基本计数原理的综合应用

合集下载

计数原理的来源与应用

计数原理的来源与应用

计数原理的来源与应用1. 历史背景计数原理作为现代科学和技术领域中的基础概念,其发展历程可以追溯到古代。

古代人类通过使用各种工具,如算盘和记数棒等,来进行简单的计数。

然而,真正的计数原理的发展始于16世纪和17世纪的欧洲。

2. 计数原理的来源计数原理的基本概念源自于数学和逻辑学。

早期的数学家和逻辑学家通过研究整数和集合等概念,开始了对计数原理的探索。

随着科学技术的发展,计数原理逐渐在物理学、计算机科学和信息科学等多个领域中得到广泛应用。

3. 计数原理的基本概念计数原理是指一种基本的数学逻辑原则,用来描述和解释计数的过程和规律。

其基本概念包括以下内容:3.1 计数单位计数单位是指用来衡量和表示数量的单位。

常见的计数单位包括个、米、千克等。

在计数原理中,计数单位是进行计数的基本单位,用来表示一个数量的大小。

3.2 计数方法计数方法是指进行计数的具体方式和规则。

常见的计数方法有顺序计数、并列计数和交替计数等。

不同的计数方法适用于不同的计数场景,可以有效地描述和处理计数问题。

3.3 计数系统计数系统是一套完整的计数规则和标记方式。

常见的计数系统有十进制、二进制和八进制等。

计数系统可以将实际的计数问题抽象为数学模型,方便进行计算和分析。

4. 计数原理的应用计数原理作为一种基本概念,在各个领域都有广泛的应用。

以下是计数原理在几个重要领域的应用案例:4.1 计算机科学在计算机科学中,计数原理是计算机基础知识的重要组成部分。

计算机内部的数据表示和运算,以及计算机程序的执行过程,都离不开计数原理的支持。

4.2 物理学在物理学中,计数原理常被用于描述和解释物理现象。

例如,物理学中常用的量子力学理论和统计物理学方法,都与计数原理密切相关。

4.3 统计学统计学是研究数据收集、整理和分析的学科,而计数原理是统计学的基础。

统计学中的样本调查、概率计算和回归分析等方法,都依赖于计数原理的支持。

4.4 金融和经济学在金融和经济学领域,计数原理被广泛应用于金融市场的交易和投资决策。

基本计数原理

基本计数原理

基本计数原理
基本计数原理是一种统计学理论,它提出了一种新的方法来解决复杂的问题,
并且在互联网领域有着广泛的应用。

基本计数原理的核心思想是,通过对一组数据进行统计,可以得出有用的信息,从而解决复杂的问题。

它的基本原理是,通过统计一组数据中的每个元素出现的次数,可以得出有用的信息。

在互联网领域,基本计数原理可以用来解决复杂的问题,比如搜索引擎的排名
算法,社交网络的用户关系分析,以及广告投放等。

搜索引擎的排名算法,可以通过统计搜索引擎中每个关键词出现的次数,来确定搜索结果的排名。

社交网络的用户关系分析,可以通过统计用户之间的关系,来分析用户之间的关系,从而更好地推荐内容。

广告投放,可以通过统计用户的行为,来确定最佳的广告投放策略。

基本计数原理的应用,使得互联网领域的问题变得更加容易解决,也使得互联
网领域的发展变得更加迅速。

它的应用,不仅可以提高互联网领域的效率,还可以提高互联网领域的用户体验。

总之,基本计数原理是一种有效的统计学理论,它在互联网领域有着广泛的应用,可以有效地解决复杂的问题,提高互联网领域的效率和用户体验。

计数原理-拔高难度-讲义

计数原理-拔高难度-讲义

计数原理知识讲解一、基本计数原理1.加法原理分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理.2.乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯种不同的方法.又称乘法原理.3.加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才完成,那么计算完成这件事的方法数时,使用分步计数原理. 注:分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用.典型例题一.选择题(共1小题)1.(2018•蚌埠三模)4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用一名大学生的情况有()A.24种B.36种C.48种D.60种【解答】解:分两类,第一类,有3名被录用,有=24种,第二类,4名都被录用,则有一家录用两名,有=36,根据分类计数原理,共有24+36=60(种)故选:D.二.填空题(共1小题)2.(2018•梅州二模)某校开设10门课程供学生选修,其中A、B、C三门由于上课时间相同,至多选一门,学校规定,每位同学选修三门,则每位同学不同的选修方案种数是98.【解答】解:∵A,B,C三门由于上课时间相同,至多选一门,第一类A,B,C三门课都不选,有C73=35种方案;第二类A,B,C中选一门,剩余7门课中选两门,有C31C72=63种方案.∴根据分类计数原理知共有35+63=98种方案.故答案为:98.三.解答题(共9小题)3.(2018春•南阳期末)如图所示,在以AB为直径的半圆周上,有异于A,B的六个点C1,C2,…,C6,直径AB上有异于A,B的四个点D1,D2,D3,D4,则:(1)以这12个点(包括A,B)中的4个点为顶点,可作出多少个四边形?(2)以这10个点(不包括A,B)中的3个点为顶点,可作出多少个三角形?其中含点C1的有多少个?【解答】解:(1)构成四边形,需要四个点,且无三点共线,可以分成三类:①四个点从C1,C2,…,C6中取出,有C64个四边形;②三个点从C1,C2,…,C6中取出,另一个点从D1,D2,D3,D4,A,B中取出,有C63C61个四边形;③二个点从C1,C2,…,C6中取出,另外二个点从D1,D2,D3,D4,A,B中取出,有C62C62个四边形.故满足条件的四边形共有N=C64+C63C61+C62C62=360(个).(2)类似于(1)可分三种情况讨论得三角形个数为C63+C61C42+C62C41=116(个).其中含点C1的有C52+C51C41+C42=36(个).4.(2018•江苏)设n∈N*,对1,2,……,n的一个排列i1i2……i n,如果当s<t 时,有i s>i t,则称(i s,i t)是排列i1i2……i n的一个逆序,排列i1i2……i n的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n(k)为1,2,…,n的所有排列中逆序数为k的全部排列的个数.(1)求f3(2),f4(2)的值;(2)求f n(2)(n≥5)的表达式(用n表示).【解答】解:(1)记μ(abc)为排列abc得逆序数,对1,2,3的所有排列,有μ(123)=0,μ(132)=1,μ(231)=2,μ(321)=3,∴f3(0)=1,f3(1)=f3(2)=2,对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,f4(2)=f3(2)+f3(1)+f3(0)=5;(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,∴f n(0)=1.逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,f n(1)=n﹣1.为计算f n+1(2),当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排列,n+1在新排列中的位置只能是最后三个位置.因此,f n+1(2)=f n(2)+f n(1)+f n(0)=f n(2)+n.当n≥5时,f n(2)=[f n(2)﹣f n﹣1(2)]+[f n﹣1(2)﹣f n﹣2(2)]+…+[f5(2)﹣f4(2)]+f4(2)=(n﹣1)+(n﹣2)+…+4+f4(2)=.因此,当n≥5时,f n(2)=.5.(2017秋•涞水县校级期中)有甲、乙、丙、丁、戊5位同学,求:(1)5位同学站成一排,有多少种不同的方法?(2)5位同学站成一排,要求甲乙必须相邻,丙丁不能相邻,有多少种不同的方法?(3)将5位同学分配到三个班,每班至少一人,共有多少种不同的分配方法?【解答】解:(1)5位同学站成一排共有=120.(2)5位同学站成一排,要求甲乙必须相邻,丙丁不能相邻,先用捆绑排甲乙,再和戊全排,形成3个空,插入丙丁即可.故有=24.(3)人数分配方式有①3,1,1有=60种方法②2,2,1有=90种方法所以,所有方法总数为60+90=150种方法.6.(2017春•宁江区校级期中)三个女生和五个男生排成一排.(1)如果女生须全排在一起,有多少种不同的排法?(2)如果女生必须全分开,有多少种不同的排法?(3)如果两端都不能排女生,有多少种不同的排法?(4)如果男生按固定顺序,有多少种不同的排法?(5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法?【解答】解:(1)女须全排在一起,把3个女生捆绑在一起看做一个复合元素,再和5个男生全排,故有A33A66=4320种;(2)女生必须全分开,先排男生形成了6个空中,插入3名女生,故有A55A63=14400种;(3)两端都不能排女生,从男生中选2人排在两端,其余的全排,故有A52A66=14400种;(4)男生按固定顺序,从8个位置中,任意排3个女生,其余的5个位置男生按照固定顺序排列,故有A83=336种,(5)三个女生站在前排,五个男生站在后排,A33A55=720种7.(2016•东城区一模)现有两个班级,每班各出4名选手进行羽毛球的男单、女单、男女混合双打(混双)比赛(注:每名选手打只打一场比赛).根据以往的比赛经验,各项目平均完成比赛所需时间如表所示,现只有一块比赛场地,各场比赛的出场顺序等可能.(Ⅰ)求按女单、混双、男单的顺序进行比赛的概率;(Ⅱ)求第三场比赛平均需要等待多久才能开始进行;(Ⅲ)若要使所有参加比赛的人等待的总时间最少,应该怎样安排比赛顺序(写出结论即可).【解答】解:(I)三场比赛共有种方式,其中按按女单、混双、男单的顺序进行比赛只有1种,所以按女单、混双、男单的顺序进行比赛的概率为.(Ⅱ)令A表示女单比赛、B表示男单比赛、C表示混双比赛.按ABC顺序进行比赛,第三场比赛等待的时间是:t1=20+25=45(分钟).按ACB顺序进行比赛,第三场比赛等待的时间是:t2=20+35=55(分钟).按BAC顺序进行比赛,第三场比赛等待的时间是:t3=20+25=45(分钟).按BCA顺序进行比赛,第三场比赛等待的时间是:t4=35+25=60(分钟).按CAB顺序进行比赛,第三场比赛等待的时间是:t5=35+20=55(分钟).按CBA顺序进行比赛,第三场比赛等待的时间是:t6=35+25=60(分钟).且上述六个事件是等可能事件,每个事件发生概率为,所以平均等待时间为,(Ⅲ)按照比赛时间从长到短的顺序参加比赛,可使等待的总时间最少8.(2016春•秀英区校级期末)6男4女站成一排,求满足下列条件的排法共有多少种?(只列式,不需计算结果)(1)任何2名女生都不相邻有多少种排法?(2)男甲不在首位,男乙不在末位,有多少种排法?(3)男生甲、乙、丙排序一定,有多少种排法?(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法?【解答】解:(1)任何两个女生都不得相邻,利用插空法,故有A66A74种.(2)男甲不在首位,男乙不在末位,利用间接法,故有A1010﹣2A99+A88种,(3)男生甲、乙、丙顺序一定,利用定序法,=A107种,(4)由于男甲要么在男乙的左边,要么在男乙的右边,所以男甲在男乙的左边(不一定相邻)A1010.9.(2016春•九龙坡区校级期中)已知一个袋内有5只不同的红球,6只不同的白球.(1)从中任取4只球,红球的只数不比白球少的取法有多少种?(2)若取一只红球记2分,取一只白球记1分,从中任取5只球,使总分不小于7分的取法有多少种?(3)在(2)条件下,当总分为8时,将抽出的球排成一排,仅有两个红球相邻的排法种数是多少?【解答】解:(1)将取出4个球分成三类情况:①取4个红球,没有白球,C54种;②取3个红球1个白球,C53C61种;③取2个红球2个白球,C52C62种,∴C54+C53C61+C52C62=215种,(2)设x个红球y个白球,,或或.∴符合题意的取法种数有C52C63+C53C62+C54C61=381种.(3)总分为8分,则抽取的个数为红球3个,白球2个,将抽出的球排成一排,仅有两个红球相邻,第一步先取球,共有C53C62=150种,第二步,再排,先选2个红球捆绑在一起,再和另外一个红球排列,把2个白球插入,共有A32A22A32=72根据分步计数原理可得,150×72=10800.10.(2016春•江阴市期中)将5个编号为1,2,3,4,5的小球放入5个编号为1,2,3,4,5的盒子中.(1)有多少种放法?(2)每盒至多一球,有多少种放法?(3)恰好有一个空盒,有多少种放法?(4)每个盒内放一个球,并且恰好有一个球的编号与盒子的编号相同,有多少种方法?(5)每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法?(6)把5个不同的小球换成5个相同的小球,恰有一个空盒,有多少种不同的放法?(注意:以上各小题要列出算式后再求值,否则扣分.)【解答】解:(1)本题要求把小球全部放入盒子,∵1号小球可放入任意一个盒子内,有5种放法.同理,2、3、4,5号小球也各有5种放法,∴共有55=3125种放法.(2)每盒至多一球,有A55=120种,(3)∵恰有一个空盒,则这5个盒子中只有4个盒子内有小球,且小球数只能是1、1、,1,2.先从5个小球中任选2个放在一起,有C25种方法,然后与其余3个小球看成四组,分别放入5个盒子中的4个盒子中,有A45种放法.∴由分步计数原理知共有C25A45=1200种不同的放法.(4)先选出1个小球,放到对应序号的盒子里,有C51=5种情况,例如:5号球放在5号盒子里,其余四个球的放法为(2,1,4,3),(2,3,4,1),(2,4,1,3),(3,1,4,2),(3,4,1,2),(3,4,2,1),(4,1,2,3),(4,3,1,2),(4,3,2,1)共9种,故将这五个球放入这五个盒子内,要求每个盒子内放一个球,并且恰好有一个球的编号与盒子的编号相同,则这样的投放方法总数为9C51=45种,(5)不满足条件的情形:第一类,恰有一球相同的放法:C51×9=45,第二类,五个球的编号与盒子编号全不同的放法:5!(﹣+﹣)=44,∴满足条件的放法数为:A55﹣C51×9﹣5!(﹣+﹣)=120﹣45﹣44=31种(6)恰有一个空盒,则这5个盒子中只有4个盒子内有小球,则有一个盒子里有2个小球,故有C51C41=20种放法.11.(2016春•江阴市期中)用0,1,2,3,4,5这六个数字组成无重复数字的正整数.(1)共有多少个四位数?其中偶数有多少个?(2)比4301大的四位数有多少个?(3))求所有这些四位数之和.注:以上结果均用数字作答.【解答】解:(1)由题意知,因为数字中有0,0不能放在首位,∴先安排首位的数字,从五个非0数字中选一个,共有C51种结果,余下的五个数字在三个位置进行全排列,共有A53种结果,根据分步计数原理知共有A15•A35=300;用0,1,2,3,4,5六个数字组成没有重复数字的四位偶数,则0不能排在首位,末位必须为0,2,4其中之一.所以可分两类,末位为0,则其它位没限制,从剩下的5个数中任取3个,再进行排列即可,共有A53=60个第二类,末位不排0,又需分步,第一步,从2或4中选一个来排末位,有C21=2种选法,第二步排首位,首位不能排0,从剩下的4个数中选1个,有4种选法,第三步,排2,3位,没有限制,从剩下的4个数中任取2个,再进行排列即可,共有12种.把三步相乘,共有2×4×12=96个最后,两类相加,共有60+96=156个(2)当首位是5时,其他几个数字在三个位置上排列,共有A53=60,当前两位是45时,共有A42=4×3=12个,当前两位是43时,共有A42=4×3=12个,去掉4301即可,即有12﹣1=11个.根据分类加法原理得到共有:60+12+12﹣1=83个(3)(1+2+3+4+5)×A53×103+(1+2+3+4+5)×C41A42×(102+10+1)=15×65328=979920。

计数原理-备战高考数学(理)一轮复习考点

计数原理-备战高考数学(理)一轮复习考点

计数原理【命题趋势】两个基本计数原理是高考必考内容,有时会单独考查,有时会出现在解答题的过程之中,我们必须掌握.(1)理解分类加法计数原理和分步乘法计数原理.(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.排列组合是高考中的必考内容,必须掌握.有时会是单独一道小题,有时会是在概率统计解答题中涉及,分值至少5分.(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式.(3)能解决简单的实际问题.二项式定理和排列组合在高考中一般交替考查,二者必出其一,二项式定理好拿分,熟练掌握即可.(1)能用计数原理证明二项式定理.(2)会用二项式定理解决与二项展开式有关的简单问题.【重要考向】考向一分类加法、乘法计数原理考向二两个计数原理的综合应用考向三排列与组合的综合应用考向四二项展开式通项的应用考向一分类加法、乘法计数原理(1)分类加法计数原理的特点:①根据问题的特点能确定一个适合于它的分类标准.②完成这件事的任何一种方法必须属于某一类.(2)使用分类加法计数原理遵循的原则:有时分类的划分标准有多个,但不论是以哪一个为标准,都应遵循“标准要明确,不重不漏”的原则.(3)应用分类加法计数原理要注意的问题:①明确题目中所指的“完成一件事”是什么事,完成这件事可以有哪些办法,怎样才算是完成这件事.②完成这件事的n类方法是相互独立的,无论哪种方案中的哪种方法都可以单独完成这件事,而不需要再用到其他的方法.③确立恰当的分类标准,准确地对“这件事”进行分类,要求每一种方法必属于某一类方案,不同类方案的任意两种方法是不同的方法,也就是分类时必须既不重复也不遗漏. (4)应用分步乘法计数原理要注意的问题:①明确题目中所指的“完成一件事”是什么事,单独用题目中所给的某一步骤的某种方法是不能完成这件事的,也就是说必须要经过几步才能完成这件事.②完成这件事需要分成若干个步骤,只有每个步骤都完成了,才算完成这件事,缺少哪一步骤,这件事都不可能完成.③根据题意正确分步,要求各步之间必须连续,只有按照这几步逐步地去做,才能完成这件事,各步骤之间既不能重复也不能遗漏. (5)两个计数原理的区别与联系定义:若数列 {a n } 满足所有的项均由 ﹣1,1 构成且其中-1有m 个,1有p 个 (m +p ≥3) ,则称 {a n } 为“ (m,p) ﹣数列”.(1)a i ,a j ,a k (i <j <k) 为“ (3,4) ﹣数列” {a n } 中的任意三项,则使得 a i a j a k =1 的取法有多少种? (2)a i ,a j ,a k (i <j <k) 为“ (m,p) ﹣数列” {a n } 中的任意三项,则存在多少正整数 (m,p) 对使得 1≤m ≤p ≤100, 且 a i a j a k =1 的概率为 12 .【答案】 (1)解:三个数乘积为1有两种情况:“ ﹣1,﹣1,1 ”,“ 1,1,1 ”,其中“ ﹣1,﹣1,1 ”共有: C 32C 41=12 种, “ 1,1,1 ”共有: C 43=4 种,利用分类计数原理得:a i ,a j ,a k (i <j <k) 为“ (3,4) ﹣数列” {a n } 中的任意三项, 则使得 a i a j a k =1 的取法有: 12+4=16 种.(2)解:与(1)同理,“ ﹣1,﹣1,1 ”共有 C m 2C p 1种, “ 1,1,1 ”共有 C P 3 种,而在“ (m,p) ﹣数列”中任取三项共有 C m+p3种, 根据古典概型有:C m 2C p 1+C p 3C m+p3=12 ,再根据组合数的计算公式能得到: (p ﹣m)(p 2﹣3p ﹣2mp +m 2﹣3m ﹣2)=0 , ①p =m 时,应满足 {1≤m ≤p ≤100m +p ≥3p =m ,∴(m,p)=(k,k),k ∈{2,3,4,…,100} ,共 99 个,②p 2﹣3p ﹣2mp +m 2﹣3m ﹣2=0 时,应满足 {1<m ≤p <100m +p ≥3p 2−3p −2mp +m 2−3m −2=0 , 视 m 为常数,可解得 p =(2m+3)±√24m+12,∵m ≥1, ∴√2m +1≥5 , 根据 p ≥m 可知, p =(2m+3)+√24m+12,∵m ≥1 , ∴√2m +1≥5 , 根据 p ≥m 可知, p =(2m+3)+√24m+12,(否则 p ≤m ﹣1 ),下设 k =√2m +1 ,则由于 p 为正整数知 k 必为正整数, ∵1≤m ≤100 , ∴5≤k ≤49 ,化简上式关系式可以知道: m =k 2−124=(k−1)(k+1)24,∴k ﹣1,k +1 均为偶数,∴设k=2t+1,(t∈N∗),则2≤t≤24,∴m=k2−124=t(t+1)6,由于t,t+1中必存在偶数,∴只需t,t+1中存在数为3的倍数即可,∴t=2,3,5,6,8,9,11,…,23,24,∴k=5,11,13,…,47,49.检验:p=(2m+3)+√24m+12=(k−1)(k+1)24≤48+5024=100,符合题意,∴共有16个,综上所述:共有115个数对(m,p)符合题意.【考点】古典概型及其概率计算公式,分类加法计数原理,组合及组合数公式【解析】(1)易得使得a i a j a k=1的情况只有“ ﹣1,﹣1,1”,“ 1,1,1”两种,再根据组合的方法求解两种情况分别的情况数再求和即可.(2)易得“ ﹣1,﹣1,1”共有C m2C p1种,“ 1,1,1”共有C P3种.再根据古典概型的方法可知C m2C p1+C p3C m+p3=12,利用组合数的计算公式可得(p﹣m)(p2﹣3p﹣2mp+m2﹣3m﹣2)=0,当p=m时根据题意有(m,p)=(k,k),k∈{2,3,4,…,100},共99个;当p2﹣3p﹣2mp+m2﹣3m﹣2=0时求得p=(2m+3)±√24m+12,再根据1≤m≤p≤100,换元根据整除的方法求解满足的正整数对即可.某商场举行元旦促销回馈活动,凡购物满1000元,即可参与抽奖活动,抽奖规则如下:在一个不透明的口袋中装有编号为1、2、3、4、5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次(每次摸出的小球均不放回口袋),编号依次作为一个三位数的个位、十位、百位,若三位数是奇数,则奖励50元,若三位数是偶数,则奖励100m元(m为三位数的百位上的数字,如三位数为234,则奖励100×2= 200元).(1)求抽奖者在一次抽奖中所得三位数是奇数的概率;(2)求抽奖者在一次抽奖中获奖金额X的概率分布与期望E(X).【答案】(1)解:因为总的基本事件个数n1=A53=60,摸到三位数是奇数的事件数n2=A31A42=36,所以P1=3660=35;所以摸到三位数是奇数的概率35.(2)解:获奖金额 X 的可能取值为50、100、200、300、400、500, P(X =50)=35 , P(X =100)=1×3×260=110, P(X =200)=1×3×160=120,P(X =300)=1×3×260=110 , P(X =400)=1×3×160=120 , P(X =500)=1×3×260=110 ,获奖金额 X 的概率分布为均值 E(X)=50×35+100×110+200×120+300×110+400×120+500×110=150 元. 所以期望是150元.【考点】古典概型及其概率计算公式,离散型随机变量及其分布列,离散型随机变量的期望与方差,分步乘法计数原理【解析】(1)首先利用排列求出摸三次的总的基本事件个数: n 1=A 53=60 ;然后利用分步计数原理求出个位的排法、十位百位的排法求出三位数是奇数的基本事件个数,再利用古典概型的概率计算公式即可求解.(2)获奖金额X 的可能取值为50、100、200、300、400、500,求出各个随机变量的分布列,利用均值公式即可求解考向二 两个计数原理的综合应用(1)利用两个原理解决涂色问题解决着色问题主要有两种思路:一是按位置考虑,关键是处理好相交线端点的颜色问题;二是按使用颜色的种数考虑,关键是正确判断颜色的种数.解决此类应用题,一般优先完成彼此相邻的三部分或两部分,再分类完成其余部分.要切实做到合理分类,正确分步,才能正确地解决问题. (2)利用两个原理解决集合问题解决集合问题时,常以有特殊要求的集合为标准进行分类,常用的结论有123,,,,{}n a a a a 的子集有2n 个,真子集有21n个.对有 n(n ≥4) 个元素的总体 {1,2,3,⋅⋅⋅,n} 进行抽样,先将总体分成两个子总体 {1,2,3,⋅⋅⋅,m} 和 {m +1,m +2,⋅⋅⋅,n} ( m 是给定的正整数,且 2≤m ≤n −2 ),再从每个子总体中各随机抽取2个元素组成样本.用 P ij 表示元素 i 和 j 同时出现在样本中的概率. (1)求 P 1n 的表达式(用m ,n 表示); (2)求所有 P ij (1≤i <j ≤n) 的和.【答案】 (1)解:由题意,从m 和 m −m 个式子中随机抽取2个,分别有 C m 2 和 C n−m2 个基本事件, 所以 P 1n 的表达式为 P 1n =m−1C m2⋅n−m−1C n−m2=4m(n−m) .(2)解:当 i,j 都在 {1,2,⋅⋅⋅,m} 中时,可得 P ij =1C m2 ,而从 {1,2,⋅⋅⋅,m} 中选两个数的不同方法数为 C m 2 ,则 P ij 的和为1;当 i,j 同时在 {m +1,m +2,⋅⋅⋅,n} 中时,同理可得 P ij 的和为1; 当 i 在 {1,2,⋅⋅⋅,m} 中, j 在 {m +1,m +2,⋅⋅⋅,n} 中时, P ij =4m(n−m) ,而从 {1,2,⋅⋅⋅,m} 中选取一个数,从 {m +1,m +2,⋅⋅⋅,n} 中选一个数的不同方法数为 m(n −m) , 则 P ij 的和为4,所以所有 P ij 的和为 1+1+4=6 .【考点】相互独立事件的概率乘法公式,古典概型及其概率计算公式,计数原理的应用,组合及组合数公式【解析】(1)根据组合数的公式,以及古典概型的概率计算公式和相互独立事件的概率计算公式,即可求解;(2)当 i,j 都在 {1,2,⋅⋅⋅,m} 中时求得 P ij 的和为1,当 i,j 同时在 {m +1,m +2,⋅⋅⋅,n} 中时,求得 P ij 的和为1,当 i 在 {1,2,⋅⋅⋅,m} 中, j 在 {m +1,m +2,⋅⋅⋅,n} 中时得到 P ij 的和为4,即可求解.6男4女站成一排,求满足下列条件的排法各有多少种?(用式子表达) (1)男甲必排在首位; (2)男甲、男乙必排在正中间; (3)男甲不在首位,男乙不在末位; (4)男甲、男乙必排在一起; (5)4名女生排在一起; (6)任何两个女生都不得相邻; (7)男生甲、乙、丙顺序一定.【答案】 解:(1)男甲必排在首位,则其他人任意排,故有A 99种, (2)男甲、男乙必排在正中间,则其他人任意排,故有A 22A 77种,(3)男甲不在首位,男乙不在末位,利用间接法,故有A 1010﹣2A 99+A 88种,(4)男甲、男乙必排在一起,利用捆绑法,把甲乙两人捆绑在一起看作一个复合元素和另外全排,故有A 22A 88种,(5)4名女生排在一起,利用捆绑法,把4名女生捆绑在一起看作一个复合元素和另外全排,故有A 44A 77种,(6)任何两个女生都不得相邻,利用插空法,故有A 66A 74种, (7)男生甲、乙、丙顺序一定,利用定序法,A 1010A 33=A 107种【考点】计数原理的应用【解析】(1)男甲必排在首位,则其他人任意排,问题得以解决. (2)男甲、男乙必排在正中间,则其他人任意排,问题得以解决, (3)男甲不在首位,男乙不在末位,利用间接法,故问题得以解决, (4)男甲、男乙必排在一起,利用捆绑法,问题得以解决, (5)4名女生排在一起,利用捆绑法,问题得以解决, (6)任何两个女生都不得相邻,利用插空法,问题得以解决, (7)男生甲、乙、丙顺序一定,利用定序法,问题得以解决.考向三 排列与组合的综合应用先选后排法是解答排列、组合应用问题的根本方法,利用先选后排法解答问题只需要用三步即可完成. 第一步:选元素,即选出符合条件的元素;第二步:进行排列,即把选出的元素按要求进行排列;第三步:计算总数,即根据分步乘法计数原理、分类加法计数原理计算方法总数.7名学生,按照不同的要求站成一排,求下列不同的排队方案有多少种. (1)甲、乙两人必须站两端; (2)甲、乙两人必须相邻.【答案】 (1)甲、乙为特殊元素,先将他们排在两头位置,有 A 22 种站法,其余5人全排列,有 A 55种站法.故共 A 22⋅A 55 有=240种不同站法.(2)(捆绑法):把甲、乙两人看成一个元素,首先与其余5人相当于六个元素进行全排列,然后甲、乙两人再进行排列,所以共 A 66⋅A 22 有=1440种站法.【考点】排列、组合的实际应用,排列、组合及简单计数问题 【解析】(1)运用捆绑法直接求解即可; (2)运用特殊元素分析法直接求解即可.一个笼子里关着10只猫,其中有7只白猫,3只黑猫.把笼门打开一个小口,使得每次只能钻出1只猫.猫争先恐后地往外钻.如果 10 只猫都钻出了笼子,以X 表示7只白猫被3只黑猫所隔成的段数.例如,在出笼顺序为“□■□□□□■□□■”中,则 X =3 . (1)求三只黑猫挨在一起出笼的概率; (2)求X 的分布列和数学期望.【答案】 (1)解:设“三只黑猫挨在一起出笼”为事件A ,将三只黑猫捆绑在一起,与其它7只白猫形成 8 个元素, 所以, P(A)=A 33A 88A 1010=115,因此,三只黑猫挨在一起出笼的概率为 115 ;(2)解:由题意可知,随机变量X 的取值为1、2、3、4, 其中 X =1 时,7只白猫相邻,则 P(X =1)=A 77A 44A 1010=130 ,P(X =2)=(A 32C 21C 21C 61+6A 33+A 32C 61)A 77A 1010=310 ,P(X =3)=(A 31C 21A 62+A 32A 62)A 77A 1010=12 ;P(X =4)=A 63A 77A 1010=16, 所以,随机变量 X 的分布列如下表所示:因此, E(X)=1×130+2×310+3×12+4×16=145.【考点】古典概型及其概率计算公式,离散型随机变量的期望与方差,排列及排列数公式,排列、组合的实际应用【解析】(1)利用捆绑法计算三只黑猫挨在一起出笼的情况种数,再利用古典概型的概率公式可求得所求事件的概率;(2)由题意可知,随机变量X 的可能取值有1、2、3、4,利用排列组合思想求出随机变量X 在不同取值下的概率,可得出随机变量X 的分布列,利用数学期望公式可求得随机变量X 的数学期望.考向四 二项展开式通项的应用求二项展开式的特定项问题,实质是考查通项的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(0,1,2,,k n ).(1)第m 项::此时k +1=m ,直接代入通项.(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程. (3)有理项:令通项中“变元”的幂指数为整数建立方程.已知 f(n)=a 1+a 2C n 1+⋯+arC n r−1+⋯a n+1C n n(n ∈N ∗).(1)若 a n =n −1 ,求 f(n) ;(2)若 a n =3n−1 ,求 f(20) 除以5的余数【答案】 (1)因为 f(n)=0C n 0+1⋅C n 1+2C n 2+3⋅C n 3⋯+nC n n . 所以 f(n)=nC n n +(n −1)C n n−1+(n −2)C n n−2+⋯+1⋅C n 1+0⋅C n0 2f(n)=nC n 0+nC n 1+nC n 2+⋯+nC n n =n(C n 0+C n 1+C n 2+⋯+C n n)=n ⋅2n ,∴f(n)=n ⋅2n−1(2)因为 f(n)=30C n 0+31C n 1+32C n 2+⋯+3n C n n =(1+3)n =4n .f(20)=420=(5−1)20=C 200520−C 201519+C 202518−⋯+C 201852−C 201951+C 202050 除以5余数为1,所以 f(20) 除以5的余数为1. 【考点】二项式系数的性质,二项式定理的应用【解析】(1) 因为f(n)=a 1+a 2C n 1+⋯+arC n r−1+⋯a n+1C n n(n ∈N ∗),再结合a n =n −1 , 得出f(n)=0C n 0+1⋅C n 1+2C n 2+3⋅C n 3⋯+nC n n ,再利用倒序求和法,所以 f(n)=nC n n +(n −1)C n n−1+(n −2)C n n−2+⋯+1⋅C n 1+0⋅C n 0 , 再利用两式求和法结合二项式的系数的性质,得出 f(n) 。

计数的公式知识点总结

计数的公式知识点总结

计数的公式知识点总结1.基本计数原理基本计数原理是计数问题中最基本的方法之一。

它适用于一些简单的问题,例如从一个有限的集合中选择元素的方式数量。

基本计数原理的核心思想是:如果一件事情可以划分为若干个独立的步骤,每个步骤有若干个选择,那么总的选择数就是所有步骤的选择数的乘积。

例如,考虑从一个4位数字(0-9)中选择一个数字的问题。

根据基本计数原理,我们可以将这个问题划分为4个步骤:先选第一位数字,再选第二位数字,以此类推。

每一步都有10种选择,因此总的选择数量为$10^4$=10000。

2.排列排列是计数中比较常见的问题之一。

排列是指从一个集合中选择一部分元素,并按照一定的顺序进行排列。

对于一个包含n个元素的集合,如果从中选择r个元素进行排列,则一共有$n\cdot(n-1)\cdot...\cdot(n-r+1)=\frac{n!}{(n-r)!}$种排列方式。

排列问题的应用十分广泛,例如在密码学中用于生成密码、在组合游戏中用于解决游戏的排列问题等。

在实际应用中,我们也可以用排列的方法来解决一些实际问题。

比如,在一家商店里,有10种不同的衣服,小王要挑选3种不同的衣服,问他共有多少种不同的选择方式?根据排列的计数方法,答案为$P^{10}_3=10\cdot 9 \cdot 8=720$种选择方式。

3.组合组合是另一个常见的计数问题。

组合是指从一个集合中选择一部分元素,并不考虑元素的排列顺序。

对于一个包含n个元素的集合,如果从中选择r个元素进行排列,则一共有$\frac{n!}{r!(n-r)!}$种组合方式。

组合问题在实际中也有着很多应用,例如在概率论中,组合问题用于计算事件发生的概率;在统计学中,组合问题用于计算样本的数量等。

组合问题也有着很多有趣的性质和应用,例如在计算机程序设计中,组合问题用于生成排列和组合的算法。

4.二项式定理二项式定理是组合的一个重要的应用。

它描述了二项式的幂的表达式。

计数方法和应用

计数方法和应用

计数方法和应用计数是一种非常基础和普遍的数学概念,也称为计数学。

在日常生活和工作中,计数方法和技术被广泛应用。

本文将从计数方法和应用两个方面进行阐述。

一、计数方法1.1 基本计数原理基本计数原理是计数领域最基础的公理之一,也称为加法计数原理,是指如果一个事件发生的次数是 m,而另一个事件发生的次数是 n,则这两个事件连续发生的总次数是 m+n。

举个例子,假设一个学校有三个年级,每个年级有30 个学生,那么这个学校的学生总人数就是 3 × 30 = 90 人。

1.2 排列和组合排列和组合是计数中两个基本的概念。

排列是指 n 个元素中任取 r 个元素进行排列,不考虑元素的顺序。

排列数用 P(n,r) 来表示。

组合是指n 个元素中任取r 个元素进行组合,考虑元素的顺序。

组合数用 C(n,r) 来表示。

举个例子,假设有 ABC 三个字母,我们从中任取两个字母进行排列和组合,其结果如下:- 排列:AB, AC, BA, BC, CA, CB,共 6 种。

- 组合:AB, AC, BC,共 3 种。

1.3 树状图树状图是计数中一种常用的图形表示方法,也被称为树状图法。

它通过树的枝干和节及其上的符号来表示问题的分支和可能的结果。

树状图通常用于组合问题和排列问题。

举个例子,假设一个口袋里有三个苹果和两个梨,从中任取两个水果,可能的取法有:苹果-苹果、苹果-梨、梨-苹果、梨-梨、共 4 种可能。

这个问题的树状图可以如下表示:二、计数应用2.1 组合优化组合优化是计算机科学中的一个重要分支,其应用于各种领域,如图形学、数据库、网络等,旨在寻找最优的组合方案。

举个例子,在网络优化中,如何在一个有向图中找到最短或最快的路径是一个经典问题,可以用 Dijkstra 算法或 Bellman-Ford算法以及其他更高级的算法来解决。

而求解这些问题的基础,则是组合优化的概念和算法。

2.2 计算概率计数方法还可以用于计算概率,这是概率论的基础之一。

计数原理的应用

计数原理的应用

计数原理的应用1. 介绍计数是一种基本的数学概念,在许多领域中都有广泛的应用。

无论是日常生活中的时间计数,还是在科学研究和技术应用中使用计数器进行测量,计数原理都扮演着重要的角色。

本文将介绍计数原理的应用,并且探讨其中的一些实际场景。

2. 计数器在电子电路中的应用计数器是一种用于计数的电子设备,它根据输入的时钟信号进行计数,并在达到特定计数值时输出一个脉冲。

计数器可以用于许多应用,包括频率测量、计时器、数据同步等。

计数器可以是二进制计数器、十进制计数器或其他进制计数器。

在二进制计数器中,计数从0开始,逐次增加,当达到最大计数值时会重置为0。

计数器的输出可以通过外部电路来控制其他设备的功能,例如控制闹钟的报警器。

3. 计数器在物流管理中的应用在物流管理中,计数原理也有着广泛的应用。

例如,在仓库中可以使用计数器来追踪进出货物的数量,以确保库存的准确性。

计数器可以与条形码或RFID技术相结合,实现自动化的货物计数和跟踪。

通过使用计数原理,物流管理可以更加高效和准确。

4. 计数器在交通系统中的应用计数原理在交通系统中也有着重要的应用。

例如,交通信号灯通过计数器来控制不同方向的车辆通行时间。

计数器会根据预设的时间间隔来改变交通灯的状态,确保交通流畅和安全。

另外,在高速公路上,通过使用车辆计数器可以实时监测车辆流量,从而进行交通拥堵的预测和路况管理。

5. 计数器在工业自动化中的应用计数器在工业自动化中也扮演着重要的角色。

计数器可以用于追踪生产线上的产品数量,用于控制设备的开关和停止。

计数器还可以用于检测故障和记录生产数据,为企业的生产管理提供重要的依据。

6. 小结计数原理在各个领域中都有着广泛的应用。

无论是在电子电路中的计算器,还是在物流管理、交通系统和工业自动化中的应用,计数原理都发挥着重要的作用。

通过合理利用计数原理,可以提高效率,实现自动化,并为决策提供数据支持。

2024-2025学年高二数学选择性必修第一册(配北师大版)课件1.3基本计数原理的简单应用

2024-2025学年高二数学选择性必修第一册(配北师大版)课件1.3基本计数原理的简单应用

规律方法 (抽取)分配问题的常见类型及其解法 (1)当涉及对象数目不大时,一般选用枚举法、树状图法、框图法或者图表 法. (2)当涉及对象数目很大时,一般有两种方法: ①直接使用分类加法计数原理或分步乘法计数原理.一般地,若抽取是有顺 序的就按分步进行;若按对象特征抽取的,则按分类进行. ②间接法:去掉限制条件计算所有的抽取方法数,然后减去所有不符合条件 的抽取方法数即可.
思考辨析 利用多项式的乘法法则探索(a1+a2)(b1+b2+b3)(c1+c2+c3+c4)的展开式中有 多少项?
提示 可以直接展开后进行统计,最后得出结论;也可以用分步乘法计数原 理,分三步: 第一步,从第一个因式中取一个因子,有2种取法; 第二步,从第二个因式中取一个因子,有3种取法; 第三步,从第三个因式中取一个因子,有4种取法. 则此多项式的展开式中有2×4×3=24(项).
(2)将红、黄、蓝、白、黑五种颜色涂在如图所示“田”字形的4个小方格内, 每格涂一种颜色,相邻两格涂不同的颜色,如果颜色可以反复使用,共有多 少种不同的涂色方法?
1
2
34
解 第1个小方格可以从5种颜色中任取一种颜色涂上,有5种不同的涂法. ①当第2个、第3个小方格涂不同颜色时,有4×3=12(种)不同的涂法,第4个 小方格有3种不同的涂法,由分步乘法计数原理可知有5×12×3=180(种)不 同的涂法. ②当第2个、第3个小方格涂相同颜色时,有4种涂法,由于相邻两格不同色, 因此,第4个小方格也有4种不同的涂法,由分步乘法计数原理可知有 5×4×4=80(种)不同的涂法. 由分类加法计数原理可得共有180+80=260(种)不同的涂法.
规律方法 1.涂色问题的基本要求是相邻区域不同色,但是不相邻的区域 可以同色.解决此类问题要特别关注图形的结构特征.如果图形很不规则, 往往从某一块出发进行分步涂色,从而选用分步乘法计数原理;如果图形具 有一定的对称性,那么先对涂色方案进行分类,每一类再进行分步. 2.把涂色问题转化为两个基本计数原理的综合应用,体现了数学抽象的核 心素养.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本计数原理的综合应用
1.基本计数原理 ⑴加法原理
分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理. ⑵乘法原理
分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯种不同的方法.又称乘法原理.
⑶加法原理与乘法原理的综合运用
如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.
分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合
⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素)
排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示.
排列数公式:A (1)(2)
(1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列.
n 的阶乘:
正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.
知识内容
组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示.
组合数公式:(1)(2)(1)!
C !
!()!
m n n n n n m n m m n m ---+=
=
-,,m n +∈N ,并且m n ≤.
组合数的两个性质:性质1:C C m n m n n -=;性质2:1
1C C C m m m n n n -+=+.(规定0C 1n =)
⑶排列组合综合问题
解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法:
1.特殊元素、特殊位置优先法
元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;
2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.
3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.
4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.
5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.
6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --. 7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m !
8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.
1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径: ①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素;
②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;
③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.
求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答. 2.具体的解题策略有:
①对特殊元素进行优先安排;
②理解题意后进行合理和准确分类,分类后要验证是否不重不漏;
③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复; ④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法;
⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理; ⑥对于正面考虑太复杂的问题,可以考虑反面.
⑦对于一些排列数与组合数的问题,需要构造模型.
1、用0
,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是_________.(用数字作答)
2、由正方体的8个顶点可确定多少个不同的平面?
3、如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不
得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答)
典例分析
4、如图,一环形花坛分成A B C D
,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.48
5、某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有种.(以数字作答)
6、用0,1,2,3,4,5这6个数字,可以组成_______个大于3000,小于5421的数字不重复的四位数.
7、同室4人各写1张贺年卡,先集中起来,然后每人从中各拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有()
A.6种B.9种C.11种 D.23种
8、某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入原节目单中,那么不同的插法种数为()A.504B.210C.336D.120
9、某班学生参加植树节活动,苗圃中有甲、乙、丙3种不同的树苗,从中取出5棵分别种植在排成一排的5个树坑内,同种树苗不能相邻,且第一个树坑和第5个树坑只能种甲种树苗的种法共( ) A .15种 B .12种 C .9种 D .6种
10、如图所示,画中的一朵花,有五片花瓣.现有四种不同颜色的画笔可供选择,规定每片花瓣都要涂色,且只涂一种颜色.若涂完的花中颜色相同的花瓣恰有三片,则不同涂法种数为 (用数字作答)
.
11、用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( ) A .324 B .328 C .360 D .648
12、用红、黄、蓝三种颜色之一去涂图中标号为129,,, 的9个小正方形(如图),使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且“3、
5、7”号数字涂相同的颜色,则符合条件的所有涂法共有( )种.
9
8
7
654321
A .72
B .108
C .144
D .192
13、足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,那么一个队打14场共得19分的情况有( )
A .3种
B .4种
C .5种
D .6种。

相关文档
最新文档