离散数学形考任务-试题及答案完整版
电大 离散数学 形成性考核册 作业(一)答案

离散数学形成性考核作业(一)集合论部分本课程形成性考核作业共4次,内容由中央电大确定、统一布置。
本次形考作业是第一次作业,大家要认真及时地完成集合论部分的形考作业,字迹工整,抄写题目,解答题有解答过程。
第1章 集合及其运算1.用列举法表示 “大于2而小于等于9的整数” 集合.解:{3,4,5,6,7,8,9}2.用描述法表示 “小于5的非负整数集合” 集合.解:}50{N n n n ∈<<且3.写出集合B ={1, {2, 3 }}的全部子集.解:集合B ={1, {2, 3 }}的全部子集为:}}.3,2{,1{}},3,2{{},1{,φ4.求集合A ={∅∅,{}}的幂集.解:A ={∅∅,{}}的幂集为,是子集的集合。
题是求集合的幂集,,应把子集列举出来;题是求集合的全部子集:注意43][}}}{,{}},{{},{,{2)(φφφφφ==A A P5.设集合A ={{a }, a },命题:{a }⊆P (A ) 是否正确,说明理由.解:{a }⊆P (A ) 不正确。
因为P (A )是A 的幂集,是由A 的子集组成的集合。
{a }既是 A 的元素又是A 的子集,应有{a }∈P (A ) 。
6.设A B C ==={,,},{,,},{,,},123135246求(1)A B ⋂ (2)A B C ⋃⋃(3)C - A (4)A B ⊕解:(1)A B ⋂={1,3}; (2)A B C ⋃⋃={1,2,3,4,5,6};(3)C -A ={4,6}; (4)A B ⊕={2,5}7.化简集合表示式:((A ⋃B )⋂B ) - A ⋃B .解:φ=⋃-=⋃-⋂⋃B A B B A B B A ))((8.设A , B , C 是三个任意集合,试证: A - (B ⋃C ) = (A - B ) - C .C B A C A B A A C A B A A C B A A C B A --=⋂-⋂-=⋂⋃⋂-=⋃⋂-=⋃-)()()())()(()()(解:9.填写集合{4, 9 }⊂{9, 10, 4}之间的关系.10.设集合A = {2, a , {3}, 4},那么下列命题中错误的是( A ).A .{a }∈AB .{ a , 4, {3}}⊆AC .{a }⊆AD .∅⊆A11.设B = { {a }, 3, 4, 2},那么下列命题中错误的是( C 、D ).A .{a }∈B B .{2, {a }, 3, 4}⊆BC .{a }⊆BD .{∅}⊆B第2章 关系与函数1.设集合A = {a , b },B = {1, 2, 3},C = {3, 4},求 A ⨯(B ⋂C ),(A ⨯B )⋂(A ⨯C ) ,并验证A ⨯(B ⋂C ) = (A ⨯B )⋂(A ⨯C ).)()(}3,,3,{}4,,3,,4,,3,{}3,,2,,1,,3,,2,,1,{)()(};3,,3,{}3{},{C A B A C B A b a b b a a b b b a a a C A B A b a b a C B A ⨯⋂⨯=⋂⨯〉〈〉〈=〉〈〉〈〉〈〉〈⋂〉〈〉〈〉〈〉〈〉〈〉〈=⨯⋂⨯〉〈〉〈=⨯=⋂⨯)(由上面可知,)(解:2.对任意三个集合A , B 和C ,若A ⨯B ⊆A ⨯C ,是否一定有B ⊆C ?为什么?。
最新国家开放大学电大《离散数学》形考任务1试题及答案

最新国家开放大学电大《离散数学》形考任务1试题及答案最新国家开放大学电大《离散数学》形考任务1试题及答.形考任务1(集合论部分概念及性质)单项选择.题目.若集合A=.a, {a}, {1, 2}}, 则下列表述正确的是().选择一项:A.{a, {a}}.B..C.{1, 2..D.{a..题目.设函数f: N→N, f(n)=n+1, 下列表述正确的是.).选择一项: A.f是满射.B.f存在反函.C.f是单射函.D.f是双射.题目.设集合A={1, 2, 3, 4, 5}, 偏序关系是A上的整除关系, 则偏序集<A, >上的元素5是集合A的.).选择一项:A.极小.B.极大.C.最大.D.最小.题目.设A={a, b}, B={1, 2}, C={4, 5}, 从A到B的函数f={<a,1>.<b, 2>}, 从B到C的函数g={<1, 5>.<2, 4>}, 则下列表述正确的是.).选择一项:A.g..={<a, 5>.<b, 4>.B.g..={<5, .>.<4, .>.C.f°.={<5, .>.<4, .>.D.f°.={<a, 5>.<b, 4>.题目.集合A={1.2.3.4}上的关系R={<x, y>|x=y且x.yA}, 则R的性质为.).选择一项:A.传递.B.不是对称.C.反自.D.不是自反.题目.设集合..{1..}, 则P(A...).选择一项:A.{{1}.{a}.{1..}.B.{{1}.{a}.C.{,{1}.{a}.D.{,{1}.{a}.{1..}.题目.若集合A={1, 2}, B={1, 2, {1, 2}},则下列表述正确的是.).选择一项:A.AB, 且A.B.AB, 且A.C.BA, 且A.D.AB, 且A.题目.设集合A={1.2.3}, B={3.4.5}, C={5.6.7},则A∪B–.=.).选择一项:A.{1.2.3.4.B.{4.5.6.7.C.{2.3.4.5.D.{1.2.3.5.题目.设集合..{1.2.3.4.5}上的偏序关系的哈斯图如右图所示, 若A的子集..{3.4.5}, 则元素3为B的.).选择一项:A.最小上.B.下.C.最大下.D.最小.题目1.如果R1和R2是A上的自反关系, 则R1∪R2, R1∩R2, R1-R2中自反关系有.)个.选择一项:A..B..C..D..以下资料为赠送资料:《滴水之中见精神》主题班会教案活动目的: 教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的, 每个人都要保护它, 做到节约每一滴水, 造福子孙万代。
国家开放大学《离散数学》形考任务2

《离散数学》形考任务二一、单项选择题图G如图三所示,以下说法正确的是( ).A.{c}是点割集B.a是割点C.{b, c}是点割集D.{b, d}是点割集正确答案是:{b, c}是点割集图G如图四所示,以下说法正确的是( ) .A.{(a, d)}是割边B.{(a, d) ,(b, d)}是边割集C.{(b, d)}是边割集D.{(a, d)}是边割集正确答案是:{(a, d) ,(b, d)}是边割集如图一所示,以下说法正确的是( ) .A.{(a, e)}是边割集B.{(a, e) ,(b, c)}是边割集C.{(a, e)}是割边D.{(d, e)}是边割集正确答案是:{(d, e)}是边割集如图二所示,以下说法正确的是( ).A.{a, e}是点割集B.{d}是点割集C.e是割点D.{b, e}是点割集正确答案是:e是割点设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).A.e-v+2B.v+e-2C.e+v+2D.e-v-2正确答案是:e-v+2设图G=<V, E>,v∈V,则下列结论成立的是( ) .A.B.deg(v)=2| E |C.D.deg(v)=| E |正确答案是:已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).A.4B.5C.3D.8正确答案是:5若G是一个欧拉图,则G一定是( ).A.汉密尔顿图B.连通图C.平面图D.对偶图正确答案是:连通图设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G的一棵生成树.A.m-nB.m-n+1C.n-m+1D.m+n+1正确答案是:m-n+1无向树T有8个结点,则T的边数为( ).A.6B.9C.7D.8正确答案是:7设无向图G的邻接矩阵为则G的边数为( ).A.5B.4C.3D.6正确答案是:5无向图G存在欧拉回路,当且仅当().A.G连通且所有结点的度数全为偶数B.G连通且至多有两个奇数度结点C.G中所有结点的度数全为偶数D.G中至多有两个奇数度结点正确答案是:G连通且所有结点的度数全为偶数以下结论正确的是( ).A.有n个结点n-1条边的无向图都是树B.无向完全图都是平面图C.无向完全图都是欧拉图D.树的每条边都是割边正确答案是:树的每条边都是割边已知无向图G的邻接矩阵为则G有().A.6点,8边B.5点,7边C.6点,7边D.5点,8边正确答案是:5点,7边设无向图G的邻接矩阵为则G的边数为( ).A.14B.1C.7D.6正确答案是:7若G是一个汉密尔顿图,则G一定是( ).A.连通图B.欧拉图C.对偶图D.平面图正确答案是:连通图设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).图六A.(c)只是弱连通的B.(a)只是弱连通的C.(b)只是弱连通的D.(d)只是弱连通的正确答案是:(d)只是弱连通的无向完全图K4是().A.汉密尔顿图B.树C.欧拉图D.非平面图正确答案是:汉密尔顿图设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).A.(d)是强连通的B.(c)是强连通的C.(b)是强连通的D.(a)是强连通的正确答案是:(a)是强连通的无向简单图G是棵树,当且仅当( ).A.G的边数比结点数少1B.G连通且结点数比边数少1C.G中没有回路.D.G连通且边数比结点数少1正确答案是:G连通且边数比结点数少1二、判断题设G是一个连通平面图,且有6个结点11条边,则G有7个面.( )正确答案是“对”。
离散数学形考任务2

1.如图二所示,以下说法正确的是( ).正确答案是:e是割点2. 图G如图四所示,以下说法正确的是( 正确答案是:{(a, d) ,(b, d)}是边割集3. 无向图G存在欧拉回路,当且仅当(正确答案是:G连通且所有结点的度数全为偶数4. 设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).正确答案是:e-v+25.图G如图三所示,以下说法正确的是( ).正确答案是:{b,c}是点割集6. 若G是一个汉密尔顿图,则G一定是正确答案是:连通图7. 无向树T有8个结点,则T的边数为( 正确答案是:78.设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).正确答案是:(a)是强连通的9.若G是一个欧拉图,则G一定是(正确答案是:连通图10.已知无向图G的邻接矩阵为,则G有().正确答案是:5点,7边11. 设连通平面图G的结点数为5,边数为6,则面数为4.( )正确的答案是“错”。
12. 若图G=<V, E>中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S,在G中删除S中的所有结点得到的连通分支数为W,则S中结点数|S|与W满足的关系式为W|S|.( ) 正确的答案是“对”13. 如图九所示的图G不是欧拉图而是汉密尔顿图.( )正确的答案是“对”14. 设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.正确的答案是“错”。
15. 设G是一个连通平面图,且有6个结点11条边,则G有7个面正确的答案是“对”16.设图G如图七所示,则图G的点割集是{f}.( )正确的答案是“错”17.设完全图K有n个结点(n2),m条边,当n为奇数时,K中存在欧拉回路.( 正确的答案是“对”。
18. 如图八所示的图G存在一条欧拉回路.正确的答案是“错”。
19. 无向图G的结点数比边数多1,则G是树.正确的答案是“错”。
20. 如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路.(正确的答案是“错”。
国家开放大学电大《离散数学》形考任务3

形考任务三试题及答案题目为随机,用查找功能(Ctrl+F)搜索题目选择题[题目]设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为().[答案]P→Q[题目]设命题公式G:G:┐p→(Q∧R),则使公式G取真值为1的P,Q,R赋值分别是().[答案]1,0,0[题目]命题公式(P∨Q)→R的析取范式是().[答案](┐P∧┐Q)∨R[题目]命题公式(P∨Q)的合取范式是().[答案](P∨Q)[题目]命题公式┐(p→Q)的主析取范式是().[答案]P∧┐Q[题目]命题公式P→Q的主合取范式是().[答案]┐P∨Q[题目]下列等价公式成立的为().[答案]P→(┐Q→P)<=>┐P→(P→Q)[题目]下列等价公式成立的为().[答案]┐P∧P<=>┐Q∧Q[题目]下列公式成立的为().[答案]┐P∧(P∨Q)=>Q[题目]下列公式中()为永真式.[答案]┐A∧┐B↔┐(A∨B)[题目]下列公式()为重言式.[答案]Q→(P∨(P∧Q))↔Q→P[题目]命题公式(P∨Q)→Q为()[答案]可满足式[题目]设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().[答案][题目]设A(x):x是人,B(x):x是教师,则命题“有人是教师”可符号化为().[答案][题目]设个体域为整数集,则公式的解释可为().[答案]对任一整数x存在整数y满足x+y=0[题目]表达式中的辖域是().[答案][题目]谓词公式(∀x)(A(x)→B(x)∨C(x,y))中的()。
[答案]x是约束变元,y都是自由变元[题目]设个体域D={a,b,c},那么谓词公式消去量词后的等值式为().[答案][题目]设个体域D是整数集合,则命题的真值是().[答案]T[题目]前提条件P→┐Q2P的有效结论是().[答案]┐Q判断题[题目]设P:小王来学校,Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.()[答案]对[题目]设P:昨天下雨,Q:今天下雨.那么命题“昨天下雨,今天仍然下雨”符号化的结果为P∧Q.()[答案]对[题目]设P:我们下午2点去礼堂看电影,Q:我们下午2点去教室看书.那么命题“我们下午2点或者去礼堂看电影或者去教室看书”符号化的结果为P∨Q.()[答案]错[题目]设P:他生病了,Q:他出差了,R:我同意他不参加学习.那么命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P∨Q)→┐R.()[答案]错[题目]命题公式P→(Q∨P)的真值是T.()[答案]对[题目]命题公式┐P∧P的真值是T.()[答案]错[题目]命题公式┐P∧(P∨Q)=>Q成立.()[答案]对[题目]命题公式┐P∧(P→┐Q)∨P为永真式.()[答案]对[题目]命题公式┐(P→Q)的主析取范式是P∨┐Q.()[答案]错[题目]含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).()[答案]对[题目]设P(x):x是人,Q(x):x去上课,那么命题“有人去上课.”为(∃x)(P(x)→Q(x)).()[答案]错[题目]设P(x):x是人,Q(x):x学习努力,那么命题“所有的人都学习努力.”为(∀x)(P(x)∧Q(x)).()[答案]错[题目]设个体域D={1,2,3},A(x)为“x小于3”,则谓词公式(∃x)A(x)的真值为T.()[答案]对[题目]设个体域D={1,2,3,4},A(x)为“x大于5”,则谓词公式(∀x)A(x)的真值为T.()[答案]错[题目]谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.()[答案]对[题目]谓词命题公式(∀x)((A(x)∧B(x))∨C(y))中的自由变元为x.()[答案]错[题目]谓词命题公式(∀x)(P(x)→Q(x)∨R(x,y))中的约束变元为x.()[答案]对[题目]设个体域D={a,b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).()[答案]错[题目]设个体域D={a,b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).()[答案]对[题目]下面的推理是否正确.()(1)(∀x)A(x)→B(x)前提引入(2)A(y)→B(y)US(1)[答案]错。
国开本科离散数学形考任务1练习

题目13 设集合A={1, 2, 3},B={1, 2},则A×B={<1,1>, <1,2>, <2,1>, <2,2>, <3,1>, <3,2>}.( ) 正确的答案是“对”。 题目14 设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具 有反自反性质.( ) 正确的答案是“对”。 题目15 设集合A={1, 2, 3, 4},B={2, 4, 6, 8},下列关系f = {<1, 4>, <2, 2,>, <4, 6>, <1, 8>}可以构成函数f:.( ) 正确的答案是“错”。 题目16 若偏序集<A,R>的哈斯图如图二所示,则集合A的最大元为a,极小元不存在.( ) 正确的答案是“错”。 题目17 设A={1,2},B={ a, b, c },则A×B的元素个数为8.( ) 正确的答案是“错”。 题目18 设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系, 则R的有序对集合为{<2, 2>,<2, 3>,<3, 2>,<3, 3>}.( ) 正确的答案是“对”。 题目19 设A={a, b},B={1, 2},C={a, b},从A到B的函数f={<a, 1>, <b, 2>},从B到C的函数g={<1, b>, <2, a >},则g° f ={<1,2 >, <2,1 >}.( ) 正确的答案是“错”。
最新电大离散数学形考作业任务0107网考试题及答案

最新电大《离散数学》形考作业任务01-07网考试题及答案100%通过考试说明:《离散数学》形考共有7个任务。
任务3、任务五、任务7是主观题,任务二、任务4、任务6是客观题,任务二、任务4、任务6需在考试中多次抽取试卷,直到显现02任务_0001或02任务_0009、04任务_0001或04任务_0009、06任务_0001或06任务_0009试卷,就能够够依照该套试卷答案答题。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他教学考一体化答案,敬请查看。
01任务一、单项选择题(共 8 道试题,共 80 分。
)1. 本课程的教学内容分为三个单元,其中第三单元的名称是().A. 数理逻辑B. 集合论C. 图论D. 谓词逻辑2. 本课程的教学内容按知识点将各类学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是().A. 函数B. 关系的概念及其运算C. 关系的性质与闭包运算D. 几个重要关系3. 本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有()讲.A. 18B. 20C. 19D. 174. 本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是().A. 集合恒等式与等价关系的判定B. 图论部份书面作业C. 集合论部份书面作业D. 网上学习问答5. 课程学习平台左侧第1个版块名称是:().A. 课程导学B. 课程公告C. 课程信息D. 利用帮忙6. 课程学习平台右边第5个版块名称是:().A. 典型例题B. 视频课堂C. VOD点播D. 常见问题7. “教学活动资料”版块是课程学习平台右边的第()个版块.A. 6B. 7C. 8D. 98. 课程学习平台中“课程温习”版块下,放有本课程历年考试试卷的栏目名称是:().A. 温习指导B. 视频C. 课件D. 自测。
国开电大离散数学(本)形考任务1-3参考答案

B.自反
C.自反和传递
D.传递
【答案】:对称
29.设A={a,b},B={1,2},C={4,5},从A到B的函数f={<a,1>, <b,2>},从B到C的函数g={<1,5>, <2,4>},则下列表述正确的是().
A. f°g ={<5,a >, <4,b >}
B. f°g ={<a,5>, <b,4>}
B. {<2, 1>, <3, 2>, <4, 3>}
C. {<2, 3>, <4, 5>, <6, 7>}
D. {<2, 1>, <4, 3>, <6, 5>}
【答案】:{<2, 3>, <4, 5>, <6, 7>}
3.设集合A={a},则A的幂集为( ).
【答案】:
4.设集合A = {1, a },则P(A) = ( ).
对
错
【答案】:错
15.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=那么R-1={<6, 3>,<8,4>}.()
对
错
【答案】:对
16.设A={1, 2}上的二元关系为R={<x, y>|xA,yA, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>}.()
对
错
【答案】:对
20.设A={1,2},B={ a, b, c },则A×B的元素个数为8.()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年11月上交的离散数学形考任务一本课程的教学内容分为三个单元,其中第三单元的名称是(A ).选择一项:A. 数理逻辑B. 集合论C. 图论D. 谓词逻辑题目2答案已保存满分10.00标记题目题干本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(D ).选择一项:A. 函数B. 关系的概念及其运算C. 关系的性质与闭包运算D. 几个重要关系题目3答案已保存满分10.00标记题目题干本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有(B)讲.选择一项:A. 18B. 20C. 19D. 17题目4答案已保存满分10.00标记题目题干本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是(C).选择一项:A. 集合恒等式与等价关系的判定B. 图论部分书面作业C. 集合论部分书面作业D. 网上学习问答题目5答案已保存满分10.00标记题目题干课程学习平台左侧第1个版块名称是:(C).选择一项:A. 课程导学B. 课程公告C. 课程信息D. 使用帮助题目6答案已保存满分10.00标记题目题干课程学习平台右侧第5个版块名称是:(D).选择一项:A. 典型例题B. 视频课堂C. VOD点播D. 常见问题题目7答案已保存满分10.00标记题目题干―教学活动资料‖版块是课程学习平台右侧的第(A)个版块.选择一项:A. 6B. 7C. 8D. 9题目8答案已保存满分10.00标记题目题干课程学习平台中―课程复习‖版块下,放有本课程历年考试试卷的栏目名称是:(D ).选择一项:A. 复习指导B. 视频C. 课件D. 自测请您按照课程导学与章节导学中安排学习进度、学习目标和学习方法设计自己的学习计划,学习计划应该包括:课程性质和目标(参考教学大纲)、学习内容、考核方式,以及自己的学习安排,字数要求在100—500字.完成后在下列文本框中提交.解答:学习计划学习离散数学任务目标:其一是通过学习离散数学,使学生了解和掌握在后续课程中要直接用到的一些数学概念和基本原理,掌握计算机中常用的科学论证方法,为后续课程的学习奠定一个良好的数学基础;其二是在离散数学的学习过程中,培养自学能力、抽象思维能力和逻辑推理能力,解决实际问题的能力,以提高专业理论水平。
其三是初步掌握处理离散结构所必须的描述工具和方法离散数学的主要内容:第一章节:主要介绍集合及其运算第二章节:主要介绍关系与函数第三章节:主要介绍图的基本概念及性质第四章节:主要介绍几种特殊图第五章节:主要介绍树及其应用第六章节:主要介绍命题逻辑第七章节:主要介绍谓词逻辑离散数学的考核方式分为:了解、理解和掌握。
了解是能正确判别有关概念和方法;理解是能正确表达有关概念和方法的含义;掌握是在理解的基础上加以灵活应用。
离散数学形考任务二若集合A=2}}A=2}},则下列表述正确的是( C ).选择一项:A.{a,{a}∈A{a,{a}∈AB.{1,2}?A{1,2}?AC.{a}?A{a}?AD.?∈A?∈A题目2答案已保存满分10.00标记题目题干设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C =( A).选择一项:A. {1, 2, 3, 4}B. {1, 2, 3, 5}C. {2, 3, 4, 5}D. {4, 5, 6, 7}题目3答案已保存满分10.00标记题目题干设集合A = {1,a a},则P(A) = ( D ).选择一项:A. {{1}, {a a}}B. {?,{1}, {a a}}C.a}}a}}D.?a}}a}}题目4答案已保存满分10.00标记题目题干集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y=10且x, y∈A},则R的性质为(B).选择一项:A. 自反的B. 对称的C. 传递且对称的D. 反自反且传递的题目5答案已保存满分10.00标记题目题干如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有(B )个选择一项:A. 0B. 2C. 1D. 3题目6答案已保存满分10.00标记题目题干设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为( D).选择一项:A. 8、2、8、2B. 8、1、6、1C. 6、2、6、2D. 无、2、无、2题目7答案已保存满分10.00标记题目题干设集合A={2, 4, 6, 8},B={1, 3, 5, 7},A到B的关系R={<x, y>| y = x +1},则R= ( A ).选择一项:A. {<2, 3>, <4, 5>, <6, 7>}B. {<2, 1>, <4, 3>, <6, 5>}C. {<2, 1>, <3, 2>, <4, 3>}D. {<2, 2>, <3, 3>, <4, 6>}题目8答案已保存满分10.00标记题目题干设集合A ={1 , 2, 3}上的函数分别为:?= {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2, 1>,<3, 1>},则h =(A).选择一项:A. gB. g??C.D. g?g题目9答案已保存满分10.00标记题目题干设A、B是两个任意集合,侧A-B = ?? ?( B).选择一项:A. A = BB. A ? BC. A ? BD. B =??题目10答案已保存满分10.00标记题目题干设集合A={1,2,3,4,5},偏序关系£是A上的整除关系,则偏序集<A,£>上的元素5是集合A的(C).选择一项:A. 最大元B. 最小元C. 极大元D. 极小元离散数学作业3离散数学集合论部分形成性考核书面作业一、填空题1.设集合{1,2,3},{1,2}AB??,则P(A)-P(B )={{3},{1,3},{2,3},{1,2,3}},A?B={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3.2>}2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024 3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,则R的有序对集合为{<2, 2>,<2, 3>,<3, 2>},<3,3>..4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=},,2,{ByAxxyyx?????那么R-1={<6,3>,<8,4>}},,{BAyxByAxyxR???????且且5.设集合A={a,b,c,d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是没有任何性质6.设集合A={a,b,c,d},A上的二元关系R={<a, a>, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素{<c,b>,<d,c>},则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1,2}上的二元关系为R={<x,y>|x?A,y?A,x+y=10},则R的自反闭包为{<1,1>,<2,2>}9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1,1>,<2,2>,<3,3>等元素.10.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是{<1, a >, <2, b >}或{<1, b >, <2,a >}..二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R={<1, 1>,<2, 2>,<1, 2>},则(1) R是自反的关系;(2) R是对称的关系.解:(1)错误。
R不具有自反的关系,因为<3,3>不属于R。
(2)错误。
R不具有对称的关系,因为<2,1>不属于R。
2.如果R1和R2是A上的自反关系,判断结论:“R-11、R1∪R2、R1∩R2是自反的”是否成立?并说明理由.解:成立.因为R1和R2是A上的自反关系,即I A?R1,I A?R2。
由逆关系定义和I A?R1,得I A? R1-1;由I A?R1,I A?R2,得I A? R1∪R2,I A? R1?R2。
所以,R1-1、R1∪R2、R1?R2是自反的。
3.若偏序集<A,R>的哈斯图如图一所示,则集合A的最大元为a,最小元不存在.解:错误.集合A的最大元不存在,a是极大元.4.设集合A={1,2,3,4},B={2, 4, 6, 8},,判断下列关系f是否构成函数f:BA?,并说明理由.(1) f={<1, 4>,<2, 2,>,<4, 6>,<1, 8>};(2)f={<1, 6>,<3, 4>,<2, 2>};(3) f={<1, 8>,<2, 6>,<3, 4>,<4, 2,>}..解:(1)不构成函数。
因为对于3属于A,在B中没有元素与之对应。
(2)不构成函数。
因为对于4属于A,在B中没有元素与之对应。
????a b c d 图一???ge f h?(3)构成函数。
因为A中任意一个元素都有A中唯一的元素相对应。
三、计算题1.设}4,2{},5,2,1{},4,1{},5,4,3,2,1{????CBAE,求:(1) (A?B)?~C;(2) (A?B)-(B?A) (3) P(A)-P(C);(4) A?B.解:(1) (A∩B)∪~C={1}∪{1,3,5}={1,3,5}(2) (A∪B)- (B∩A)={1,2,4,5}-{1}={2,4,5}(3) P(A) ={Φ4}} P(C)={ Φ4}} P(A)-4}}(4) A⊕B= (A∪B)- (B∩A)= {2,4,5}2.设A,1,2},B={1,2,{1,2}},试计算(1)(A?B);(2)(A∩B);(3)A×B.解:(1)A?}(2)A∩B ={1,2}(3)A×B={<{1},1>,<{1},2>,2}>,<{2},1>,<{2},2>,2}>,<1,1>,<1,2>,<1, {1,2}>,<2,1>,<2,2>,<2, {1,2}>}3.设A={1,2,3,4,5},R={<x,y>|x?A,y?A且x+y?4},S={<x,y>|x?A,y?A且x+y<0},试求R,S,R?S,S?R,R-1,S-1,r(S),s(R).解:R={<1,1>,<1,2>,<1,3><2,1><2,2><3,1>}S=空集R*S=空集S*R=空集R-1={<1,1>,<2,1><3,1><1,2><2,2><1,3>}S-1 =空集r(S)={<1,1><2,2><3,3><4,4><5,5>}s(R)={<1,1><1,2><1,3><2,1><2,2><3,1>}4.设A={1,2,3,4,5,6,7,8},R是A上的整除关系,B={2,4, 6}..(1) 写出关系R的表示式;(2 )画出关系R的哈斯图;(3) 求出集合B的最大元、最小元.解:(1)R={<1,1><1,2><1,3><1,4><1,5><1,6><1,7><1,8><2,2><2,4><2,6><2,8> <3,3><3,6><4,4><4,8><5,5><6,6><7,7><8,8>}(3)集合B没有最大元,最小元是2(2)关系R的唯斯图四、证明题12 5 6 410 73 8 9 11 12 关系R的哈斯图1.试证明集合等式:A? (B?C)=(A?B) ? (A?C).证明:设,若x∈A? (B?C),则x∈A或x∈B?C,即x∈A或x∈B 且x∈A或x∈C.即x∈A?B 且x∈A?C ,即x∈T=(A?B) ? (A?C),所以A? (B?C)? (A?B) ? (A?C).反之,若x∈(A?B) ? (A?C),则x∈A?B 且x∈A?C,即x∈A或x∈B 且x∈A或x∈C,即x∈A或x∈B?C,即x∈A? (B?C),所以(A?B) ? (A?C)? A? (B?C).因此.A? (B?C)=(A?B) ? (A?C).2.试证明集合等式A? (B?C)=(A?B) ? (A?C).证明:设S=A∩(B∪C),T=(A∩B)∪(A∩C),若x∈S,则x∈A且x∈B ∪C,即x∈A且x∈B 或x∈A且x∈C,也即x∈A∩B 或x∈A∩C ,即x∈T,所以S?T.反之,若x∈T,则x∈A∩B 或x∈A∩C,即x∈A且x∈B 或x∈A且x∈C也即x∈A且x∈B∪C,即x∈S,所以T?S.因此T=S.3.对任意三个集合A, B和C,试证明:若A?B = A?C,且A??,则B = C.证明:(1)对于任意<a,b>∈A×B,其中a∈A,b∈B,因为A×B= A×C,必有<a,b>∈A×C,其中b ∈C因此B?C(2)同理,对于任意<a,c>∈A×C,其中,a∈A,c∈C,因为A×B= A×C 必有<a,c>∈A×B,其中c∈B,因此C?B有(1)(2)得B=C4.试证明:若R与S是集合A上的自反关系,则R∩S也是集合A上的自反关系.证明:若R与S是集合A上的自反关系,则任意x∈A,<x,x>∈R,<x,x>∈S,从而<x,x>∈R∩S,注意x是A的任意元素,所以R∩S也是集合A上的自反关系.离散数学形考任务四设无向图G 的邻接矩阵为,则G 的边数为( B ).选择一项:A. 6B. 5C. 4D. 3题目2答案已保存满分10.00标记题目题干如图一所示,以下说法正确的是( D) .选择一项:A. {(a,e a,e)}是割边B. {(a,e a,e)}是边割集C. {(a,e),(b,c)(a,e),(b,c)}是边割集D. {(d,e d,e)}是边割集题目3答案已保存满分10.00标记题目题干如图三所示,以下说法正确的是( C) .选择一项:A. {(a,d a,d)}是割边B. {(a,d a,d)}是边割集C. {(a,d),(b,d)(a,d),(b,d)}是边割集D. {(b,d b,d)}是边割集题目4答案已保存满分10.00标记题目题干无向图G存在欧拉回路,当且仅当(C).选择一项:A. G中所有结点的度数全为偶数B. G中至多有两个奇数度结点C. G连通且所有结点的度数全为偶数D. G连通且至多有两个奇数度结点题目5答案已保存满分10.00标记题目题干若G是一个欧拉图,则G一定是( C ).选择一项:A. 平面图B. 汉密尔顿图C. 连通图D. 对偶图题目6答案已保存满分10.00标记题目题干无向树T有8个结点,则T的边数为( B ).选择一项:A. 6B. 7C. 8D. 9题目7答案已保存满分10.00标记题目题干已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( A).选择一项:A. 5B. 8C. 3D. 4题目8答案已保存满分10.00标记题目题干设无向图G 的邻接矩阵为,则G 的边数为( C ).选择一项:A. 1B. 6C. 7D. 14题目9答案已保存满分10.00标记题目题干设有向图(a)、(b)、(c)与(d)如图所示,则下列结论成立的是( D ).选择一项:A. (a)只是弱连通的B. (b)只是弱连通的C. (c)只是弱连通的D. (d)只是弱连通的题目10答案已保存满分10.00标记题目题干以下结论正确的是( D ).选择一项:A. 无向完全图都是欧拉图B. 有n个结点n-1条边的无向图都是树C. 无向完全图都是平面图D. 树的每条边都是割边离散数学作业5离散数学图论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。