⎧⎨+=⎩的解,那么一次函数y =________和y =________的交点是________. 4.一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )A .0B .1C .2D .35.已知一次函数y 6kx b =++与一次函数2y kx b =-++的图象的交点坐 标为A (2,0),求这两个一次函数的解析式及两直线与y 轴围成的 三角形的面积.。

一元一次不等式与一次函数(1)练习

一元一次不等式与一次函数(1)练习

一元一次不等式与一次函数(1)一、目标导航1.一元一次不等式,一元一次方程与一次函数的关系,感知不等式,函数,方程的不同作用与内在联系.2.根据函数图象观察方程的解及不等式的解集.二、基础过关1.已知函数y=8x-11,要使y>0,那么x应取( )A.x>B.x<C.x>0 D.x<02.已知一次函数y=kx+b的图像,如图所示,当x<0时,y的取值范围是(•)A.y>0 B.y<0 C.-2<y<0 D.y<-23.已知y1=x-5,y2=2x+1.当y1>y2时,x的取值范围是()A.x>5 B.x<C.x<-6 D.x>-64.已知一次函数的图象如图所示,当x<1时,y的取值范围是()A.-2<y<0 B.-4<y<0 C.y<-2 D.y<-45.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3 时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.36.如图,直线交坐标轴于A,B两点,则不等式的解集是()A.x>-2 B.x>3 C.x<-2 D.x<37.已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x轴的交点是()A.(0,1)B.(-1,0)C.(0,-1)D.(1,0)6题8题8.直线:与直线:在同一平面直角坐标系中的图象如图所示,则关于的不等式的解为()A、x>-1B、x<-1C、x<-2D、无法确定9.若一次函数y=(m-1)x-m+4的图象与y轴的交点在x轴的上方,则m的取值范围是________.10.如图,某航空公司托运行李的费用与托运行李的重量的关系为一次函数,由图可知行李的重量只要不超过________千克,就可以免费托运.11.当自变量x 时,函数y=5x+4的值大于0;当x 时,函数y=5x+4的值小于0.12.已知2x-y=0,且x-5>y,则x的取值范围是________.13.如图,已知函数y=3x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式3x+b>ax-3的解集是_______________.14.如图,一次函数y1=k1x+b1与y2=k2x+b2的图象相交于A(3,2),则不等式(k2-k1)x+b2-b1>0的解集为_________.15.已知关于x的不等式kx-2>0(k≠0)的解集是x<-3,则直线y=-kx+2与x•轴的交点是__________.16.已知不等式-x+5>3x-3的解集是x<2,则直线y=-x+5与y=3x-3•的交点坐标是_________.三、能力提升17.已知:y1=x+3,y2=-x+2,求满足下列条件时x的取值范围:(1)y1<y2(2)2y1-y2≤418.在同一坐标系中画出一次函数y1=-x+1与y2=2x-2的图象,并根据图象回答下列问题:(1)写出直线y1=-x+1与y2=2x-2的交点P的坐标.(2)直接写出:当x取何值时y1>y2;y1<y2四、聚沙成塔如果x,y满足不等式组,那么你能画出点(x,y)所在的平面区域吗?。

一次函数与一元一次不等式经典练习题

一次函数与一元一次不等式经典练习题

一次函数与一元一次不等式经典练习题祖π数学之高分速成新人教八年级下册题型3:一次函数图像与一元一次不等式1.如图,直线 $y=kx+b(k<0)$ 与 $x$ 轴交于点 $(3,0)$,关于 $x$ 的不等式 $kx+b<0$ 的解集是()。

A。

$x3$。

C。

$x\leq3$。

D。

$x\geq3$2.如图,函数 $y=2x$ 和 $y=ax+4$ 的图象相交于$A(m,3)$,不等式 $2x<ax+4$ 的解集为()。

A。

$x3$。

C。

$x\leq2$。

D。

$x\geq2$3.如图,是两个一次函数 $y_1=3x+1$ 和 $y_2=x-1$ 的图象,完成下列问题:1)函数$y_1=3x+1$ 和$y_2=x-1$ 的交点坐标是$(2,7)$,则可得关于$y_1=3x+1$ 的二元一次方程组的解是$x=2,y=7$。

2)当 $y_1>y_2$ 时,$x>2$。

3)当 $y_1<y_2$ 时,$x<2$。

4.如图,是两个一次函数 $y_1=3x+1$ 和 $y_2=x-1$ 的图象。

1)函数$y_1=3x+1$ 和$y_2=x-1$ 的交点坐标是$(2,7)$,则可得关于$y_1=3x+1$ 的二元一次方程组的解是$x=2,y=7$。

2)当 $y_1>y_2$ 时,$x>2$。

3)当 $y_1<y_2$ 时,$x<2$。

5.已知 $y_1=x-5$,$y_2=2x+1$。

当 $y_1>y_2$ 时,$x$ 的取值范围是 $x<3$。

6.已知一次函数 $y=-2x+5$。

1)画出它的图象;2)求出当 $x=3$ 时,$y$ 的值;3)求出当 $y=-3$ 时,$x$ 的值;4)观察图象,求出当 $x$ 为何值时,$y>1$,$y=1$,$y<1$。

7.画出函数 $y=-4x+1$ 的图象,当自变量 $x$ 满足什么条件时的函数条件:1)$x$ 轴上方;2)$y$ 轴左侧;3)第一象限。

一次函数与一元一次不等式练习题

一次函数与一元一次不等式练习题

一次函数与一元一次不等式练习题一、选择题1.直线y=x-1上的点在x轴上方时对应的自变量的范围是()A.x>1 B.x≥1 C.x<1 D.x≤12.已知直线y=2x+k与x轴的交点为(-2,0),则关于x的不等式2x+k<0•的解集是() A.x>-2 B.x≥-2 C.x<-2 D.x≤-23.已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x轴的交点是() A.(0,1) B.(-1,0) C.(0,-1) D.(1,0)二、填空题4.当自变量x的值满足____________时,直线y=-x+2上的点在x轴下方.5.已知直线y=x-2与y=-x+2相交于点(2,0),则不等式x-2≥-x+2•的解集是________.6.直线y=-3x-3与x轴的交点坐标是________,则不等式-3x+9>12•的解集是________.7.已知关于x的不等式kx-2>0(k≠0)的解集是x>-3,则直线y=-kx+2与x•轴的交点是__________.8.已知不等式-x+5>3x-3的解集是x<2,则直线y=-x+5与y=3x-3•的交点坐标是_________.三、解答题9.某单位需要用车,•准备和一个体车主或一国有出租公司其中的一家签订合同,设汽车每月行驶xkm,应付给个体车主的月租费是y元,付给出租车公司的月租费是y元,y,y分别与x之间的函数关系图象是如图11-3-4所示的两条直线,•观察图象,回答下列问题:(1)每月行驶的路程在什么范围内时,租国有出租车公司的出租车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300km,•那么这个单位租哪家的车合算?10.在同一坐标系中画出一次函数y1=-x+1与y2=2x-2的图象,并根据图象回答下列问题:(1)写出直线y1=-x+1与y2=2x-2的交点P的坐标.(2)直接写出:当x取何值时y1>y2;y1<y212.已知函数y1=kx-2和y2=-3x+b相交于点A(2,-1)(1)求k、b的值,在同一坐标系中画出两个函数的图象.(2)利用图象求出:当x取何值时有:①y1<y2;②y1≥y2(3)利用图象求出:当x取何值时有:①y1<0且y2<0;②y1>0且y2<0答案:1.A 2.C 3.D 4.x>2 5.x≥2 6.(-1,0);x<-17.(-3,0) 8.(2,3)9.①当0<x<1500时,租国有出租车公司的出租车合算;②1500km;③租个体车主的车合算10.①P(1,0);②当x<1时y1>y2,当x>1时y1<y211.(1)k=、b=5,∴y=x-2、y=-3x+5 图象略;(2)从图象可以看出:①当x<2时y1<y2;②当x≥2时y1≥y2;(3)∵直线y1=12x-2与x轴的交点为B(4,0),直线y2=-3x+5与x轴的交点为C(53,0),∴从图象上可以看出:①当x<4时y1<0,当x>53时y2<0,所以当53<x<4时,y1<0且y2<0.②当x>4时,y1>0;当x>53时y2<0,∴当x>4时y1>0且y2<0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数与一元一次不等式练习题
一、选择题
1.直线y=x-1上的点在x轴上方时对应的自变量的范畴是()
A.x>1 B.x≥1 C.x<1 D.x≤1 2.已知直线y=2x+k与x轴的交点为(-2,0),则关于x 的不等式2x+k<0•的解集是()
A.x>-2 B.x≥-2 C.x<-2 D.x ≤-2
3.已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x轴的交点是()
A.(0,1)B.(-1,0)C.(0,-1)D.(1,0)
二、填空题
4.当自变量x的值满足____________时,直线y=-x+2上的点在x轴下方.
5.已知直线y=x-2与y=-x+2相交于点(2,0),则不等式x-2≥-x+2•的解集是________.
6.直线y=-3x-3与x轴的交点坐标是________,则不等式-3x+9>12•的解集是________.
7.已知关于x的不等式kx-2>0(k≠0)的解集是x>-3,则直线y=-kx+2与x•轴的交点是__________.
8.已知不等式-x+5>3x-3的解集是x<2,则直线y=-x+5与y=3x-3•的交点坐标是_________.
三、解答题
9.某单位需要用车,•预备和一个体车主或一国有出租公司其中的一家签订合同,设汽车每月行驶xkm,应对给个体车主的月租费是y元,付给出租车公司的月租费是y元,y,y分不与x之间的函数关系图象是如图11-3-4所示的两条直线,•观看图象,回答下列咨询题:
(1)每月行驶的路程在什么范畴内时,租国有出租车公司的出租车合算?
(2)每月行驶的路程等于多少时,租两家车的费用相同?
(3)如果那个单位估量每月行驶的路程为2300km,•那么那个单位租哪家的车合算?
10.在同一坐标系中画出一次函数y1=-x+1与y2=2x-2的图象,并按照图象回答下列咨询题:
(1)写出直线y1=-x+1与y2=2x-2的交点P的坐标.
(2)直截了当写出:当x取何值时y1>y2;y1<y2
12.已知函数y1=kx-2和y2=-3x+b相交于点A(2,-1)(1)求k、b的值,在同一坐标系中画出两个函数的图象.
(2)利用图象求出:当x取何值时有:①y1<y2;②y 1≥y2
(3)利用图象求出:当x取何值时有:①y1<0且y2 <0;②y1>0且y2<0
答案:
1.A 2.C 3.D 4.x>2 5.x≥2 6.(-1,0);x<-17.(-3,0)8.(2,3)
9.①当0<x<1500时,租国有出租车公司的出租车合算;
②1500km;③租个体车主的车合算
10.①P(1,0);②当x<1时y1>y2,当x>1时y1<y2
11.(1)k=、b=5,∴y=x-2、y=-3x+5 图象略;
(2)从图象能够看出:①当x<2时y1<y2;②当x≥2时y1≥y2;
(3)∵直线y1=1
2x-2与x轴的交点为B(4,0),
直线y2=-3x+5与x轴的交点为C(5
3,0),
∴从图象上能够看出:
①当x<4时y1<0,当x>5
3时y2<0,
因此当5
3<x<4时,y1<0且y2<0.
②当x>4时,y1>0;当x>5
3时y2<0,
∴当x>4时y1>0且y2<0.。

相关文档
最新文档