工程力学 第九章 梁的应力及强度计算

合集下载

工程力学 (杨庆生 崔芸 龙连春 著) 科学出版社 课后答案 第9章

工程力学 (杨庆生 崔芸 龙连春 著) 科学出版社 课后答案 第9章

m ( F ) 0 P 1 Q 0.5 0 Q 2 P
mA ( F ) 0 1.5Q 3.5P 5 FB 0 FB 1.3P mB ( F ) 0 1.5P 3.5Q 5FA 0 FA 1.7 P

P 2. 4 4 2. 4 9.6(kN m) 2 8 2 P =2.561(kN ) FN cos 2 2 22 2.42
w.
9.6
A
25
-
2.561
+
FN (kN
25
z
co

FQ D2
M
M 图( kN .m )
m
P/2
补充 2: 水塔盛满水时连同基础总重量为 G, 在离地面 H 处, 受一水平风力合力为 P 作用, 圆形基础直径为 d,基础埋深为 h,若基础土壤的许用应力[σ]=300kN/m ,试校核基础的承载
梁上各横截面上轴力弯矩均为常2510253应力分析判危险点如右所示图整个横截面上均有n引起的均布的拉应力my引起后拉前压的弯曲应力mz引起上拉下压的弯曲应力点于d100025pa1010101010206060mpa140mpa四点的应力值
课后答案网,用心为你服务!
大学答案 --- 中学答案 --- 考研答案 --- 考试答案 最全最多的课后习题参考答案,尽在课后答案网()! Khdaw团队一直秉承用心为大家服务的宗旨,以关注学生的学习生活为出发点, 旨在为广大学生朋友的自主学习提供一个分享和交流的平台。 爱校园() 课后答案网() 淘答案()
ww
w.
max
(4)强度计算选择槽钢的型号:
1)忽略轴力项的正应力,仅由弯曲项选槽钢的型号:

工程力学第九章杆件变形及结构的位移计算

工程力学第九章杆件变形及结构的位移计算
应的(直线图形)的竖标,再除以杆的弯曲刚度。 应用图乘法计算时,应注意以下几点:
(1)竖标要在直线段弯矩图上取得; (2)每一个面积只对应一条直线段的弯矩图。
当与在杆的同一侧时,两者乘积取正号,反之取 负号。
§9–4 图乘法
二、几种常见图形的面积和形心位置的确定方法
二次抛物线
§9–4 图乘法
例1:求图示梁(EI=常数,跨长为l)B截面转角 B
(
1 2
l 2
1 2
2 3
Pl 4
B l l 1 Pl 1 l 1 1 Pl) 2 22 4 2223 4
l/2
l/2
Pl2 ( ) 16EI
1
Mi
1/ 2
取 yc的图形必
须是直线,不能是曲
B
1 EI
(1 2
l
Pl 4
1) 2
Pl 2 16 EI
(
)
线或折线.
§9–4 图乘法
q
A
B
1
2
1
MP 图
解:
1 ql2
M图
8
B
1 EI
[(2 3
l
1 8
ql2 )
1] 2
1 ql3 ( )
24 EI
§9–4图乘法
例2. 试求图示结构B点竖向位移.
P
1
Pl
l
EI
B
l EI MP
Mi
l
解:
By
MM P EI
ds
yc
EI
§9–4 图乘法
解:
yc
EI
1 ( 1 Pl l 2 l Pl l l)
ql3 ( 24 EI
)

工程力学高斌第九章答案

工程力学高斌第九章答案
2 2
15kN . m
5kN . m
15kN . m
-
Q qa/2 +
-
qa/2 + x
qa/2
M q a 2/8 +
-
x
q a 2/8
5. 设梁的剪力图如图所示,试作弯矩图及载荷图。已知梁上设有作用集中力偶。 (a)
4kN q=1kN/m
3kN
Q
3kN
2kN
3kN
1kN
A
B
1kN
C
D
x
5
3kN 2m 2m 4m
3
2
⎡ 50 × 2003 ⎤ 150 × 503 Iz = ⎢ + 50 × 200 × 53.62 + + 50 × 150 × 71.4 2 ⎥ mm 4 12 ⎣ 12 ⎦ = 10180 cm 4
根据弯曲正应力强度条件
M
0.8p
σ max
M = ymax ≤ [σ ] , M≤[σ].Iz/ymax Iz
解:梁的弯矩图如图, 弯矩的两个极值分别为
µ1 = 0.8P , MA =2P×1.4 - P×2= 0.8P µ2 = 0.6 P , MC = -0.6 P
截面对形心轴的惯性矩为
8
(Iz =bh /12 + Ah1 , h1 腹 = 153.6–100=53.6mm ,h1 翼 =200-153.6+25 =71.4mm )
实心圆截面梁的最大应力
σ max =
空心圆截面最大应力
′ = σ max
空心圆截面梁比实心圆截面梁的最大正应力减少了
′ σ max − σ max 159 − 93.6 = = 41.1% σ max 159

工程力学梁的正应力强度条件及其应用1

工程力学梁的正应力强度条件及其应用1

ymax
对矩形截面
Wz

bh3 12 h2

bh2 6
Wz

bh2 6
对圆形截面
Wz

d 4
d
64 2

d 3
32
Wz

d 3
32
各种型钢的截面惯性矩Iz和弯曲截面系数Wz的 数值,可以在型钢表中查得。
为了保证梁能安全的工作,必须使梁横截面上的
最大正应力不超过材料的许用应力,所以梁的正应力
强度条件为
σmax
M max Wz

σ
二、三种强度问题的计算
σmax
M max Wz

σ
(1)强度校核 (2)选择截面 (3)确定许用荷载
σmax

M max Wz

σ
Wz

M max σ
M max Wz σ
例题10-2 一矩形截面简支木梁如图所示,已知l=4m, b=140mm,h=210mm,q=2kN/m,弯曲时木材的许 用正应力[σ]=10MPa,校核该梁的强度。
σc,max

MC Iz
y1

2.7 103 0.072 0.573105
33.9 106 Pa
33.9MPa [σc]
由以上分析知该梁满足强度要求。
例题10−4 如图所示的简支梁由工字钢制成,钢的 许用应力[σ ]=150MPa,试选择工字钢的型号。
解:先画出弯矩图如图b所示。 梁的最大弯矩值为
y1

1.8103 0.072 0.573105

22.5106 Pa

22.5MPa

工程力学第九章

工程力学第九章

下一页 返回
9.4

梁的弯曲变形与刚度
2.
挠度和转角
(1) 挠度 是指梁轴线上的一点在垂直于轴线方向上的位移, 通常用y表示。

一般规定向上的挠度为正,向上的挠度为负。它的单位是mm。 (2) 转角 是指梁的各截面相对原来位置转过的角度,用θ 表
示。

一般规定,逆时针方向的转角为正,顺时针的转角为负。它 的单位是弧度(rad)或度(º)。
远的边缘处。其计算公式为
max

(2) 梁的正应力强度条件为
M max y max M max Iz Wz
M max ≤[σ ] Wz
下一页 返回
max




max
* FQ S z
(3) 梁横截面上的切应力与切应力强度条件 对矩形截面梁,横截面上的切应力计算公式为 其最大切应力在截面的中性轴上,计算公式为 梁的切应力强度条件为τ max≤[τ ]
上一页 返回
9.2


梁弯曲时正应力强度计算
梁弯曲时正应力强度计算
9.2
为了保证梁在载荷作用下能够正常工作,必须使梁具备足够 的强度。也就是说,梁的最大正应力值不得超过梁材料在单 向受力状态(轴向拉、压情况)下的许用应力值[σ ],即 M max max ≤[σ ] (9.10) Wz 式(9.10)就是梁弯曲时的正应力强度条件。需要指出的是, 式(9.10)只适用于许用拉应力[σ l]和许用压应力[σ y]相等 的材料。如果两者不相等(例如铸铁等脆性材料),为保证梁 的受拉部分和受压部分都能正常工作,应该按拉伸式
上一页 下一页 返回
My Iz
(9.4)

《工程力学》项目9平面弯曲

《工程力学》项目9平面弯曲

项目9 剪切与挤压
• 任务9.4 平面弯曲梁横截面上的应力 • 梁的横截面上只有弯矩而剪力为零的平面弯曲称为纯弯
曲,如图 9-20梁上CD段;而横截面上既有弯矩也有剪力 的平面弯曲称为横力弯曲或剪力弯曲,如图 9-20梁上AC、 DB段。
图 9-20
项目9 剪切与挤压
9.4.1纯弯曲时梁横截面上的应力 1.实验现象 2.假设及推理 • 研究纯弯曲时梁横截面上的应力,可
式(9-2),即可确定截面上的剪力和弯矩为
3
FS2
YA
qa 4
M2
YAa
3 qa2 4
项目9 剪切与挤压
• 3-3截面:将杆件截面右侧的所有的外力给屏蔽起来,如图
9-7(d)所示,取截面的左侧为研究对象,即可确定截面上
的剪力和弯矩为
FS3
YA
P
3 qa qa 4
1 4
qa
M3
YAa
P0
3 4
9-4(b)所示。 外伸梁:梁的支撑情况同简支梁,但梁的一端或两端伸出支座
之外,如图 9-4(c)所示。
图9-4
项目9 剪切与挤压
• 任务9.2 梁弯曲的内力
• 9.2.1梁弯曲内力——剪力和弯矩
• 根据力系的平衡条件,可确定在留 下部分的截面上的内力为平行于横 截面的剪力和作用在纵向对称面内 的内力矩即弯矩。根据平衡方程可 得剪力与弯矩的大小,即
• 为了直观清楚地显示沿梁轴线方向的各截面剪力和 弯矩的变化情况,可绘制剪力图和弯矩图。对剪力 图,正值画在轴线的上侧,负值画在轴线的下侧; 对弯矩图正值画在轴线的下侧,负值画在轴线的上 侧,即弯矩坐标正向向下。
项目9 剪切与挤压
• 【例 9-2】图 9-8(a)所示的简支梁受均布荷载作用,试 作其剪力图和弯矩图。

工程力学 9弯曲

工程力学 9弯曲

O
讨论: 惯性矩大于零
z
§A.3 惯性矩的平行移轴公式
组合截面的惯性矩
1.惯性矩的平行移轴公式 yc y 设有面积为A的任意形状的截面。 x xc dA C为其形心,Cxcyc 为形心坐标 yc xc 系。与该形心坐标轴分别平行 C 的任意坐标系为Oxy ,形心C在 y Oxy坐标系下的坐标为(a , b) 任意微面元dA在两坐标系 x 下的坐标关系为: O b
20
③计算静矩Sz(ω)和SzC(ω)
Sz ( ) A y C (0.1 0.02 0.14 0.02 0.103 0.494m 3 )
S zc ( ) Ai y C 0.1 0.02 0.047 - 0.02 0.14 0.033 1.6 10 6 m 3
(f)
纵向线应变在横截面范围内的变化规律
图c为由相距d x的两横截面取出的梁段在梁弯曲后的情
况,两个原来平行的横截面绕中性轴相对转动了角d。梁的 横截面上距中性轴 z为任意距离 y 处的纵向线应变由图c可知 为

B1B B1 B y d AB1 O1O2 dx
(c)
令中性层的曲率半径为(如图c),则根 1 d 据曲率的定义 有 dx y
切应力。
F
FS
M
F
M
C

C
F
A

Ⅰ. 纯弯曲时梁横截面上的正应力
计算公式的推导 (1) 几何方面━━ 藉以找出与横截面上正应力相对应 的纵向线应变在该横截面范围内的变化规律。 表面变形情况 在竖直平面内发生纯弯曲的梁(图a):
(a)
1. 弯曲前画在梁的侧面上相邻横向线mm和nn间的纵 向直线段aa和bb(图b),在梁弯曲后成为弧线(图a),靠近梁

工程力学第9章 梁弯曲时的刚度计算

工程力学第9章 梁弯曲时的刚度计算
挠曲线

w

x
qx
F
x
9.1 挠曲线近似微分方程
9.1.2 挠度和转角的关系
◆挠曲线方程 : w f x
w
挠曲线

w

x
qx
F
x
tan dw
dx
dw
dx
9.1.3 挠曲线近似微分方程
一、挠曲线的曲率公式
1M EI

1
x

M x
EI
d2w

1
x


6EI 2l
l 2
2l 2


l 2
2



11Fl3 96EI
未知约束力单独作用引起的B处挠度
wB FB

FB 2l 3
48EI

FBl 3 6EI
将上述结果代入式(b),得到补充方程
11Fl3 FBl3 0 96EI 6EI
w Mex x2 l2 6EIl
(c)
Me 3x2 l2 6EIl
(d)
(4)计算最大挠度与截面的转角
作出梁的弯矩图如下图所示,全梁弯矩为正。其最大 挠度处的转角为零。故由式(c)有
dw Me 3x2 l2 0 dx 6EIl
从而得最大挠度所在截面的坐标为
2
在集中力 F 单独作用下,大梁跨度中点C的挠度由教材表
7–1第5栏中查出为
wC
F


Fl 3 48EI
将以上结果叠加,即得在均布载荷 和q 集中力 的F 共同作用
下,大梁跨度中点C的挠度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时授课计划教学过程:复习:1、复习刚架的组成及特点。

2、复习平面静定刚架内力图的绘制过程。

新课:第九章梁的应力及强度计算第一节纯弯曲梁横截面上的正应力一、纯弯曲横梁截面上的正应力计算公式平面弯曲时,如果某段梁的横截面上只有弯矩M,而无剪力Q = 0,这种弯曲称为纯弯曲。

1、矩形截面梁纯弯曲时的变形观察现象:(1)变形后各横向线仍为直线,只就是相对旋转了一个角度,且与变形后的梁轴曲线保持垂直,即小矩形格仍为直角;(2)梁表面的纵向直线均弯曲成弧线,而且,靠顶面的纵线缩短,靠底面的纵线拉长,而位于中间位置的纵线长度不变。

2、假设(1)平面假设:梁变形后,横截面仍保持为平面,只就是绕某一轴旋转了一个角度,且仍与变形后的梁轴曲线垂直。

中性层:梁纯弯曲变形后,在凸边的纤维伸长,凹边的纤维缩短,纤维层中必有一层既不伸长也不缩短,这一纤维层称为中性层。

中性轴:中性层与横截面的交线称为中性轴。

中性轴将横截面分为两个区域——拉伸区与压缩区。

注意:中性层就是对整个梁而言的;中性轴就是对某个横截面而言的。

中性轴通过横截面的形心,就是截面的形心主惯性轴。

(2)纵向纤维假设:梁就是由许多纵向纤维组成的,且各纵向纤维之间无挤压。

各纵向纤维只产生单向的拉伸或压缩。

3、推理纯弯曲梁横截面上只存在正应力,不存在剪应力。

二、纯弯曲横梁截面上正应力分布规律由于各纵向纤维只承受轴向拉伸或压缩,于就是在正应力不超过比例极限时,由胡克定律可知ρεσyEE =⋅=通过上式可知横截面上正应力的分布规律,即横截面上任意一点的正应力与该点到中性轴之间的距离成正比,也就就是正应力沿截面高度呈线性分布,而中性轴上各点的正应力为零。

三、纯弯曲横梁截面上正应力计算公式梁在纯弯曲时的正应力公式:ZI My=σ 式中:σ——梁横截面上任一点的正应力;M ——该点所在横截面的弯矩;Iz ——横截面对其中性轴z 的惯性矩;矩形Z I =123bh ;圆形Z I =644D πy ——所求正应力点到中性轴的距离。

正应力的单位为:Pa 或MPa,工程上常用MPa 。

公式表明:梁横截面上任一点的正应力σ与截面上的弯矩M 与该点到中性轴的距离成正比,而与截面对中性轴的惯性矩 IZ 成反比。

在中性轴上(y=0),正应力为零。

离中性轴越远,正应力越大。

在横截面上、下边缘各点处(y=ymax),正应力达到最大值。

应力σ的正负号直接由弯矩M 的正负来判断。

M 为正时,中性轴上部截面为压应力,下部为拉应力;M 为负时,中性轴上部截面为拉应力,下部为压应力。

第二节 梁的正应力强度条件一、弯曲正应力的强度条件等直梁的最大弯曲正应力,发生在最大弯矩所在横截面上距中性轴最远的各点处,即zW M max max=σ对于工程上的细长梁,强度的主要控制因素就是弯曲正应力。

为了保证梁能安全、正常地工作,必须使梁内最大正应力σmax 不超过材料的许用应力[σ],故梁的正应力强度条件为:][max maxσσ≤=zW M二、常用截面的惯性矩与抗弯截面系数1、常用截面的惯性矩I Z惯性矩就是截面各微元面积与各微元至截面上某一指定轴线距离二次方乘积的积分。

它就是与截面的形状及尺寸相关的几何量。

123bh I Cz =123hb I Cy =644D I I C C y z π==2、常见截面的抗弯截面系数在对梁进行强度计算时,总要寻找最大正应力。

有公式可知,当y=ymax 时,64)( 44 d D IICC y z - == π工字型的抗弯截面系数5mm3面积矩。

剪应力的单位与正应力一样。

剪应力的方向规定与剪力的符号规定一样。

二、矩形截面横梁截面上的剪应力如图所示高度h大于宽度b的矩形截面梁。

横截面上的剪力Q沿y轴方向作用。

)4(2)]2(21[)2(22*yhbyhyyhbSz-=-+⋅-=将上式带入剪应力公式得:)4(222yhIQz-=τ上式表明矩形截面横梁截面上的剪应力,沿截面高度呈抛物线规律变化。

在截面上、下边缘处y=±h/2,则=0;在中性轴上,y=0,剪应力值最大,其值为AQbhQbhQhIQhyhIQzz5.1231288)4(232222max==⨯==-=τ即AQ5.1max=τ上市说明:矩形截面横梁截面上的最大剪应力为平均剪应力Q/A的1、5倍。

综上所述:剪应力沿其截面高度的分布规律与正应力不同,正应力最大的在截面的上下边缘各点,剪应力为零;剪应力最大的在中性轴上各点,正应力为零。

圆形截面横梁截面上的最大竖向剪应力也都发生在中性轴上,沿中性轴均匀分布。

AQ⋅=34maxτ其它形状的截面上,一般地说,最大剪应力也出现在中性轴上各点。

结合书P161-162 例8-3进行详细讲解。

例1矩形截面简支梁如图,已知:l=2m,h=15cm,b=10cm,h1=3cm,q=3kN/m。

试求A支座截面上K点的剪应力及该截面的最大剪应力。

3*43323625.55.410281012151012cmyScmbhczz=⨯⨯=A==⨯==IMPabSQzzAk252.01010102810102361031433=⨯⨯⨯⨯⨯⨯=I=τMPaAQ3.01010151035.15.123max=⨯⨯⨯⨯==τ解:1.求剪力:QA=3kN2.求K点剪应力:3.求最大剪应力:A Blqyzohbh1ycK3kN3kNQ图五、梁的剪应力强度校核梁的剪应力强度条件为:][*maxmaxmaxττ≤⋅=bISQzz在梁的强度计算时,必须同时满足弯曲正应力强度条件与剪应力强度条件。

但在一般情况下,满足了正应力强度条件后,剪应力强度都能满足,故通常只需按正应力条件进行计算。

但在下列几种情况下,还需作剪应力强度校核:(1)梁的跨度很短而又受到很大的集中力作用,或在支座附近作用有较大的集中荷载,此时梁的最大弯矩较小,但最大剪力却很大。

(2)工字梁的腹板宽度很小,或某些铆接或焊接的组合截面钢梁中,其腹板宽度与高度之比小于一般型钢截面的相应值时,此时腹板上的剪应力可能较大。

(3)木梁。

由于木材在顺纹方向的抗剪强度很差,当横截面中性轴上有较大的剪应力时,根据剪应力互等定理,梁的中性层上也产生较大的剪应力,可能使木材沿顺纹方向破坏。

第四节提高梁弯曲强度的措施一、提高梁弯曲强度的措施根据弯曲正应力的强度公式,减小梁的工作应力的途径:A、降低最大弯矩值MmaxB、增加截面的抗弯截面系数W Z(1)合理安排梁的支座与荷当荷载一定时,梁的最大弯矩Mmax与梁的跨度有关,因此,应合理安排支座。

如果结构允许,应尽可能合理地布置梁上的荷载。

把梁所受的一个集中力分为几个较小的集中力,梁的最大弯矩就会明显减小。

(2)采用合理的截面形1)从应力分布规律考虑应使截面面积较多的部分布置在离中性轴较远的地方。

从应力分布情况瞧,工字形、槽形等截面形状比面积相等的矩形截面更合理,而圆形截面又不如矩形截面。

凡就是中性轴附近用料较多的截面就就是不合理截面。

工程力学第九章梁的应力及强度计算2)从抗弯截面系数W Z考虑应在截面面积相等的条件下,使得抗弯截面系数W Z尽可能地增大(I Z越大越好),由式Mmax=[σ] W Z可知,梁所能承受的最大弯矩Mmax与抗弯截面系数W Z成反比。

所以,从强度角度瞧,当截面面积一定时,W Z值越大越有利。

3)从材料的强度特性考虑应合理的布置中性轴位置,使截面上的最大拉应力与最大压应力同时达到材料的容许应力。

对抗拉与抗压强度相等的材料,一般采用对称于中性轴的截面形状,如矩形、工字形、槽形、圆形等。

对抗拉与抗压强度不相等的材料,一般采用菲对称截面形状,使中性轴偏向强度较低的一边,如T字形、槽形等。

(3)等强度梁将梁制成变截面梁,使各截面上的最大弯曲正应力与材料的许用应力[σ]相等或接近。

小结:1、纯弯曲横梁截面上正应力分布规律2、纯弯曲横梁截面上正应力计算公式3、常用截面的惯性矩与抗弯截面系数4、梁的正应力强度条件及应用5、梁的剪应力强度校核6、提高梁弯曲刚度与强度的措施课后作业:书P170 8-1、8-3(d)。

相关文档
最新文档